diff --git a/Core/Code/Rendering/mitkGeometry2DDataVtkMapper3D.cpp b/Core/Code/Rendering/mitkGeometry2DDataVtkMapper3D.cpp index a1db358e74..02e1198a73 100644 --- a/Core/Code/Rendering/mitkGeometry2DDataVtkMapper3D.cpp +++ b/Core/Code/Rendering/mitkGeometry2DDataVtkMapper3D.cpp @@ -1,708 +1,699 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date$ Version: $Revision$ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "mitkGeometry2DDataVtkMapper3D.h" -#include "mitkImageMapperGL2D.h" +#include "mitkImageVtkMapper2D.h" #include "mitkLookupTableProperty.h" #include "mitkSmartPointerProperty.h" #include "mitkSurface.h" #include "mitkVtkRepresentationProperty.h" #include "mitkWeakPointerProperty.h" #include "mitkNodePredicateDataType.h" #include "mitkNodePredicateOr.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace mitk { Geometry2DDataVtkMapper3D::Geometry2DDataVtkMapper3D() : m_NormalsActorAdded(false), m_DataStorage(NULL) { m_EdgeTuber = vtkTubeFilter::New(); m_EdgeMapper = vtkPolyDataMapper::New(); m_SurfaceCreator = Geometry2DDataToSurfaceFilter::New(); m_SurfaceCreatorBoundingBox = BoundingBox::New(); m_SurfaceCreatorPointsContainer = BoundingBox::PointsContainer::New(); m_Edges = vtkFeatureEdges::New(); m_Edges->BoundaryEdgesOn(); m_Edges->FeatureEdgesOff(); m_Edges->NonManifoldEdgesOff(); m_Edges->ManifoldEdgesOff(); m_EdgeTransformer = vtkTransformPolyDataFilter::New(); m_NormalsTransformer = vtkTransformPolyDataFilter::New(); m_EdgeActor = vtkActor::New(); m_BackgroundMapper = vtkPolyDataMapper::New(); m_BackgroundActor = vtkActor::New(); m_Prop3DAssembly = vtkAssembly::New(); m_ImageAssembly = vtkAssembly::New(); m_SurfaceCreatorBoundingBox->SetPoints( m_SurfaceCreatorPointsContainer ); m_Cleaner = vtkCleanPolyData::New(); m_Cleaner->PieceInvariantOn(); m_Cleaner->ConvertLinesToPointsOn(); m_Cleaner->ConvertPolysToLinesOn(); m_Cleaner->ConvertStripsToPolysOn(); m_Cleaner->PointMergingOn(); // Make sure that the FeatureEdge algorithm is initialized with a "valid" // (though empty) input vtkPolyData *emptyPolyData = vtkPolyData::New(); m_Cleaner->SetInput( emptyPolyData ); emptyPolyData->Delete(); m_Edges->SetInput(m_Cleaner->GetOutput()); m_EdgeTransformer->SetInput( m_Edges->GetOutput() ); m_EdgeTuber->SetInput( m_EdgeTransformer->GetOutput() ); m_EdgeTuber->SetVaryRadiusToVaryRadiusOff(); m_EdgeTuber->SetNumberOfSides( 12 ); m_EdgeTuber->CappingOn(); m_EdgeMapper->SetInput( m_EdgeTuber->GetOutput() ); m_EdgeMapper->ScalarVisibilityOff(); m_BackgroundMapper->SetInput(emptyPolyData); m_EdgeActor->SetMapper( m_EdgeMapper ); m_BackgroundActor->GetProperty()->SetAmbient( 0.5 ); m_BackgroundActor->GetProperty()->SetColor( 0.0, 0.0, 0.0 ); m_BackgroundActor->GetProperty()->SetOpacity( 1.0 ); m_BackgroundActor->SetMapper( m_BackgroundMapper ); vtkProperty * backfaceProperty = m_BackgroundActor->MakeProperty(); backfaceProperty->SetColor( 0.0, 0.0, 0.0 ); m_BackgroundActor->SetBackfaceProperty( backfaceProperty ); backfaceProperty->Delete(); m_FrontHedgeHog = vtkHedgeHog::New(); m_BackHedgeHog = vtkHedgeHog::New(); m_FrontNormalsMapper = vtkPolyDataMapper::New(); m_FrontNormalsMapper->SetInput( m_FrontHedgeHog->GetOutput() ); m_BackNormalsMapper = vtkPolyDataMapper::New(); m_Prop3DAssembly->AddPart( m_EdgeActor ); m_Prop3DAssembly->AddPart( m_ImageAssembly ); m_FrontNormalsActor = vtkActor::New(); m_FrontNormalsActor->SetMapper(m_FrontNormalsMapper); m_BackNormalsActor = vtkActor::New(); m_BackNormalsActor->SetMapper(m_BackNormalsMapper); m_DefaultLookupTable = vtkLookupTable::New(); m_DefaultLookupTable->SetTableRange( -1024.0, 4096.0 ); m_DefaultLookupTable->SetSaturationRange( 0.0, 0.0 ); m_DefaultLookupTable->SetHueRange( 0.0, 0.0 ); m_DefaultLookupTable->SetValueRange( 0.0, 1.0 ); m_DefaultLookupTable->Build(); m_DefaultLookupTable->SetTableValue( 0, 0.0, 0.0, 0.0, 0.0 ); m_ImageMapperDeletedCommand = MemberCommandType::New(); m_ImageMapperDeletedCommand->SetCallbackFunction( this, &Geometry2DDataVtkMapper3D::ImageMapperDeletedCallback ); } Geometry2DDataVtkMapper3D::~Geometry2DDataVtkMapper3D() { m_ImageAssembly->Delete(); m_Prop3DAssembly->Delete(); m_EdgeTuber->Delete(); m_EdgeMapper->Delete(); m_EdgeTransformer->Delete(); m_Cleaner->Delete(); m_Edges->Delete(); m_NormalsTransformer->Delete(); m_EdgeActor->Delete(); m_BackgroundMapper->Delete(); m_BackgroundActor->Delete(); m_DefaultLookupTable->Delete(); m_FrontNormalsMapper->Delete(); m_FrontNormalsActor->Delete(); m_FrontHedgeHog->Delete(); m_BackNormalsMapper->Delete(); m_BackNormalsActor->Delete(); m_BackHedgeHog->Delete(); // Delete entries in m_ImageActors list one by one m_ImageActors.clear(); LookupTablePropertiesList::iterator it; for(it = m_LookupTableProperties.begin(); it != m_LookupTableProperties.end();++it) { if ( it->second.LookupTableSource != NULL ) { it->second.LookupTableSource->Delete(); it->second.LookupTableSource = NULL; } } m_DataStorage = NULL; } vtkProp* Geometry2DDataVtkMapper3D::GetVtkProp(mitk::BaseRenderer * /*renderer*/) { if ( (this->GetDataNode() != NULL ) && (m_ImageAssembly != NULL) ) { // Do not transform the entire Prop3D assembly, but only the image part // here. The colored frame is transformed elsewhere (via m_EdgeTransformer), // since only vertices should be transformed there, not the poly data // itself, to avoid distortion for anisotropic datasets. m_ImageAssembly->SetUserTransform( this->GetDataNode()->GetVtkTransform() ); } return m_Prop3DAssembly; } void Geometry2DDataVtkMapper3D::UpdateVtkTransform(mitk::BaseRenderer * /*renderer*/) { m_ImageAssembly->SetUserTransform( this->GetDataNode()->GetVtkTransform(this->GetTimestep()) ); } const Geometry2DData* Geometry2DDataVtkMapper3D::GetInput() { return static_cast ( GetData() ); } void Geometry2DDataVtkMapper3D::SetDataStorageForTexture(mitk::DataStorage* storage) { if(storage != NULL && m_DataStorage != storage ) { m_DataStorage = storage; this->Modified(); } } void Geometry2DDataVtkMapper3D::ImageMapperDeletedCallback( itk::Object *caller, const itk::EventObject& /*event*/ ) { - ImageMapperGL2D *imageMapper = dynamic_cast< ImageMapperGL2D * >( caller ); + ImageVtkMapper2D *imageMapper = dynamic_cast< ImageVtkMapper2D * >( caller ); if ( (imageMapper != NULL) ) { if ( m_ImageActors.count( imageMapper ) > 0) { m_ImageActors[imageMapper].m_Sender = NULL; // sender is already destroying itself m_ImageActors.erase( imageMapper ); } if ( m_LookupTableProperties.count( imageMapper ) > 0 ) { m_LookupTableProperties[imageMapper].LookupTableSource->Delete(); m_LookupTableProperties.erase( imageMapper ); } } } void Geometry2DDataVtkMapper3D::GenerateDataForRenderer(BaseRenderer* renderer) { SetVtkMapperImmediateModeRendering(m_EdgeMapper); SetVtkMapperImmediateModeRendering(m_BackgroundMapper); // Remove all actors from the assembly, and re-initialize it with the // edge actor m_ImageAssembly->GetParts()->RemoveAllItems(); if ( !this->IsVisible(renderer) ) { // visibility has explicitly to be set in the single actors // due to problems when using cell picking: // even if the assembly is invisible, the renderer contains // references to the assemblies parts. During picking the // visibility of each part is checked, and not only for the // whole assembly. m_ImageAssembly->VisibilityOff(); m_EdgeActor->VisibilityOff(); return; } // visibility has explicitly to be set in the single actors // due to problems when using cell picking: // even if the assembly is invisible, the renderer contains // references to the assemblies parts. During picking the // visibility of each part is checked, and not only for the // whole assembly. m_ImageAssembly->VisibilityOn(); m_EdgeActor->VisibilityOn(); Geometry2DData::Pointer input = const_cast< Geometry2DData * >(this->GetInput()); if (input.IsNotNull() && (input->GetGeometry2D() != NULL)) { SmartPointerProperty::Pointer surfacecreatorprop; surfacecreatorprop = dynamic_cast< SmartPointerProperty * >(GetDataNode()->GetProperty("surfacegeometry", renderer)); if ( (surfacecreatorprop.IsNull()) || (surfacecreatorprop->GetSmartPointer().IsNull()) || ((m_SurfaceCreator = dynamic_cast (surfacecreatorprop->GetSmartPointer().GetPointer())).IsNull() ) ) { m_SurfaceCreator->PlaceByGeometryOn(); surfacecreatorprop = SmartPointerProperty::New( m_SurfaceCreator ); GetDataNode()->SetProperty("surfacegeometry", surfacecreatorprop); } m_SurfaceCreator->SetInput(input); int res; if (GetDataNode()->GetIntProperty("xresolution", res, renderer)) { m_SurfaceCreator->SetXResolution(res); } if (GetDataNode()->GetIntProperty("yresolution", res, renderer)) { m_SurfaceCreator->SetYResolution(res); } double tubeRadius = 1.0; // Radius of tubular edge surrounding plane // Clip the Geometry2D with the reference geometry bounds (if available) if ( input->GetGeometry2D()->HasReferenceGeometry() ) { Geometry3D *referenceGeometry = input->GetGeometry2D()->GetReferenceGeometry(); BoundingBox::PointType boundingBoxMin, boundingBoxMax; boundingBoxMin = referenceGeometry->GetBoundingBox()->GetMinimum(); boundingBoxMax = referenceGeometry->GetBoundingBox()->GetMaximum(); if ( referenceGeometry->GetImageGeometry() ) { for ( unsigned int i = 0; i < 3; ++i ) { boundingBoxMin[i] -= 0.5; boundingBoxMax[i] -= 0.5; } } m_SurfaceCreatorPointsContainer->CreateElementAt( 0 ) = boundingBoxMin; m_SurfaceCreatorPointsContainer->CreateElementAt( 1 ) = boundingBoxMax; m_SurfaceCreatorBoundingBox->ComputeBoundingBox(); m_SurfaceCreator->SetBoundingBox( m_SurfaceCreatorBoundingBox ); tubeRadius = referenceGeometry->GetDiagonalLength() / 450.0; } // If no reference geometry is available, clip with the current global // bounds else if (m_DataStorage.IsNotNull()) { m_SurfaceCreator->SetBoundingBox(m_DataStorage->ComputeVisibleBoundingBox(NULL, "includeInBoundingBox")); tubeRadius = sqrt( m_SurfaceCreator->GetBoundingBox()->GetDiagonalLength2() ) / 450.0; } // Calculate the surface of the Geometry2D m_SurfaceCreator->Update(); Surface *surface = m_SurfaceCreator->GetOutput(); // Check if there's something to display, otherwise return if ( (surface->GetVtkPolyData() == 0 ) || (surface->GetVtkPolyData()->GetNumberOfCells() == 0) ) { m_ImageAssembly->VisibilityOff(); return; } // add a graphical representation of the surface normals if requested DataNode* node = this->GetDataNode(); bool displayNormals = false; bool colorTwoSides = false; bool invertNormals = false; node->GetBoolProperty("draw normals 3D", displayNormals, renderer); node->GetBoolProperty("color two sides", colorTwoSides, renderer); node->GetBoolProperty("invert normals", invertNormals, renderer); //if we want to draw the display normals or render two sides we have to get the colors if( displayNormals || colorTwoSides ) { //get colors float frontColor[3] = { 0.0, 0.0, 1.0 }; node->GetColor( frontColor, renderer, "front color" ); float backColor[3] = { 1.0, 0.0, 0.0 }; node->GetColor( backColor, renderer, "back color" ); if ( displayNormals ) { m_NormalsTransformer->SetInput( surface->GetVtkPolyData() ); m_NormalsTransformer->SetTransform(node->GetVtkTransform(this->GetTimestep()) ); m_FrontHedgeHog->SetInput( m_NormalsTransformer->GetOutput() ); m_FrontHedgeHog->SetVectorModeToUseNormal(); m_FrontHedgeHog->SetScaleFactor( invertNormals ? 1.0 : -1.0 ); m_FrontNormalsActor->GetProperty()->SetColor( frontColor[0], frontColor[1], frontColor[2] ); m_BackHedgeHog->SetInput( m_NormalsTransformer->GetOutput() ); m_BackHedgeHog->SetVectorModeToUseNormal(); m_BackHedgeHog->SetScaleFactor( invertNormals ? -1.0 : 1.0 ); m_BackNormalsActor->GetProperty()->SetColor( backColor[0], backColor[1], backColor[2] ); //if there is no actor added yet, add one if ( !m_NormalsActorAdded ) { m_Prop3DAssembly->AddPart( m_FrontNormalsActor ); m_Prop3DAssembly->AddPart( m_BackNormalsActor ); m_NormalsActorAdded = true; } } //if we don't want to display normals AND there is an actor added remove the actor else if ( m_NormalsActorAdded ) { m_Prop3DAssembly->RemovePart( m_FrontNormalsActor ); m_Prop3DAssembly->RemovePart( m_BackNormalsActor ); m_NormalsActorAdded = false; } if ( colorTwoSides ) { if ( !invertNormals ) { m_BackgroundActor->GetProperty()->SetColor( backColor[0], backColor[1], backColor[2] ); m_BackgroundActor->GetBackfaceProperty()->SetColor( frontColor[0], frontColor[1], frontColor[2] ); } else { m_BackgroundActor->GetProperty()->SetColor( frontColor[0], frontColor[1], frontColor[2] ); m_BackgroundActor->GetBackfaceProperty()->SetColor( backColor[0], backColor[1], backColor[2] ); } } } // Add black background for all images (which may be transparent) m_BackgroundMapper->SetInput( surface->GetVtkPolyData() ); m_ImageAssembly->AddPart( m_BackgroundActor ); LayerSortedActorList layerSortedActors; // Traverse the data tree to find nodes resliced by ImageMapperGL2D mitk::NodePredicateOr::Pointer p = mitk::NodePredicateOr::New(); //use a predicate to get all data nodes which are "images" or inherit from mitk::Image mitk::TNodePredicateDataType< mitk::Image >::Pointer predicateAllImages = mitk::TNodePredicateDataType< mitk::Image >::New(); mitk::DataStorage::SetOfObjects::ConstPointer all = m_DataStorage->GetSubset(predicateAllImages); //process all found images for (mitk::DataStorage::SetOfObjects::ConstIterator it = all->Begin(); it != all->End(); ++it) { DataNode *node = it->Value(); if (node != NULL) this->ProcessNode(node, renderer, surface, layerSortedActors); } // Add all image actors to the assembly, sorted according to // layer property LayerSortedActorList::iterator actorIt; for ( actorIt = layerSortedActors.begin(); actorIt != layerSortedActors.end(); ++actorIt ) { m_ImageAssembly->AddPart( actorIt->second ); } // Configurate the tube-shaped frame: size according to the surface // bounds, color as specified in the plane's properties vtkPolyData *surfacePolyData = surface->GetVtkPolyData(); m_Cleaner->SetInput(surfacePolyData); m_EdgeTransformer->SetTransform(this->GetDataNode()->GetVtkTransform(this->GetTimestep()) ); // Adjust the radius according to extent m_EdgeTuber->SetRadius( tubeRadius ); // Get the plane's color and set the tube properties accordingly ColorProperty::Pointer colorProperty; colorProperty = dynamic_cast(this->GetDataNode()->GetProperty( "color" )); if ( colorProperty.IsNotNull() ) { const Color& color = colorProperty->GetColor(); m_EdgeActor->GetProperty()->SetColor(color.GetRed(), color.GetGreen(), color.GetBlue()); } else { m_EdgeActor->GetProperty()->SetColor( 1.0, 1.0, 1.0 ); } m_ImageAssembly->SetUserTransform(this->GetDataNode()->GetVtkTransform(this->GetTimestep()) ); } VtkRepresentationProperty* representationProperty; this->GetDataNode()->GetProperty(representationProperty, "material.representation", renderer); if ( representationProperty != NULL ) m_BackgroundActor->GetProperty()->SetRepresentation( representationProperty->GetVtkRepresentation() ); } void Geometry2DDataVtkMapper3D::ProcessNode( DataNode * node, BaseRenderer* renderer, Surface * surface, LayerSortedActorList &layerSortedActors ) { if ( node != NULL ) { //we need to get the information from the 2D mapper to render the texture on the 3D plane - ImageMapperGL2D *imageMapper = dynamic_cast< ImageMapperGL2D * >( node->GetMapper(1) ); //GetMapper(1) provides the 2D mapper for the data node + ImageVtkMapper2D *imageMapper = dynamic_cast< ImageVtkMapper2D * >( node->GetMapper(1) ); //GetMapper(1) provides the 2D mapper for the data node //if there is a 2D mapper, which is not the standard image mapper... if(!imageMapper && node->GetMapper(1)) { //... check if it is the composite mapper std::string cname(node->GetMapper(1)->GetNameOfClass()); if(!cname.compare("CompositeMapper")) //string.compare returns 0 if the two strings are equal. { //get the standard image mapper. //This is a special case in MITK and does only work for the CompositeMapper. - imageMapper = dynamic_cast( node->GetMapper(3) ); + imageMapper = dynamic_cast( node->GetMapper(3) ); } } if ( (node->IsVisible(renderer)) && imageMapper ) { WeakPointerProperty::Pointer rendererProp = dynamic_cast< WeakPointerProperty * >(GetDataNode()->GetPropertyList()->GetProperty("renderer")); if ( rendererProp.IsNotNull() ) { BaseRenderer::Pointer planeRenderer = dynamic_cast< BaseRenderer * >(rendererProp->GetWeakPointer().GetPointer()); if ( planeRenderer.IsNotNull() ) { // If it has not been initialized already in a previous pass, // generate an actor, a lookup table and a texture object to // render the image associated with the ImageMapperGL2D. vtkActor *imageActor; vtkDataSetMapper *dataSetMapper = NULL; vtkLookupTable *lookupTable; vtkTexture *texture; if ( m_ImageActors.count( imageMapper ) == 0 ) { dataSetMapper = vtkDataSetMapper::New(); //Enable rendering without copying the image. dataSetMapper->ImmediateModeRenderingOn(); lookupTable = vtkLookupTable::New(); lookupTable->DeepCopy( m_DefaultLookupTable ); texture = vtkTexture::New(); texture->SetLookupTable( lookupTable ); texture->RepeatOff(); imageActor = vtkActor::New(); imageActor->GetProperty()->SetAmbient( 0.5 ); imageActor->SetMapper( dataSetMapper ); imageActor->SetTexture( texture ); // Make imageActor the sole owner of the mapper and texture // objects lookupTable->UnRegister( NULL ); dataSetMapper->UnRegister( NULL ); texture->UnRegister( NULL ); // Store the actor so that it may be accessed in following // passes. m_ImageActors[imageMapper].Initialize(imageActor, imageMapper, m_ImageMapperDeletedCommand); } else { // Else, retrieve the actor and associated objects from the // previous pass. imageActor = m_ImageActors[imageMapper].m_Actor; dataSetMapper = (vtkDataSetMapper *)imageActor->GetMapper(); texture = imageActor->GetTexture(); lookupTable = dynamic_cast(texture->GetLookupTable()); } // Set poly data new each time its object changes (e.g. when // switching between planar and curved geometries) if ( (dataSetMapper != NULL) && (dataSetMapper->GetInput() != surface->GetVtkPolyData()) ) { dataSetMapper->SetInput( surface->GetVtkPolyData() ); } imageActor->GetMapper()->GetInput()->Update(); imageActor->GetMapper()->Update(); - // We have to do this before GenerateAllData() is called - // since there may be no RendererInfo for renderer yet, - // thus GenerateAllData won't update the (non-existing) - // RendererInfo for renderer. By calling GetRendererInfo - // a RendererInfo will be created for renderer (if it does not - // exist yet). - imageMapper->GetRendererInfo( planeRenderer ); - imageMapper->GenerateAllData(); - // ensure the right openGL context, as 3D widgets may render and take their plane texture from 2D image mappers renderer->GetRenderWindow()->MakeCurrent(); // Retrieve and update image to be mapped - const ImageMapperGL2D::RendererInfo *rit = imageMapper->GetRendererInfo( planeRenderer ); - if(rit->m_Image != NULL) - { - rit->m_Image->Update(); - //set the 2D image as texture for the 3D plane - texture->SetInput( rit->m_Image ); + const ImageVtkMapper2D::LocalStorage* localStorage = imageMapper->m_LSH.GetLocalStorage(planeRenderer); + + if(localStorage->m_ReslicedImage != NULL) + { + localStorage->m_ReslicedImage->Update(); + texture->SetInput( localStorage->m_ReslicedImage ); //default level window ScalarType windowMin = 0.0; ScalarType windowMax = 255.0; LevelWindow levelWindow; bool binary = false; node->GetBoolProperty( "binary", binary, renderer ); // check for "use color" bool useColor = false; node->GetBoolProperty( "use color", useColor, planeRenderer ); // VTK (mis-)interprets unsigned char (binary) images as color images; // So, we must manually turn on their mapping through a (gray scale) lookup table; texture->SetMapColorScalarsThroughLookupTable(binary); //if we have a binary image, the range is just 0 to 1 if( binary ) { windowMin = 0; windowMax = 1; useColor = true; } // check for level-window-prop and use it if it exists if( !binary && ( node->GetLevelWindow( levelWindow, planeRenderer, "levelWindow" ) || node->GetLevelWindow( levelWindow, planeRenderer ) ) ) { windowMin = levelWindow.GetLowerWindowBound(); windowMax = levelWindow.GetUpperWindowBound(); } vtkLookupTable *lookupTableSource; // check for LookupTable LookupTableProperty::Pointer lookupTableProp; lookupTableProp = dynamic_cast< LookupTableProperty * >(node->GetPropertyList()->GetProperty( "LookupTable" )); // If there is a lookup table supplied and we don't // want to use the color property, use it; //otherwise, use the default grayscale table if ( lookupTableProp.IsNotNull() && !useColor ) { lookupTableSource = lookupTableProp->GetLookupTable()->GetVtkLookupTable(); } else { lookupTableSource = m_DefaultLookupTable; } LookupTableProperties &lutProperties = m_LookupTableProperties[imageMapper]; // If there has been some change since the last pass which // makes it necessary to re-build the lookup table, do it. if ( (lutProperties.LookupTableSource != lookupTableSource) || (lutProperties.windowMin != windowMin) || (lutProperties.windowMax != windowMax) ) { // Note the values for the next pass (lutProperties is a // reference to the list entry!) if ( lutProperties.LookupTableSource != NULL ) { lutProperties.LookupTableSource->Delete(); } lutProperties.LookupTableSource = lookupTableSource; lutProperties.LookupTableSource->Register( NULL ); lutProperties.windowMin = windowMin; lutProperties.windowMax = windowMax; lookupTable->DeepCopy( lookupTableSource ); lookupTable->SetRange( windowMin, windowMax ); } //get the color float rgb[3] = { 1.0, 1.0, 1.0 }; node->GetColor( rgb, renderer ); // Apply color property (of the node, not of the plane) // if we want to use the color if(useColor) { imageActor->GetProperty()->SetColor( rgb[0], rgb[1], rgb[2] ); } else //else default color = white to avoid site effects from the lookuptable { imageActor->GetProperty()->SetColor( 1, 1, 1 ); } // Apply opacity property (of the node, not of the plane) float opacity = 0.999; node->GetOpacity( opacity, renderer ); imageActor->GetProperty()->SetOpacity( opacity ); // Set texture interpolation on/off bool textureInterpolation = node->IsOn( "texture interpolation", renderer ); texture->SetInterpolate( textureInterpolation ); // Store this actor to be added to the actor assembly, sort // by layer int layer = 1; node->GetIntProperty( "layer", layer ); layerSortedActors.insert(std::pair< int, vtkActor * >( layer, imageActor ) ); } } } } } } void Geometry2DDataVtkMapper3D::ActorInfo::Initialize(vtkActor* actor, itk::Object* sender, itk::Command* command) { m_Actor = actor; m_Sender = sender; // Get informed when ImageMapper object is deleted, so that // the data structures built here can be deleted as well m_ObserverID = sender->AddObserver( itk::DeleteEvent(), command ); } Geometry2DDataVtkMapper3D::ActorInfo::ActorInfo() : m_Actor(NULL), m_Sender(NULL), m_ObserverID(0) { } Geometry2DDataVtkMapper3D::ActorInfo::~ActorInfo() { if(m_Sender != NULL) { m_Sender->RemoveObserver(m_ObserverID); } if(m_Actor != NULL) { m_Actor->Delete(); } } } // namespace mitk diff --git a/Modules/DiffusionImaging/IODataStructures/mitkDiffusionImagingObjectFactory.cpp b/Modules/DiffusionImaging/IODataStructures/mitkDiffusionImagingObjectFactory.cpp index fc6a4739ac..5e65e9abf4 100644 --- a/Modules/DiffusionImaging/IODataStructures/mitkDiffusionImagingObjectFactory.cpp +++ b/Modules/DiffusionImaging/IODataStructures/mitkDiffusionImagingObjectFactory.cpp @@ -1,305 +1,305 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2009-06-18 15:59:04 +0200 (Do, 18 Jun 2009) $ Version: $Revision: 16916 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "mitkDiffusionImagingObjectFactory.h" #include "mitkProperties.h" #include "mitkBaseRenderer.h" #include "mitkDataNode.h" #include "mitkNrrdDiffusionImageIOFactory.h" #include "mitkNrrdDiffusionImageWriterFactory.h" #include "mitkNrrdDiffusionImageWriter.h" #include "mitkDiffusionImage.h" #include "mitkNrrdQBallImageIOFactory.h" #include "mitkNrrdQBallImageWriterFactory.h" #include "mitkNrrdQBallImageWriter.h" #include "mitkNrrdTensorImageIOFactory.h" #include "mitkNrrdTensorImageWriterFactory.h" #include "mitkNrrdTensorImageWriter.h" #include "mitkCompositeMapper.h" #include "mitkDiffusionImageMapper.h" #include "mitkGPUVolumeMapper3D.h" #include "mitkVolumeDataVtkMapper3D.h" //====depricated fiberstructure===== #include "mitkFiberBundle.h" #include "mitkFiberBundleMapper3D.h" #include "mitkFiberBundleIOFactory.h" #include "mitkFiberBundleWriterFactory.h" #include "mitkFiberBundleWriter.h" //================================== //modernized fiberbundle datastrucutre #include "mitkFiberBundleX.h" #include "mitkFiberBundleXIOFactory.h" #include "mitkFiberBundleXWriterFactory.h" #include "mitkFiberBundleXWriter.h" #include "mitkFiberBundleXMapper3D.h" #include "mitkNrrdTbssImageIOFactory.h" #include "mitkNrrdTbssImageWriterFactory.h" #include "mitkNrrdTbssImageWriter.h" typedef short DiffusionPixelType; typedef char TbssRoiPixelType; typedef mitk::DiffusionImage DiffusionImageShort; typedef std::multimap MultimapType; mitk::DiffusionImagingObjectFactory::DiffusionImagingObjectFactory(bool /*registerSelf*/) :CoreObjectFactoryBase() { static bool alreadyDone = false; if (!alreadyDone) { MITK_INFO << "DiffusionImagingObjectFactory c'tor" << std::endl; RegisterIOFactories(); mitk::NrrdDiffusionImageIOFactory::RegisterOneFactory(); mitk::NrrdQBallImageIOFactory::RegisterOneFactory(); mitk::NrrdTensorImageIOFactory::RegisterOneFactory(); mitk::FiberBundleIOFactory::RegisterOneFactory(); mitk::NrrdTbssImageIOFactory::RegisterOneFactory(); mitk::FiberBundleXIOFactory::RegisterOneFactory(); //modernized mitk::NrrdDiffusionImageWriterFactory::RegisterOneFactory(); mitk::NrrdQBallImageWriterFactory::RegisterOneFactory(); mitk::NrrdTensorImageWriterFactory::RegisterOneFactory(); mitk::FiberBundleWriterFactory::RegisterOneFactory(); mitk::NrrdTbssImageWriterFactory::RegisterOneFactory(); mitk::FiberBundleXWriterFactory::RegisterOneFactory();//modernized m_FileWriters.push_back( NrrdDiffusionImageWriter::New().GetPointer() ); m_FileWriters.push_back( NrrdQBallImageWriter::New().GetPointer() ); m_FileWriters.push_back( NrrdTensorImageWriter::New().GetPointer() ); m_FileWriters.push_back( mitk::FiberBundleWriter::New().GetPointer() ); m_FileWriters.push_back( NrrdTbssImageWriter::New().GetPointer() ); m_FileWriters.push_back( mitk::FiberBundleXWriter::New().GetPointer() );//modernized mitk::CoreObjectFactory::GetInstance()->RegisterExtraFactory(this); CreateFileExtensionsMap(); alreadyDone = true; } } mitk::Mapper::Pointer mitk::DiffusionImagingObjectFactory::CreateMapper(mitk::DataNode* node, MapperSlotId id) { mitk::Mapper::Pointer newMapper=NULL; if ( id == mitk::BaseRenderer::Standard2D ) { std::string classname("QBallImage"); if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { newMapper = mitk::CompositeMapper::New(); newMapper->SetDataNode(node); node->SetMapper(3, ((CompositeMapper*)newMapper.GetPointer())->GetImageMapper()); } classname = "TensorImage"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { newMapper = mitk::CompositeMapper::New(); newMapper->SetDataNode(node); node->SetMapper(3, ((CompositeMapper*)newMapper.GetPointer())->GetImageMapper()); } classname = "DiffusionImage"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { newMapper = mitk::DiffusionImageMapper::New(); newMapper->SetDataNode(node); } mitk::Mapper::Pointer newMapper=NULL; classname = "TbssImage"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { - newMapper = mitk::ImageMapperGL2D::New(); + newMapper = mitk::ImageVtkMapper2D::New(); newMapper->SetDataNode(node); } } else if ( id == mitk::BaseRenderer::Standard3D ) { std::string classname("QBallImage"); if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { newMapper = mitk::GPUVolumeMapper3D::New(); newMapper->SetDataNode(node); } classname = "TensorImage"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { newMapper = mitk::GPUVolumeMapper3D::New(); newMapper->SetDataNode(node); } classname = "DiffusionImage"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { newMapper = mitk::GPUVolumeMapper3D::New(); newMapper->SetDataNode(node); } classname = "FiberBundle"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { newMapper = mitk::FiberBundleMapper3D::New(); newMapper->SetDataNode(node); } classname = "FiberBundleX"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { newMapper = mitk::FiberBundleXMapper3D::New(); newMapper->SetDataNode(node); } classname = "TbssImage"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { newMapper = mitk::VolumeDataVtkMapper3D::New(); newMapper->SetDataNode(node); } } return newMapper; } void mitk::DiffusionImagingObjectFactory::SetDefaultProperties(mitk::DataNode* node) { std::string classname = "QBallImage"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { mitk::CompositeMapper::SetDefaultProperties(node); mitk::GPUVolumeMapper3D::SetDefaultProperties(node); } classname = "TensorImage"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { mitk::CompositeMapper::SetDefaultProperties(node); mitk::GPUVolumeMapper3D::SetDefaultProperties(node); } classname = "DiffusionImage"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { mitk::DiffusionImageMapper::SetDefaultProperties(node); mitk::GPUVolumeMapper3D::SetDefaultProperties(node); } classname = "FiberBundle"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { mitk::FiberBundleMapper3D::SetDefaultProperties(node); } classname = "FiberBundleX"; if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { mitk::FiberBundleMapper3D::SetDefaultProperties(node); } classname = "TbssImage"; std::string n = node->GetData()->GetNameOfClass(); if(node->GetData() && classname.compare(node->GetData()->GetNameOfClass())==0) { - mitk::ImageMapperGL2D::SetDefaultProperties(node); + mitk::ImageVtkMapper2D::SetDefaultProperties(node); mitk::VolumeDataVtkMapper3D::SetDefaultProperties(node); } } const char* mitk::DiffusionImagingObjectFactory::GetFileExtensions() { std::string fileExtension; this->CreateFileExtensions(m_FileExtensionsMap, fileExtension); return fileExtension.c_str(); }; mitk::CoreObjectFactoryBase::MultimapType mitk::DiffusionImagingObjectFactory::GetFileExtensionsMap() { return m_FileExtensionsMap; } const char* mitk::DiffusionImagingObjectFactory::GetSaveFileExtensions() { std::string fileExtension; this->CreateFileExtensions(m_SaveFileExtensionsMap, fileExtension); return fileExtension.c_str(); }; mitk::CoreObjectFactoryBase::MultimapType mitk::DiffusionImagingObjectFactory::GetSaveFileExtensionsMap() { return m_SaveFileExtensionsMap; } void mitk::DiffusionImagingObjectFactory::CreateFileExtensionsMap() { m_FileExtensionsMap.insert(std::pair("*.dwi", "Diffusion Weighted Images")); m_FileExtensionsMap.insert(std::pair("*.hdwi", "Diffusion Weighted Images")); m_FileExtensionsMap.insert(std::pair("*.nii", "Diffusion Weighted Images for FSL")); m_FileExtensionsMap.insert(std::pair("*.fsl", "Diffusion Weighted Images for FSL")); m_FileExtensionsMap.insert(std::pair("*.fslgz", "Diffusion Weighted Images for FSL")); m_FileExtensionsMap.insert(std::pair("*.qbi", "Q-Ball Images")); m_FileExtensionsMap.insert(std::pair("*.hqbi", "Q-Ball Images")); m_FileExtensionsMap.insert(std::pair("*.dti", "Tensor Images")); m_FileExtensionsMap.insert(std::pair("*.hdti", "Tensor Images")); m_FileExtensionsMap.insert(std::pair("*.fib", "Fiber Bundle")); m_FileExtensionsMap.insert(std::pair("*.vfib", "Fiber Bundle Polydata")); m_FileExtensionsMap.insert(std::pair("*.vtk", "Fiber Bundle Polydata")); m_FileExtensionsMap.insert(std::pair("*.tbss", "TBSS data")); m_SaveFileExtensionsMap.insert(std::pair("*.dwi", "Diffusion Weighted Images")); m_SaveFileExtensionsMap.insert(std::pair("*.hdwi", "Diffusion Weighted Images")); m_SaveFileExtensionsMap.insert(std::pair("*.nii", "Diffusion Weighted Images for FSL")); m_SaveFileExtensionsMap.insert(std::pair("*.fsl", "Diffusion Weighted Images for FSL")); m_SaveFileExtensionsMap.insert(std::pair("*.fslgz", "Diffusion Weighted Images for FSL")); m_SaveFileExtensionsMap.insert(std::pair("*.qbi", "Q-Ball Images")); m_SaveFileExtensionsMap.insert(std::pair("*.hqbi", "Q-Ball Images")); m_SaveFileExtensionsMap.insert(std::pair("*.dti", "Tensor Images")); m_SaveFileExtensionsMap.insert(std::pair("*.hdti", "Tensor Images")); m_SaveFileExtensionsMap.insert(std::pair("*.fib", "Fiber Bundle")); m_SaveFileExtensionsMap.insert(std::pair("*.vfib", "Fiber Bundle Polydata")); m_SaveFileExtensionsMap.insert(std::pair("*.vtk", "Fiber Bundle Polydata")); m_SaveFileExtensionsMap.insert(std::pair("*.tbss", "TBSS data")); } void mitk::DiffusionImagingObjectFactory::RegisterIOFactories() { } void RegisterDiffusionImagingObjectFactory() { static bool oneDiffusionImagingObjectFactoryRegistered = false; if ( ! oneDiffusionImagingObjectFactoryRegistered ) { MITK_INFO << "Registering DiffusionImagingObjectFactory..." << std::endl; mitk::CoreObjectFactory::GetInstance()->RegisterExtraFactory(mitk::DiffusionImagingObjectFactory::New()); oneDiffusionImagingObjectFactoryRegistered = true; } } diff --git a/Modules/ImageExtraction/mitkExtractDirectedPlaneImageFilter.cpp b/Modules/ImageExtraction/mitkExtractDirectedPlaneImageFilter.cpp index e2999cf028..316a226e5d 100644 --- a/Modules/ImageExtraction/mitkExtractDirectedPlaneImageFilter.cpp +++ b/Modules/ImageExtraction/mitkExtractDirectedPlaneImageFilter.cpp @@ -1,504 +1,504 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date$ Version: $Revision: $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "mitkExtractDirectedPlaneImageFilter.h" #include "mitkAbstractTransformGeometry.h" -#include "mitkImageMapperGL2D.h" +//#include "mitkImageMapperGL2D.h" #include #include #include #include #include #include "pic2vtk.h" mitk::ExtractDirectedPlaneImageFilter::ExtractDirectedPlaneImageFilter() : m_WorldGeometry(NULL) { m_Reslicer = vtkImageReslice::New(); m_TargetTimestep = 0; m_InPlaneResampleExtentByGeometry = false; } mitk::ExtractDirectedPlaneImageFilter::~ExtractDirectedPlaneImageFilter() { m_WorldGeometry = NULL; m_Reslicer->Delete(); } void mitk::ExtractDirectedPlaneImageFilter::GenerateData() { // A world geometry must be set... if ( m_WorldGeometry == NULL ) { itkWarningMacro(<<"No world geometry has been set. Returning."); return; } Image *input = const_cast< ImageToImageFilter::InputImageType* >( this->GetInput() ); input->Update(); if ( input == NULL ) { itkWarningMacro(<<"No input set."); return; } const TimeSlicedGeometry *inputTimeGeometry = input->GetTimeSlicedGeometry(); if ( ( inputTimeGeometry == NULL ) || ( inputTimeGeometry->GetTimeSteps() == 0 ) ) { itkWarningMacro(<<"Error reading input image geometry."); return; } // Get the target timestep; if none is set, use the lowest given. unsigned int timestep = 0; if ( ! m_TargetTimestep ) { ScalarType time = m_WorldGeometry->GetTimeBounds()[0]; if ( time > ScalarTypeNumericTraits::NonpositiveMin() ) { timestep = inputTimeGeometry->MSToTimeStep( time ); } } else timestep = m_TargetTimestep; if ( inputTimeGeometry->IsValidTime( timestep ) == false ) { itkWarningMacro(<<"This is not a valid timestep: "<IsVolumeSet( timestep ) ) { itkWarningMacro(<<"No volume data existent at given timestep "<GetLargestPossibleRegion(); requestedRegion.SetIndex( 3, timestep ); requestedRegion.SetSize( 3, 1 ); requestedRegion.SetSize( 4, 1 ); input->SetRequestedRegion( &requestedRegion ); input->Update(); vtkImageData* inputData = input->GetVtkImageData( timestep ); if ( inputData == NULL ) { itkWarningMacro(<<"Could not extract vtk image data for given timestep"<GetSpacing( spacing ); // how big the area is in physical coordinates: widthInMM x heightInMM pixels mitk::ScalarType widthInMM, heightInMM; // where we want to sample Point3D origin; Vector3D right, bottom, normal; Vector3D rightInIndex, bottomInIndex; assert( input->GetTimeSlicedGeometry() == inputTimeGeometry ); // take transform of input image into account Geometry3D* inputGeometry = inputTimeGeometry->GetGeometry3D( timestep ); if ( inputGeometry == NULL ) { itkWarningMacro(<<"There is no Geometry3D at given timestep "<( m_WorldGeometry ) != NULL ) { const PlaneGeometry *planeGeometry = static_cast< const PlaneGeometry * >( m_WorldGeometry ); origin = planeGeometry->GetOrigin(); right = planeGeometry->GetAxisVector( 0 ); bottom = planeGeometry->GetAxisVector( 1 ); normal = planeGeometry->GetNormal(); if ( m_InPlaneResampleExtentByGeometry ) { // Resampling grid corresponds to the current world geometry. This // means that the spacing of the output 2D image depends on the // currently selected world geometry, and *not* on the image itself. extent[0] = m_WorldGeometry->GetExtent( 0 ); extent[1] = m_WorldGeometry->GetExtent( 1 ); } else { // Resampling grid corresponds to the input geometry. This means that // the spacing of the output 2D image is directly derived from the // associated input image, regardless of the currently selected world // geometry. inputGeometry->WorldToIndex( right, rightInIndex ); inputGeometry->WorldToIndex( bottom, bottomInIndex ); extent[0] = rightInIndex.GetNorm(); extent[1] = bottomInIndex.GetNorm(); } // Get the extent of the current world geometry and calculate resampling // spacing therefrom. widthInMM = m_WorldGeometry->GetExtentInMM( 0 ); heightInMM = m_WorldGeometry->GetExtentInMM( 1 ); mmPerPixel[0] = widthInMM / extent[0]; mmPerPixel[1] = heightInMM / extent[1]; right.Normalize(); bottom.Normalize(); normal.Normalize(); //origin += right * ( mmPerPixel[0] * 0.5 ); //origin += bottom * ( mmPerPixel[1] * 0.5 ); //widthInMM -= mmPerPixel[0]; //heightInMM -= mmPerPixel[1]; // Use inverse transform of the input geometry for reslicing the 3D image m_Reslicer->SetResliceTransform( inputGeometry->GetVtkTransform()->GetLinearInverse() ); // Set background level to TRANSLUCENT (see Geometry2DDataVtkMapper3D) m_Reslicer->SetBackgroundLevel( -32768 ); // Check if a reference geometry does exist (as would usually be the case for // PlaneGeometry). // Note: this is currently not strictly required, but could facilitate // correct plane clipping. if ( m_WorldGeometry->GetReferenceGeometry() ) { // Calculate the actual bounds of the transformed plane clipped by the // dataset bounding box; this is required for drawing the texture at the // correct position during 3D mapping. boundsInitialized = this->CalculateClippedPlaneBounds( m_WorldGeometry->GetReferenceGeometry(), planeGeometry, bounds ); } } // Do we have an AbstractTransformGeometry? else if ( dynamic_cast< const AbstractTransformGeometry * >( m_WorldGeometry ) ) { const mitk::AbstractTransformGeometry* abstractGeometry = dynamic_cast< const AbstractTransformGeometry * >(m_WorldGeometry); extent[0] = abstractGeometry->GetParametricExtent(0); extent[1] = abstractGeometry->GetParametricExtent(1); widthInMM = abstractGeometry->GetParametricExtentInMM(0); heightInMM = abstractGeometry->GetParametricExtentInMM(1); mmPerPixel[0] = widthInMM / extent[0]; mmPerPixel[1] = heightInMM / extent[1]; origin = abstractGeometry->GetPlane()->GetOrigin(); right = abstractGeometry->GetPlane()->GetAxisVector(0); right.Normalize(); bottom = abstractGeometry->GetPlane()->GetAxisVector(1); bottom.Normalize(); normal = abstractGeometry->GetPlane()->GetNormal(); normal.Normalize(); // Use a combination of the InputGeometry *and* the possible non-rigid // AbstractTransformGeometry for reslicing the 3D Image vtkGeneralTransform *composedResliceTransform = vtkGeneralTransform::New(); composedResliceTransform->Identity(); composedResliceTransform->Concatenate( inputGeometry->GetVtkTransform()->GetLinearInverse() ); composedResliceTransform->Concatenate( abstractGeometry->GetVtkAbstractTransform() ); m_Reslicer->SetResliceTransform( composedResliceTransform ); // Set background level to BLACK instead of translucent, to avoid // boundary artifacts (see Geometry2DDataVtkMapper3D) m_Reslicer->SetBackgroundLevel( -1023 ); composedResliceTransform->Delete(); } else { itkWarningMacro(<<"World Geometry has to be a PlaneGeometry or an AbstractTransformGeometry."); return; } // Make sure that the image to be resliced has a certain minimum size. if ( (extent[0] <= 2) && (extent[1] <= 2) ) { itkWarningMacro(<<"Image is too small to be resliced..."); return; } vtkImageChangeInformation * unitSpacingImageFilter = vtkImageChangeInformation::New() ; unitSpacingImageFilter->SetOutputSpacing( 1.0, 1.0, 1.0 ); unitSpacingImageFilter->SetInput( inputData ); m_Reslicer->SetInput( unitSpacingImageFilter->GetOutput() ); unitSpacingImageFilter->Delete(); //m_Reslicer->SetInput( inputData ); m_Reslicer->SetOutputDimensionality( 2 ); m_Reslicer->SetOutputOrigin( 0.0, 0.0, 0.0 ); Vector2D pixelsPerMM; pixelsPerMM[0] = 1.0 / mmPerPixel[0]; pixelsPerMM[1] = 1.0 / mmPerPixel[1]; //calulate the originArray and the orientations for the reslice-filter double originArray[3]; itk2vtk( origin, originArray ); m_Reslicer->SetResliceAxesOrigin( originArray ); double cosines[9]; // direction of the X-axis of the sampled result vnl2vtk( right.Get_vnl_vector(), cosines ); // direction of the Y-axis of the sampled result vnl2vtk( bottom.Get_vnl_vector(), cosines + 3 ); // normal of the plane vnl2vtk( normal.Get_vnl_vector(), cosines + 6 ); m_Reslicer->SetResliceAxesDirectionCosines( cosines ); // Determine output extent for reslicing ScalarType size[2]; size[0] = (bounds[1] - bounds[0]) / mmPerPixel[0]; size[1] = (bounds[3] - bounds[2]) / mmPerPixel[1]; int xMin, xMax, yMin, yMax; if ( boundsInitialized ) { xMin = static_cast< int >( bounds[0] / mmPerPixel[0] );//+ 0.5 ); xMax = static_cast< int >( bounds[1] / mmPerPixel[0] );//+ 0.5 ); yMin = static_cast< int >( bounds[2] / mmPerPixel[1] );//+ 0.5); yMax = static_cast< int >( bounds[3] / mmPerPixel[1] );//+ 0.5 ); } else { // If no reference geometry is available, we also don't know about the // maximum plane size; so the overlap is just ignored xMin = yMin = 0; xMax = static_cast< int >( extent[0] - pixelsPerMM[0] );//+ 0.5 ); yMax = static_cast< int >( extent[1] - pixelsPerMM[1] );//+ 0.5 ); } m_Reslicer->SetOutputSpacing( mmPerPixel[0], mmPerPixel[1], 1.0 ); // xMax and yMax are meant exclusive until now, whereas // SetOutputExtent wants an inclusive bound. Thus, we need // to subtract 1. m_Reslicer->SetOutputExtent( xMin, xMax-1, yMin, yMax-1, 0, 1 ); // Do the reslicing. Modified() is called to make sure that the reslicer is // executed even though the input geometry information did not change; this // is necessary when the input /em data, but not the /em geometry changes. m_Reslicer->Modified(); m_Reslicer->ReleaseDataFlagOn(); m_Reslicer->Update(); // 1. Check the result vtkImageData* reslicedImage = m_Reslicer->GetOutput(); mitkIpPicDescriptor *pic = Pic2vtk::convert( reslicedImage ); if((reslicedImage == NULL) || (reslicedImage->GetDataDimension() < 1)) { itkWarningMacro(<<"Reslicer returned empty image"); return; } unsigned int dimensions[2]; dimensions[0] = (unsigned int)extent[0]; dimensions[1] = (unsigned int)extent[1]; Vector3D spacingVector; FillVector3D(spacingVector, mmPerPixel[0], mmPerPixel[1], 1.0); mitk::Image::Pointer resultImage = this->GetOutput(); resultImage->Initialize( pic ); resultImage->SetSpacing( spacingVector ); resultImage->SetPicVolume( pic ); mitkIpPicFree(pic); /*unsigned int dimensions[2]; dimensions[0] = (unsigned int)extent[0]; dimensions[1] = (unsigned int)extent[1]; Vector3D spacingVector; FillVector3D(spacingVector, mmPerPixel[0], mmPerPixel[1], 1.0); mitk::Image::Pointer resultImage = this->GetOutput(); resultImage->Initialize(m_Reslicer->GetOutput()); resultImage->Initialize(inputImage->GetPixelType(), 2, dimensions); resultImage->SetSpacing(spacingVector); resultImage->SetSlice(m_Reslicer->GetOutput());*/ } void mitk::ExtractDirectedPlaneImageFilter::GenerateOutputInformation() { Superclass::GenerateOutputInformation(); } bool mitk::ExtractDirectedPlaneImageFilter ::CalculateClippedPlaneBounds( const Geometry3D *boundingGeometry, const PlaneGeometry *planeGeometry, vtkFloatingPointType *bounds ) { // Clip the plane with the bounding geometry. To do so, the corner points // of the bounding box are transformed by the inverse transformation // matrix, and the transformed bounding box edges derived therefrom are // clipped with the plane z=0. The resulting min/max values are taken as // bounds for the image reslicer. const BoundingBox *boundingBox = boundingGeometry->GetBoundingBox(); BoundingBox::PointType bbMin = boundingBox->GetMinimum(); BoundingBox::PointType bbMax = boundingBox->GetMaximum(); BoundingBox::PointType bbCenter = boundingBox->GetCenter(); vtkPoints *points = vtkPoints::New(); if(boundingGeometry->GetImageGeometry()) { points->InsertPoint( 0, bbMin[0]-0.5, bbMin[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 1, bbMin[0]-0.5, bbMin[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 2, bbMin[0]-0.5, bbMax[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 3, bbMin[0]-0.5, bbMax[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 4, bbMax[0]-0.5, bbMin[1]-0.5, bbMin[2]-0.5 ); points->InsertPoint( 5, bbMax[0]-0.5, bbMin[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 6, bbMax[0]-0.5, bbMax[1]-0.5, bbMax[2]-0.5 ); points->InsertPoint( 7, bbMax[0]-0.5, bbMax[1]-0.5, bbMin[2]-0.5 ); } else { points->InsertPoint( 0, bbMin[0], bbMin[1], bbMin[2] ); points->InsertPoint( 1, bbMin[0], bbMin[1], bbMax[2] ); points->InsertPoint( 2, bbMin[0], bbMax[1], bbMax[2] ); points->InsertPoint( 3, bbMin[0], bbMax[1], bbMin[2] ); points->InsertPoint( 4, bbMax[0], bbMin[1], bbMin[2] ); points->InsertPoint( 5, bbMax[0], bbMin[1], bbMax[2] ); points->InsertPoint( 6, bbMax[0], bbMax[1], bbMax[2] ); points->InsertPoint( 7, bbMax[0], bbMax[1], bbMin[2] ); } vtkPoints *newPoints = vtkPoints::New(); vtkTransform *transform = vtkTransform::New(); transform->Identity(); transform->Concatenate( planeGeometry->GetVtkTransform()->GetLinearInverse() ); transform->Concatenate( boundingGeometry->GetVtkTransform() ); transform->TransformPoints( points, newPoints ); transform->Delete(); bounds[0] = bounds[2] = 10000000.0; bounds[1] = bounds[3] = -10000000.0; bounds[4] = bounds[5] = 0.0; this->LineIntersectZero( newPoints, 0, 1, bounds ); this->LineIntersectZero( newPoints, 1, 2, bounds ); this->LineIntersectZero( newPoints, 2, 3, bounds ); this->LineIntersectZero( newPoints, 3, 0, bounds ); this->LineIntersectZero( newPoints, 0, 4, bounds ); this->LineIntersectZero( newPoints, 1, 5, bounds ); this->LineIntersectZero( newPoints, 2, 6, bounds ); this->LineIntersectZero( newPoints, 3, 7, bounds ); this->LineIntersectZero( newPoints, 4, 5, bounds ); this->LineIntersectZero( newPoints, 5, 6, bounds ); this->LineIntersectZero( newPoints, 6, 7, bounds ); this->LineIntersectZero( newPoints, 7, 4, bounds ); // clean up vtk data points->Delete(); newPoints->Delete(); if ( (bounds[0] > 9999999.0) || (bounds[2] > 9999999.0) || (bounds[1] < -9999999.0) || (bounds[3] < -9999999.0) ) { return false; } else { // The resulting bounds must be adjusted by the plane spacing, since we // we have so far dealt with index coordinates const float *planeSpacing = planeGeometry->GetFloatSpacing(); bounds[0] *= planeSpacing[0]; bounds[1] *= planeSpacing[0]; bounds[2] *= planeSpacing[1]; bounds[3] *= planeSpacing[1]; bounds[4] *= planeSpacing[2]; bounds[5] *= planeSpacing[2]; return true; } } bool mitk::ExtractDirectedPlaneImageFilter ::LineIntersectZero( vtkPoints *points, int p1, int p2, vtkFloatingPointType *bounds ) { vtkFloatingPointType point1[3]; vtkFloatingPointType point2[3]; points->GetPoint( p1, point1 ); points->GetPoint( p2, point2 ); if ( (point1[2] * point2[2] <= 0.0) && (point1[2] != point2[2]) ) { double x, y; x = ( point1[0] * point2[2] - point1[2] * point2[0] ) / ( point2[2] - point1[2] ); y = ( point1[1] * point2[2] - point1[2] * point2[1] ) / ( point2[2] - point1[2] ); if ( x < bounds[0] ) { bounds[0] = x; } if ( x > bounds[1] ) { bounds[1] = x; } if ( y < bounds[2] ) { bounds[2] = y; } if ( y > bounds[3] ) { bounds[3] = y; } bounds[4] = bounds[5] = 0.0; return true; } return false; }