diff --git a/Core/Code/Algorithms/mitkExtractSliceFilter.cpp b/Core/Code/Algorithms/mitkExtractSliceFilter.cpp index 753d8a3cd7..40a8268a72 100644 --- a/Core/Code/Algorithms/mitkExtractSliceFilter.cpp +++ b/Core/Code/Algorithms/mitkExtractSliceFilter.cpp @@ -1,482 +1,482 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkExtractSliceFilter.h" #include #include #include #include #include #include #include mitk::ExtractSliceFilter::ExtractSliceFilter(vtkImageReslice* reslicer ){ if(reslicer == NULL){ m_Reslicer = vtkSmartPointer::New(); } else { m_Reslicer = reslicer; } m_TimeStep = 0; m_Reslicer->ReleaseDataFlagOn(); m_InterpolationMode = ExtractSliceFilter::RESLICE_NEAREST; m_ResliceTransform = NULL; m_InPlaneResampleExtentByGeometry = false; m_OutPutSpacing = new mitk::ScalarType[2]; m_OutputDimension = 2; m_ZSpacing = 1.0; m_ZMin = 0; m_ZMax = 0; m_VtkOutputRequested = false; } mitk::ExtractSliceFilter::~ExtractSliceFilter(){ m_ResliceTransform = NULL; m_WorldGeometry = NULL; delete [] m_OutPutSpacing; } void mitk::ExtractSliceFilter::GenerateOutputInformation(){ //TODO try figure out how to set the specs of the slice before it is actually extracted /*Image::Pointer output = this->GetOutput(); Image::ConstPointer input = this->GetInput(); if (input.IsNull()) return; unsigned int dimensions[2]; dimensions[0] = m_WorldGeometry->GetExtent(0); dimensions[1] = m_WorldGeometry->GetExtent(1); output->Initialize(input->GetPixelType(), 2, dimensions, 1);*/ } void mitk::ExtractSliceFilter::GenerateInputRequestedRegion(){ //As we want all pixel information fo the image in our plane, the requested region //is set to the largest possible region in the image. //This is needed because an oblique plane has a larger extent then the image //and the in pipeline it is checked via PropagateResquestedRegion(). But the //extent of the slice is actually fitting because it is oblique within the image. ImageToImageFilter::InputImagePointer input = const_cast< ImageToImageFilter::InputImageType* > ( this->GetInput() ); input->SetRequestedRegionToLargestPossibleRegion(); } mitk::ScalarType* mitk::ExtractSliceFilter::GetOutputSpacing(){ return m_OutPutSpacing; } void mitk::ExtractSliceFilter::GenerateData(){ mitk::Image *input = const_cast< mitk::Image * >( this->GetInput() ); if (!input) { MITK_ERROR << "mitk::ExtractSliceFilter: No input image available. Please set the input!" << std::endl; itkExceptionMacro("mitk::ExtractSliceFilter: No input image available. Please set the input!"); return; } if(!m_WorldGeometry) { MITK_ERROR << "mitk::ExtractSliceFilter: No Geometry for reslicing available." << std::endl; itkExceptionMacro("mitk::ExtractSliceFilter: No Geometry for reslicing available."); return; } const TimeGeometry* inputTimeGeometry = this->GetInput()->GetTimeGeometry(); if ( ( inputTimeGeometry == NULL ) || ( inputTimeGeometry->GetNumberOfTimeSteps() <= 0 ) ) { itkWarningMacro(<<"Error reading input image TimeGeometry."); return; } // is it a valid timeStep? if ( inputTimeGeometry->IsValidTimeStep( m_TimeStep ) == false ) { itkWarningMacro(<<"This is not a valid timestep: "<< m_TimeStep ); return; } // check if there is something to display. if ( ! input->IsVolumeSet( m_TimeStep ) ) { itkWarningMacro(<<"No volume data existent at given timestep "<< m_TimeStep ); return; } /*================#BEGIN setup vtkImageRslice properties================*/ Point3D origin; Vector3D right, bottom, normal; double widthInMM, heightInMM; Vector2D extent; const PlaneGeometry* planeGeometry = dynamic_cast(m_WorldGeometry); if ( planeGeometry != NULL ) { //if the worldGeomatry is a PlaneGeometry everthing is straight forward origin = planeGeometry->GetOrigin(); right = planeGeometry->GetAxisVector( 0 ); bottom = planeGeometry->GetAxisVector( 1 ); normal = planeGeometry->GetNormal(); if ( m_InPlaneResampleExtentByGeometry ) { // Resampling grid corresponds to the current world geometry. This // means that the spacing of the output 2D image depends on the // currently selected world geometry, and *not* on the image itself. extent[0] = m_WorldGeometry->GetExtent( 0 ); extent[1] = m_WorldGeometry->GetExtent( 1 ); } else { // Resampling grid corresponds to the input geometry. This means that // the spacing of the output 2D image is directly derived from the // associated input image, regardless of the currently selected world // geometry. Vector3D rightInIndex, bottomInIndex; inputTimeGeometry->GetGeometryForTimeStep( m_TimeStep )->WorldToIndex( right, rightInIndex ); inputTimeGeometry->GetGeometryForTimeStep( m_TimeStep )->WorldToIndex( bottom, bottomInIndex ); extent[0] = rightInIndex.GetNorm(); extent[1] = bottomInIndex.GetNorm(); } // Get the extent of the current world geometry and calculate resampling // spacing therefrom. widthInMM = m_WorldGeometry->GetExtentInMM( 0 ); heightInMM = m_WorldGeometry->GetExtentInMM( 1 ); m_OutPutSpacing[0] = widthInMM / extent[0]; m_OutPutSpacing[1] = heightInMM / extent[1]; right.Normalize(); bottom.Normalize(); normal.Normalize(); /* * Transform the origin to center based coordinates. * Note: * This is needed besause vtk's origin is center based too (!!!) ( see 'The VTK book' page 88 ) * and the worldGeometry surrouding the image is no imageGeometry. So the worldGeometry * has its origin at the corner of the voxel and needs to be transformed. */ origin += right * ( m_OutPutSpacing[0] * 0.5 ); origin += bottom * ( m_OutPutSpacing[1] * 0.5 ); //set the tranform for reslicing. // Use inverse transform of the input geometry for reslicing the 3D image. // This is needed if the image volume already transformed if(m_ResliceTransform.IsNotNull()) m_Reslicer->SetResliceTransform(m_ResliceTransform->GetVtkTransform()->GetLinearInverse()); // Set background level to TRANSLUCENT (see Geometry2DDataVtkMapper3D), // else the background of the image turns out gray m_Reslicer->SetBackgroundLevel( -32768 ); } else{ //Code for curved planes, mostly taken 1:1 from imageVtkMapper2D and not tested yet. // Do we have an AbstractTransformGeometry? // This is the case for AbstractTransformGeometry's (e.g. a ThinPlateSplineCurvedGeometry ) const mitk::AbstractTransformGeometry* abstractGeometry = dynamic_cast< const AbstractTransformGeometry * >(m_WorldGeometry); if(abstractGeometry != NULL) { m_ResliceTransform = abstractGeometry; extent[0] = abstractGeometry->GetParametricExtent(0); extent[1] = abstractGeometry->GetParametricExtent(1); widthInMM = abstractGeometry->GetParametricExtentInMM(0); heightInMM = abstractGeometry->GetParametricExtentInMM(1); m_OutPutSpacing[0] = widthInMM / extent[0]; m_OutPutSpacing[1] = heightInMM / extent[1]; origin = abstractGeometry->GetPlane()->GetOrigin(); right = abstractGeometry->GetPlane()->GetAxisVector(0); right.Normalize(); bottom = abstractGeometry->GetPlane()->GetAxisVector(1); bottom.Normalize(); normal = abstractGeometry->GetPlane()->GetNormal(); normal.Normalize(); // Use a combination of the InputGeometry *and* the possible non-rigid // AbstractTransformGeometry for reslicing the 3D Image vtkSmartPointer composedResliceTransform = vtkSmartPointer::New(); composedResliceTransform->Identity(); composedResliceTransform->Concatenate( inputTimeGeometry->GetGeometryForTimeStep( m_TimeStep )->GetVtkTransform()->GetLinearInverse() ); composedResliceTransform->Concatenate( abstractGeometry->GetVtkAbstractTransform() ); m_Reslicer->SetResliceTransform( composedResliceTransform ); // Set background level to BLACK instead of translucent, to avoid // boundary artifacts (see Geometry2DDataVtkMapper3D) m_Reslicer->SetBackgroundLevel( -1023 ); } else { itkExceptionMacro("mitk::ExtractSliceFilter: No fitting geometry for reslice axis!"); return; } } if(m_ResliceTransform.IsNotNull()){ //if the resliceTransform is set the reslice axis are recalculated. //Thus the geometry information is not fitting. Therefor a unitSpacingFilter //is used to set up a global spacing of 1 and compensate the transform. vtkSmartPointer unitSpacingImageFilter = vtkSmartPointer::New() ; unitSpacingImageFilter->ReleaseDataFlagOn(); unitSpacingImageFilter->SetOutputSpacing( 1.0, 1.0, 1.0 ); unitSpacingImageFilter->SetInput( input->GetVtkImageData(m_TimeStep) ); m_Reslicer->SetInput(unitSpacingImageFilter->GetOutput() ); } else { //if no tranform is set the image can be used directly m_Reslicer->SetInput(input->GetVtkImageData(m_TimeStep)); } /*setup the plane where vktImageReslice extracts the slice*/ //ResliceAxesOrigin is the ancor point of the plane double originInVtk[3]; itk2vtk(origin, originInVtk); m_Reslicer->SetResliceAxesOrigin(originInVtk); //the cosines define the plane: x and y are the direction vectors, n is the planes normal //this specifies a matrix 3x3 // x1 y1 n1 // x2 y2 n2 // x3 y3 n3 double cosines[9]; vnl2vtk(right.GetVnlVector(), cosines);//x vnl2vtk(bottom.GetVnlVector(), cosines + 3);//y vnl2vtk(normal.GetVnlVector(), cosines + 6);//n m_Reslicer->SetResliceAxesDirectionCosines(cosines); //we only have one slice, not a volume m_Reslicer->SetOutputDimensionality(m_OutputDimension); //set the interpolation mode for slicing switch(this->m_InterpolationMode){ case RESLICE_NEAREST: m_Reslicer->SetInterpolationModeToNearestNeighbor(); break; case RESLICE_LINEAR: m_Reslicer->SetInterpolationModeToLinear(); break; case RESLICE_CUBIC: m_Reslicer->SetInterpolationModeToCubic(); default: //the default interpolation used by mitk m_Reslicer->SetInterpolationModeToNearestNeighbor(); } /*========== BEGIN setup extent of the slice ==========*/ int xMin, xMax, yMin, yMax; xMin = yMin = 0; xMax = static_cast< int >( extent[0]); yMax = static_cast< int >( extent[1]); vtkFloatingPointType sliceBounds[6]; if (m_WorldGeometry->GetReferenceGeometry()) { for ( int i = 0; i < 6; ++i ) { sliceBounds[i] = 0.0; } if (this->GetClippedPlaneBounds( m_WorldGeometry->GetReferenceGeometry(), planeGeometry, sliceBounds )) { // Calculate output extent (integer values) xMin = static_cast< int >( sliceBounds[0] / m_OutPutSpacing[0] + 0.5 ); xMax = static_cast< int >( sliceBounds[1] / m_OutPutSpacing[0] + 0.5 ); yMin = static_cast< int >( sliceBounds[2] / m_OutPutSpacing[1] + 0.5 ); yMax = static_cast< int >( sliceBounds[3] / m_OutPutSpacing[1] + 0.5 ); } // ELSE we use the default values } // Set the output extents! First included pixel index and last included pixel index // xMax and yMax are one after the last pixel. so they have to be decremented by 1. // In case we have a 2D image, xMax or yMax might be 0. in this case, do not decrement, but take 0. m_Reslicer->SetOutputExtent(xMin, std::max(0, xMax-1), yMin, std::max(0, yMax-1), m_ZMin, m_ZMax ); /*========== END setup extent of the slice ==========*/ m_Reslicer->SetOutputOrigin( 0.0, 0.0, 0.0 ); m_Reslicer->SetOutputSpacing( m_OutPutSpacing[0], m_OutPutSpacing[1], m_ZSpacing ); //TODO check the following lines, they are responsible wether vtk error outputs appear or not m_Reslicer->UpdateWholeExtent(); //this produces a bad allocation error for 2D images //m_Reslicer->GetOutput()->UpdateInformation(); //m_Reslicer->GetOutput()->SetUpdateExtentToWholeExtent(); //start the pipeline m_Reslicer->Update(); /*================ #END setup vtkImageRslice properties================*/ if(m_VtkOutputRequested){ return; //no converting to mitk //no mitk geometry will be set, as the output is vtkImageData only!!! } else { /*================ #BEGIN Get the slice from vtkImageReslice and convert it to mit::Image================*/ vtkImageData* reslicedImage; reslicedImage = m_Reslicer->GetOutput(); if(!reslicedImage) { itkWarningMacro(<<"Reslicer returned empty image"); return; } mitk::Image::Pointer resultImage = this->GetOutput(); //initialize resultimage with the specs of the vtkImageData object returned from vtkImageReslice if (reslicedImage->GetDataDimension() == 1) { // If original image was 2D, the slice might have an y extent of 0. // Still i want to ensure here that Image is 2D resultImage->Initialize(reslicedImage,1,-1,-1,1); } else { resultImage->Initialize(reslicedImage); } //transfer the voxel data resultImage->SetVolume(reslicedImage->GetScalarPointer()); //set the geometry from current worldgeometry for the reusultimage //this is needed that the image has the correct mitk geometry //the originalGeometry is the Geometry of the result slice - AffineGeometryFrame3D::Pointer originalGeometryAGF = m_WorldGeometry->Clone(); + Geometry3D::Pointer originalGeometryAGF = m_WorldGeometry->Clone(); Geometry2D::Pointer originalGeometry = dynamic_cast( originalGeometryAGF.GetPointer() ); originalGeometry->GetIndexToWorldTransform()->SetMatrix(m_WorldGeometry->GetIndexToWorldTransform()->GetMatrix()); //the origin of the worldGeometry is transformed to center based coordinates to be an imageGeometry Point3D sliceOrigin = originalGeometry->GetOrigin(); sliceOrigin += right * ( m_OutPutSpacing[0] * 0.5 ); sliceOrigin += bottom * ( m_OutPutSpacing[1] * 0.5 ); //a worldGeometry is no imageGeometry, thus it is manually set to true originalGeometry->ImageGeometryOn(); /*At this point we have to adjust the geometry because the origin isn't correct. The wrong origin is related to the rotation of the current world geometry plane. This causes errors on transfering world to index coordinates. We just shift the origin in each direction about the amount of the expanding (needed while rotating the plane). */ Vector3D axis0 = originalGeometry->GetAxisVector(0); Vector3D axis1 = originalGeometry->GetAxisVector(1); axis0.Normalize(); axis1.Normalize(); //adapt the origin. Note that for orthogonal planes the minima are '0' and thus the origin stays the same. sliceOrigin += (axis0 * (xMin * m_OutPutSpacing[0])) + (axis1 * (yMin * m_OutPutSpacing[1])); originalGeometry->SetOrigin(sliceOrigin); originalGeometry->Modified(); resultImage->SetGeometry( originalGeometry ); /*the bounds as well as the extent of the worldGeometry are not adapted correctly during crosshair rotation. This is only a quick fix and has to be evaluated. The new bounds are set via the max values of the calcuted slice extent. It will look like [ 0, x, 0, y, 0, 1]. */ mitk::BoundingBox::BoundsArrayType boundsCopy; boundsCopy[0] = boundsCopy[2] = boundsCopy[4] = 0; boundsCopy[5] = 1; boundsCopy[1] = xMax - xMin; boundsCopy[3] = yMax - yMin; resultImage->GetGeometry()->SetBounds(boundsCopy); /*================ #END Get the slice from vtkImageReslice and convert it to mitk Image================*/ } } bool mitk::ExtractSliceFilter::GetClippedPlaneBounds(vtkFloatingPointType bounds[6]){ if(!m_WorldGeometry || !this->GetInput()) return false; return this->GetClippedPlaneBounds(m_WorldGeometry->GetReferenceGeometry(), dynamic_cast< const PlaneGeometry * >( m_WorldGeometry ), bounds); } bool mitk::ExtractSliceFilter::GetClippedPlaneBounds( const Geometry3D *boundingGeometry, const PlaneGeometry *planeGeometry, vtkFloatingPointType *bounds ) { bool b = mitk::PlaneClipping::CalculateClippedPlaneBounds(boundingGeometry, planeGeometry, bounds); return b; } diff --git a/Core/Code/Algorithms/mitkGeometry2DDataToSurfaceFilter.cpp b/Core/Code/Algorithms/mitkGeometry2DDataToSurfaceFilter.cpp index 3180af8b20..4bbdbf2ddb 100644 --- a/Core/Code/Algorithms/mitkGeometry2DDataToSurfaceFilter.cpp +++ b/Core/Code/Algorithms/mitkGeometry2DDataToSurfaceFilter.cpp @@ -1,445 +1,445 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkGeometry2DDataToSurfaceFilter.h" #include "mitkSurface.h" #include "mitkGeometry3D.h" #include "mitkGeometry2DData.h" #include "mitkPlaneGeometry.h" #include "mitkAbstractTransformGeometry.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include mitk::Geometry2DDataToSurfaceFilter::Geometry2DDataToSurfaceFilter() : m_UseGeometryParametricBounds( true ), m_XResolution( 10 ), m_YResolution( 10 ), m_PlaceByGeometry( false ), m_UseBoundingBox( false ) { m_PlaneSource = vtkPlaneSource::New(); m_Transform = vtkTransform::New(); m_CubeSource = vtkCubeSource::New(); m_PolyDataTransformer = vtkTransformPolyDataFilter::New(); m_Plane = vtkPlane::New(); m_PlaneCutter = vtkCutter::New(); m_PlaneStripper = vtkStripper::New(); m_PlanePolyData = vtkPolyData::New(); m_NormalsUpdater = vtkPPolyDataNormals::New(); m_PlaneTriangler = vtkTriangleFilter::New(); m_TextureMapToPlane = vtkTextureMapToPlane::New(); m_Box = vtkBox::New(); m_PlaneClipper = vtkClipPolyData::New(); m_VtkTransformPlaneFilter = vtkTransformPolyDataFilter::New(); m_VtkTransformPlaneFilter->SetInput( m_PlaneSource->GetOutput() ); } mitk::Geometry2DDataToSurfaceFilter::~Geometry2DDataToSurfaceFilter() { m_PlaneSource->Delete(); m_Transform->Delete(); m_CubeSource->Delete(); m_PolyDataTransformer->Delete(); m_Plane->Delete(); m_PlaneCutter->Delete(); m_PlaneStripper->Delete(); m_PlanePolyData->Delete(); m_NormalsUpdater->Delete(); m_PlaneTriangler->Delete(); m_TextureMapToPlane->Delete(); m_Box->Delete(); m_PlaneClipper->Delete(); m_VtkTransformPlaneFilter->Delete(); } void mitk::Geometry2DDataToSurfaceFilter::GenerateOutputInformation() { mitk::Geometry2DData::ConstPointer input = this->GetInput(); mitk::Surface::Pointer output = this->GetOutput(); if ( input.IsNull() || (input->GetGeometry2D() == NULL) || (input->GetGeometry2D()->IsValid() == false) || (m_UseBoundingBox && (m_BoundingBox.IsNull() || (m_BoundingBox->GetDiagonalLength2() < mitk::eps))) ) { return; } Point3D origin; Point3D right, bottom; vtkPolyData *planeSurface = NULL; // Does the Geometry2DData contain a PlaneGeometry? if ( dynamic_cast< PlaneGeometry * >( input->GetGeometry2D() ) != NULL ) { mitk::PlaneGeometry *planeGeometry = dynamic_cast< PlaneGeometry * >( input->GetGeometry2D() ); if ( m_PlaceByGeometry ) { // Let the output use the input geometry to appropriately transform the // coordinate system. - mitk::AffineGeometryFrame3D::TransformType *affineTransform = + mitk::Geometry3D::TransformType *affineTransform = planeGeometry->GetIndexToWorldTransform(); TimeGeometry *timeGeometry = output->GetTimeGeometry(); Geometry3D *geometrie3d = timeGeometry->GetGeometryForTimeStep( 0 ); geometrie3d->SetIndexToWorldTransform( affineTransform ); } if ( !m_UseBoundingBox) { // We do not have a bounding box, so no clipping is required. if ( m_PlaceByGeometry ) { // Derive coordinate axes and origin from input geometry extent origin.Fill( 0.0 ); FillVector3D( right, planeGeometry->GetExtent(0), 0.0, 0.0 ); FillVector3D( bottom, 0.0, planeGeometry->GetExtent(1), 0.0 ); } else { // Take the coordinate axes and origin directly from the input geometry. origin = planeGeometry->GetOrigin(); right = planeGeometry->GetCornerPoint( false, true ); bottom = planeGeometry->GetCornerPoint( true, false ); } // Since the plane is planar, there is no need to subdivide the grid // (cf. AbstractTransformGeometry case) m_PlaneSource->SetXResolution( 1 ); m_PlaneSource->SetYResolution( 1 ); m_PlaneSource->SetOrigin( origin[0], origin[1], origin[2] ); m_PlaneSource->SetPoint1( right[0], right[1], right[2] ); m_PlaneSource->SetPoint2( bottom[0], bottom[1], bottom[2] ); planeSurface = m_PlaneSource->GetOutput(); planeSurface->Update(); } else { // Set up a cube with the extent and origin of the bounding box. This // cube will be clipped by a plane later on. The intersection of the // cube and the plane will be the surface we are interested in. Note // that the bounding box needs to be explicitly specified by the user // of this class, since it is not necessarily clear from the data // available herein which bounding box to use. In most cases, this // would be the bounding box of the input geometry's reference // geometry, but this is not an inevitable requirement. mitk::BoundingBox::PointType boundingBoxMin = m_BoundingBox->GetMinimum(); mitk::BoundingBox::PointType boundingBoxMax = m_BoundingBox->GetMaximum(); mitk::BoundingBox::PointType boundingBoxCenter = m_BoundingBox->GetCenter(); m_CubeSource->SetXLength( boundingBoxMax[0] - boundingBoxMin[0] ); m_CubeSource->SetYLength( boundingBoxMax[1] - boundingBoxMin[1] ); m_CubeSource->SetZLength( boundingBoxMax[2] - boundingBoxMin[2] ); m_CubeSource->SetCenter( boundingBoxCenter[0], boundingBoxCenter[1], boundingBoxCenter[2] ); // Now we have to transform the cube, so that it will cut our plane // appropriately. (As can be seen below, the plane corresponds to the // z-plane in the coordinate system and is *not* transformed.) Therefore, // we get the inverse of the plane geometry's transform and concatenate // it with the transform of the reference geometry, if available. m_Transform->Identity(); m_Transform->Concatenate( planeGeometry->GetVtkTransform()->GetLinearInverse() ); Geometry3D *referenceGeometry = planeGeometry->GetReferenceGeometry(); if ( referenceGeometry ) { m_Transform->Concatenate( referenceGeometry->GetVtkTransform() ); } // Transform the cube accordingly (s.a.) m_PolyDataTransformer->SetInput( m_CubeSource->GetOutput() ); m_PolyDataTransformer->SetTransform( m_Transform ); // Initialize the plane to clip the cube with, as lying on the z-plane m_Plane->SetOrigin( 0.0, 0.0, 0.0 ); m_Plane->SetNormal( 0.0, 0.0, 1.0 ); // Cut the plane with the cube. m_PlaneCutter->SetInput( m_PolyDataTransformer->GetOutput() ); m_PlaneCutter->SetCutFunction( m_Plane ); // The output of the cutter must be converted into appropriate poly data. m_PlaneStripper->SetInput( m_PlaneCutter->GetOutput() ); m_PlaneStripper->Update(); if ( m_PlaneStripper->GetOutput()->GetNumberOfPoints() < 3 ) { return; } m_PlanePolyData->SetPoints( m_PlaneStripper->GetOutput()->GetPoints() ); m_PlanePolyData->SetPolys( m_PlaneStripper->GetOutput()->GetLines() ); m_PlaneTriangler->SetInput( m_PlanePolyData ); // Get bounds of the resulting surface and use it to generate the texture // mapping information m_PlaneTriangler->Update(); m_PlaneTriangler->GetOutput()->ComputeBounds(); vtkFloatingPointType *surfaceBounds = m_PlaneTriangler->GetOutput()->GetBounds(); origin[0] = surfaceBounds[0]; origin[1] = surfaceBounds[2]; origin[2] = surfaceBounds[4]; right[0] = surfaceBounds[1]; right[1] = surfaceBounds[2]; right[2] = surfaceBounds[4]; bottom[0] = surfaceBounds[0]; bottom[1] = surfaceBounds[3]; bottom[2] = surfaceBounds[4]; // Now we tell the data how it shall be textured afterwards; // description see above. m_TextureMapToPlane->SetInput( m_PlaneTriangler->GetOutput() ); m_TextureMapToPlane->AutomaticPlaneGenerationOn(); m_TextureMapToPlane->SetOrigin( origin[0], origin[1], origin[2] ); m_TextureMapToPlane->SetPoint1( right[0], right[1], right[2] ); m_TextureMapToPlane->SetPoint2( bottom[0], bottom[1], bottom[2] ); // Need to call update so that output data and bounds are immediately // available m_TextureMapToPlane->Update(); // Return the output of this generation process planeSurface = dynamic_cast< vtkPolyData * >( m_TextureMapToPlane->GetOutput() ); } } // Does the Geometry2DData contain an AbstractTransformGeometry? else if ( mitk::AbstractTransformGeometry *abstractGeometry = dynamic_cast< AbstractTransformGeometry * >( input->GetGeometry2D() ) ) { // In the case of an AbstractTransformGeometry (which holds a possibly // non-rigid transform), we proceed slightly differently: since the // plane can be arbitrarily deformed, we need to transform it by the // abstract transform before clipping it. The setup for this is partially // done in the constructor. origin = abstractGeometry->GetPlane()->GetOrigin(); right = origin + abstractGeometry->GetPlane()->GetAxisVector( 0 ); bottom = origin + abstractGeometry->GetPlane()->GetAxisVector( 1 ); // Define the plane m_PlaneSource->SetOrigin( origin[0], origin[1], origin[2] ); m_PlaneSource->SetPoint1( right[0], right[1], right[2] ); m_PlaneSource->SetPoint2( bottom[0], bottom[1], bottom[2] ); // Set the plane's resolution (unlike for non-deformable planes, the plane // grid needs to have a certain resolution so that the deformation has the // desired effect). if ( m_UseGeometryParametricBounds ) { m_PlaneSource->SetXResolution( (int)abstractGeometry->GetParametricExtent(0) ); m_PlaneSource->SetYResolution( (int)abstractGeometry->GetParametricExtent(1) ); } else { m_PlaneSource->SetXResolution( m_XResolution ); m_PlaneSource->SetYResolution( m_YResolution ); } if ( m_PlaceByGeometry ) { // Let the output use the input geometry to appropriately transform the // coordinate system. - mitk::AffineGeometryFrame3D::TransformType *affineTransform = + mitk::Geometry3D::TransformType *affineTransform = abstractGeometry->GetIndexToWorldTransform(); TimeGeometry *timeGeometry = output->GetTimeGeometry(); Geometry3D *g3d = timeGeometry->GetGeometryForTimeStep( 0 ); g3d->SetIndexToWorldTransform( affineTransform ); vtkGeneralTransform *composedResliceTransform = vtkGeneralTransform::New(); composedResliceTransform->Identity(); composedResliceTransform->Concatenate( abstractGeometry->GetVtkTransform()->GetLinearInverse() ); composedResliceTransform->Concatenate( abstractGeometry->GetVtkAbstractTransform() ); // Use the non-rigid transform for transforming the plane. m_VtkTransformPlaneFilter->SetTransform( composedResliceTransform ); } else { // Use the non-rigid transform for transforming the plane. m_VtkTransformPlaneFilter->SetTransform( abstractGeometry->GetVtkAbstractTransform() ); } if ( m_UseBoundingBox ) { mitk::BoundingBox::PointType boundingBoxMin = m_BoundingBox->GetMinimum(); mitk::BoundingBox::PointType boundingBoxMax = m_BoundingBox->GetMaximum(); //mitk::BoundingBox::PointType boundingBoxCenter = m_BoundingBox->GetCenter(); m_Box->SetXMin( boundingBoxMin[0], boundingBoxMin[1], boundingBoxMin[2] ); m_Box->SetXMax( boundingBoxMax[0], boundingBoxMax[1], boundingBoxMax[2] ); } else { // Plane will not be clipped m_Box->SetXMin( -10000.0, -10000.0, -10000.0 ); m_Box->SetXMax( 10000.0, 10000.0, 10000.0 ); } m_Transform->Identity(); m_Transform->Concatenate( input->GetGeometry2D()->GetVtkTransform() ); m_Transform->PreMultiply(); m_Box->SetTransform( m_Transform ); m_PlaneClipper->SetInput( m_VtkTransformPlaneFilter->GetOutput() ); m_PlaneClipper->SetClipFunction( m_Box ); m_PlaneClipper->GenerateClippedOutputOff(); // important to NOT generate normals data for clipped part m_PlaneClipper->InsideOutOn(); m_PlaneClipper->SetValue( 0.0 ); planeSurface = m_PlaneClipper->GetOutput(); } m_NormalsUpdater->SetInput( planeSurface ); m_NormalsUpdater->AutoOrientNormalsOn(); // that's the trick! Brings consistency between // normals direction and front/back faces direction (see bug 1440) m_NormalsUpdater->ComputePointNormalsOn(); m_NormalsUpdater->Update(); output->SetVtkPolyData( m_NormalsUpdater->GetOutput() ); output->CalculateBoundingBox(); } void mitk::Geometry2DDataToSurfaceFilter::GenerateData() { mitk::Surface::Pointer output = this->GetOutput(); if (output.IsNull()) return; if (output->GetVtkPolyData()==NULL) return; output->GetVtkPolyData()->Update(); } const mitk::Geometry2DData *mitk::Geometry2DDataToSurfaceFilter::GetInput() { if (this->GetNumberOfInputs() < 1) { return 0; } return static_cast ( this->ProcessObject::GetInput(0) ); } const mitk::Geometry2DData * mitk::Geometry2DDataToSurfaceFilter ::GetInput(unsigned int idx) { return static_cast< const mitk::Geometry2DData * > ( this->ProcessObject::GetInput(idx) ); } void mitk::Geometry2DDataToSurfaceFilter ::SetInput(const mitk::Geometry2DData *input) { // Process object is not const-correct so the const_cast is required here this->ProcessObject::SetNthInput( 0, const_cast< mitk::Geometry2DData * >( input ) ); } void mitk::Geometry2DDataToSurfaceFilter ::SetInput(unsigned int index, const mitk::Geometry2DData *input) { if( index+1 > this->GetNumberOfInputs() ) { this->SetNumberOfRequiredInputs( index + 1 ); } // Process object is not const-correct so the const_cast is required here this->ProcessObject::SetNthInput(index, const_cast< mitk::Geometry2DData *>( input ) ); } void mitk::Geometry2DDataToSurfaceFilter ::SetBoundingBox( const mitk::BoundingBox *boundingBox ) { m_BoundingBox = boundingBox; this->UseBoundingBoxOn(); } const mitk::BoundingBox * mitk::Geometry2DDataToSurfaceFilter ::GetBoundingBox() const { return m_BoundingBox.GetPointer(); } diff --git a/Core/Code/Controllers/mitkRenderingManager.cpp b/Core/Code/Controllers/mitkRenderingManager.cpp index 8e59b37965..486e48bdd1 100644 --- a/Core/Code/Controllers/mitkRenderingManager.cpp +++ b/Core/Code/Controllers/mitkRenderingManager.cpp @@ -1,974 +1,974 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkRenderingManager.h" #include "mitkRenderingManagerFactory.h" #include "mitkBaseRenderer.h" #include "mitkGlobalInteraction.h" #include #include #include "mitkVector.h" #include #include #include #include namespace mitk { RenderingManager::Pointer RenderingManager::s_Instance = 0; RenderingManagerFactory *RenderingManager::s_RenderingManagerFactory = 0; RenderingManager ::RenderingManager() : m_UpdatePending( false ), m_MaxLOD( 1 ), m_LODIncreaseBlocked( false ), m_LODAbortMechanismEnabled( false ), m_ClippingPlaneEnabled( false ), m_TimeNavigationController( SliceNavigationController::New("dummy") ), m_DataStorage( NULL ), m_ConstrainedPaddingZooming ( true ) { m_ShadingEnabled.assign( 3, false ); m_ShadingValues.assign( 4, 0.0 ); m_GlobalInteraction = mitk::GlobalInteraction::GetInstance(); InitializePropertyList(); } RenderingManager ::~RenderingManager() { // Decrease reference counts of all registered vtkRenderWindows for // proper destruction RenderWindowVector::iterator it; for ( it = m_AllRenderWindows.begin(); it != m_AllRenderWindows.end(); ++it ) { (*it)->UnRegister( NULL ); RenderWindowCallbacksList::iterator callbacks_it = this->m_RenderWindowCallbacksList.find(*it); if (callbacks_it != this->m_RenderWindowCallbacksList.end()) { (*it)->RemoveObserver(callbacks_it->second.commands[0u]); (*it)->RemoveObserver(callbacks_it->second.commands[1u]); (*it)->RemoveObserver(callbacks_it->second.commands[2u]); } } } void RenderingManager ::SetFactory( RenderingManagerFactory *factory ) { s_RenderingManagerFactory = factory; } const RenderingManagerFactory * RenderingManager ::GetFactory() { return s_RenderingManagerFactory; } bool RenderingManager ::HasFactory() { if ( RenderingManager::s_RenderingManagerFactory ) { return true; } else { return false; } } RenderingManager::Pointer RenderingManager ::New() { const RenderingManagerFactory* factory = GetFactory(); if(factory == NULL) return NULL; return factory->CreateRenderingManager(); } RenderingManager * RenderingManager ::GetInstance() { if ( !RenderingManager::s_Instance ) { if ( s_RenderingManagerFactory ) { s_Instance = s_RenderingManagerFactory->CreateRenderingManager(); } } return s_Instance; } bool RenderingManager ::IsInstantiated() { if ( RenderingManager::s_Instance ) return true; else return false; } void RenderingManager ::AddRenderWindow( vtkRenderWindow *renderWindow ) { if ( renderWindow && (m_RenderWindowList.find( renderWindow ) == m_RenderWindowList.end()) ) { m_RenderWindowList[renderWindow] = RENDERING_INACTIVE; m_AllRenderWindows.push_back( renderWindow ); if ( m_DataStorage.IsNotNull() ) mitk::BaseRenderer::GetInstance( renderWindow )->SetDataStorage( m_DataStorage.GetPointer() ); // Register vtkRenderWindow instance renderWindow->Register( NULL ); typedef itk::MemberCommand< RenderingManager > MemberCommandType; // Add callbacks for rendering abort mechanism //BaseRenderer *renderer = BaseRenderer::GetInstance( renderWindow ); vtkCallbackCommand *startCallbackCommand = vtkCallbackCommand::New(); startCallbackCommand->SetCallback( RenderingManager::RenderingStartCallback ); renderWindow->AddObserver( vtkCommand::StartEvent, startCallbackCommand ); vtkCallbackCommand *progressCallbackCommand = vtkCallbackCommand::New(); progressCallbackCommand->SetCallback( RenderingManager::RenderingProgressCallback ); renderWindow->AddObserver( vtkCommand::AbortCheckEvent, progressCallbackCommand ); vtkCallbackCommand *endCallbackCommand = vtkCallbackCommand::New(); endCallbackCommand->SetCallback( RenderingManager::RenderingEndCallback ); renderWindow->AddObserver( vtkCommand::EndEvent, endCallbackCommand ); RenderWindowCallbacks callbacks; callbacks.commands[0u] = startCallbackCommand; callbacks.commands[1u] = progressCallbackCommand; callbacks.commands[2u] = endCallbackCommand; this->m_RenderWindowCallbacksList[renderWindow] = callbacks; //Delete vtk variables correctly startCallbackCommand->Delete(); progressCallbackCommand->Delete(); endCallbackCommand->Delete(); } } void RenderingManager ::RemoveRenderWindow( vtkRenderWindow *renderWindow ) { if (m_RenderWindowList.erase( renderWindow )) { RenderWindowCallbacksList::iterator callbacks_it = this->m_RenderWindowCallbacksList.find(renderWindow); if(callbacks_it != this->m_RenderWindowCallbacksList.end()) { renderWindow->RemoveObserver(callbacks_it->second.commands[0u]); renderWindow->RemoveObserver(callbacks_it->second.commands[1u]); renderWindow->RemoveObserver(callbacks_it->second.commands[2u]); this->m_RenderWindowCallbacksList.erase(callbacks_it); } RenderWindowVector::iterator rw_it = std::find( m_AllRenderWindows.begin(), m_AllRenderWindows.end(), renderWindow ); if(rw_it != m_AllRenderWindows.end()) { // Decrease reference count for proper destruction (*rw_it)->UnRegister(NULL); m_AllRenderWindows.erase( rw_it ); } } } const RenderingManager::RenderWindowVector& RenderingManager ::GetAllRegisteredRenderWindows() { return m_AllRenderWindows; } void RenderingManager ::RequestUpdate( vtkRenderWindow *renderWindow ) { // If the renderWindow is not valid, we do not want to inadvertantly create // an entry in the m_RenderWindowList map. It is possible if the user is // regularly calling AddRenderer and RemoveRenderer for a rendering update // to come into this method with a renderWindow pointer that is valid in the // sense that the window does exist within the application, but that // renderWindow has been temporarily removed from this RenderingManager for // performance reasons. if (m_RenderWindowList.find( renderWindow ) == m_RenderWindowList.end()) { return; } m_RenderWindowList[renderWindow] = RENDERING_REQUESTED; if ( !m_UpdatePending ) { m_UpdatePending = true; this->GenerateRenderingRequestEvent(); } } void RenderingManager ::ForceImmediateUpdate( vtkRenderWindow *renderWindow ) { // If the renderWindow is not valid, we do not want to inadvertantly create // an entry in the m_RenderWindowList map. It is possible if the user is // regularly calling AddRenderer and RemoveRenderer for a rendering update // to come into this method with a renderWindow pointer that is valid in the // sense that the window does exist within the application, but that // renderWindow has been temporarily removed from this RenderingManager for // performance reasons. if (m_RenderWindowList.find( renderWindow ) == m_RenderWindowList.end()) { return; } // Erase potentially pending requests for this window m_RenderWindowList[renderWindow] = RENDERING_INACTIVE; m_UpdatePending = false; // Immediately repaint this window (implementation platform specific) // If the size is 0 it crahses int *size = renderWindow->GetSize(); if ( 0 != size[0] && 0 != size[1] ) { //prepare the camera etc. before rendering //Note: this is a very important step which should be called before the VTK render! //If you modify the camera anywhere else or after the render call, the scene cannot be seen. mitk::VtkPropRenderer *vPR = dynamic_cast(mitk::BaseRenderer::GetInstance( renderWindow )); if(vPR) vPR->PrepareRender(); // Execute rendering renderWindow->Render(); } } void RenderingManager ::RequestUpdateAll( RequestType type ) { RenderWindowList::iterator it; for ( it = m_RenderWindowList.begin(); it != m_RenderWindowList.end(); ++it ) { int id = BaseRenderer::GetInstance(it->first)->GetMapperID(); if ( (type == REQUEST_UPDATE_ALL) || ((type == REQUEST_UPDATE_2DWINDOWS) && (id == 1)) || ((type == REQUEST_UPDATE_3DWINDOWS) && (id == 2)) ) { this->RequestUpdate( it->first ); } } } void RenderingManager ::ForceImmediateUpdateAll( RequestType type ) { RenderWindowList::iterator it; for ( it = m_RenderWindowList.begin(); it != m_RenderWindowList.end(); ++it ) { int id = BaseRenderer::GetInstance(it->first)->GetMapperID(); if ( (type == REQUEST_UPDATE_ALL) || ((type == REQUEST_UPDATE_2DWINDOWS) && (id == 1)) || ((type == REQUEST_UPDATE_3DWINDOWS) && (id == 2)) ) { // Immediately repaint this window (implementation platform specific) // If the size is 0, it crashes this->ForceImmediateUpdate(it->first); } } } //TODO_GOETZ // Remove old function, so only this one is working. bool RenderingManager ::InitializeViews( const Geometry3D * dataGeometry, RequestType type, bool preserveRoughOrientationInWorldSpace ) { ProportionalTimeGeometry::Pointer propTimeGeometry = ProportionalTimeGeometry::New(); propTimeGeometry->Initialize(dynamic_cast(dataGeometry->Clone().GetPointer()), 1); return InitializeViews(propTimeGeometry,type, preserveRoughOrientationInWorldSpace); } bool RenderingManager ::InitializeViews( const TimeGeometry * dataGeometry, RequestType type, bool preserveRoughOrientationInWorldSpace ) { MITK_DEBUG << "initializing views"; bool boundingBoxInitialized = false; TimeGeometry::ConstPointer timeGeometry = dataGeometry; TimeGeometry::Pointer modifiedGeometry = NULL; if (dataGeometry!=NULL) modifiedGeometry = dataGeometry->Clone(); // //TODO_GOETZ previously this code section has been disabled by // a later asignment to geometry (e.g. timeGeometry) // This has been fixed during Geometry-1-Plattform Project // Propably this code is not working anymore, test!! /* if (dataGeometry && preserveRoughOrientationInWorldSpace) { // clone the input geometry assert(modifiedGeometry.IsNotNull()); // construct an affine transform from it - AffineGeometryFrame3D::TransformType::Pointer transform = AffineGeometryFrame3D::TransformType::New(); + Geometry3D::TransformType::Pointer transform = Geometry3D::TransformType::New(); assert( modifiedGeometry->GetGeometryForTimeStep(0)->GetIndexToWorldTransform() ); transform->SetMatrix( modifiedGeometry->GetGeometryForTimeStep(0)->GetIndexToWorldTransform()->GetMatrix() ); transform->SetOffset( modifiedGeometry->GetGeometryForTimeStep(0)->GetIndexToWorldTransform()->GetOffset() ); // get transform matrix - AffineGeometryFrame3D::TransformType::MatrixType::InternalMatrixType& oldMatrix = - const_cast< AffineGeometryFrame3D::TransformType::MatrixType::InternalMatrixType& > ( transform->GetMatrix().GetVnlMatrix() ); - AffineGeometryFrame3D::TransformType::MatrixType::InternalMatrixType newMatrix(oldMatrix); + Geometry3D::TransformType::MatrixType::InternalMatrixType& oldMatrix = + const_cast< Geometry3D::TransformType::MatrixType::InternalMatrixType& > ( transform->GetMatrix().GetVnlMatrix() ); + Geometry3D::TransformType::MatrixType::InternalMatrixType newMatrix(oldMatrix); // get offset and bound Vector3D offset = modifiedGeometry->GetIndexToWorldTransform()->GetOffset(); Geometry3D::BoundsArrayType oldBounds = modifiedGeometry->GetBounds(); Geometry3D::BoundsArrayType newBounds = modifiedGeometry->GetBounds(); // get rid of rotation other than pi/2 degree for ( unsigned int i = 0; i < 3; ++i ) { // i-th column of the direction matrix Vector3D currentVector; currentVector[0] = oldMatrix(0,i); currentVector[1] = oldMatrix(1,i); currentVector[2] = oldMatrix(2,i); // matchingRow will store the row that holds the biggest // value in the column unsigned int matchingRow = 0; // maximum value in the column float max = std::numeric_limits::min(); // sign of the maximum value (-1 or 1) int sign = 1; // iterate through the column vector for (unsigned int dim = 0; dim < 3; ++dim) { if ( fabs(currentVector[dim]) > max ) { matchingRow = dim; max = fabs(currentVector[dim]); if(currentVector[dim]<0) sign = -1; else sign = 1; } } // in case we found a negative maximum, // we negate the column and adjust the offset // (in order to run through the dimension in the opposite direction) if(sign == -1) { currentVector *= sign; offset += modifiedGeometry->GetAxisVector(i); } // matchingRow is now used as column index to place currentVector // correctly in the new matrix vnl_vector newMatrixColumn(3); newMatrixColumn[0] = currentVector[0]; newMatrixColumn[1] = currentVector[1]; newMatrixColumn[2] = currentVector[2]; newMatrix.set_column( matchingRow, newMatrixColumn ); // if a column is moved, we also have to adjust the bounding // box accordingly, this is done here newBounds[2*matchingRow ] = oldBounds[2*i ]; newBounds[2*matchingRow+1] = oldBounds[2*i+1]; } // set the newly calculated bounds array modifiedGeometry->SetBounds(newBounds); // set new offset and direction matrix - AffineGeometryFrame3D::TransformType::MatrixType newMatrixITK( newMatrix ); + Geometry3D::TransformType::MatrixType newMatrixITK( newMatrix ); transform->SetMatrix( newMatrixITK ); transform->SetOffset( offset ); modifiedGeometry->SetIndexToWorldTransform( transform ); geometry = modifiedGeometry; }*/ int warningLevel = vtkObject::GetGlobalWarningDisplay(); vtkObject::GlobalWarningDisplayOff(); if ( (timeGeometry.IsNotNull() ) && (const_cast< mitk::BoundingBox * >( timeGeometry->GetBoundingBoxInWorld())->GetDiagonalLength2() > mitk::eps) ) { boundingBoxInitialized = true; } if (timeGeometry.IsNotNull() ) {// make sure bounding box has an extent bigger than zero in any direction // clone the input geometry //Old Geometry3D::Pointer modifiedGeometry = dynamic_cast( dataGeometry->Clone().GetPointer() ); assert(modifiedGeometry.IsNotNull()); for (TimeStepType step = 0; step < modifiedGeometry->GetNumberOfTimeSteps(); ++step) { Geometry3D::BoundsArrayType newBounds = modifiedGeometry->GetGeometryForTimeStep(step)->GetBounds(); for( unsigned int dimension = 0; ( 2 * dimension ) < newBounds.Size() ; dimension++ ) { //check for equality but for an epsilon if( Equal( newBounds[ 2 * dimension ], newBounds[ 2 * dimension + 1 ] ) ) { newBounds[ 2 * dimension + 1 ] += 1; } } modifiedGeometry->GetGeometryForTimeStep(step)->SetBounds(newBounds); } } timeGeometry = modifiedGeometry; RenderWindowList::iterator it; for ( it = m_RenderWindowList.begin(); it != m_RenderWindowList.end(); ++it ) { mitk::BaseRenderer *baseRenderer = mitk::BaseRenderer::GetInstance( it->first ); baseRenderer->GetDisplayGeometry()->SetConstrainZoomingAndPanning(m_ConstrainedPaddingZooming); int id = baseRenderer->GetMapperID(); if ( ((type == REQUEST_UPDATE_ALL) || ((type == REQUEST_UPDATE_2DWINDOWS) && (id == 1)) || ((type == REQUEST_UPDATE_3DWINDOWS) && (id == 2))) ) { this->InternalViewInitialization( baseRenderer, timeGeometry, boundingBoxInitialized, id ); } } if ( boundingBoxInitialized ) { m_TimeNavigationController->SetInputWorldTimeGeometry( timeGeometry ); } m_TimeNavigationController->Update(); this->RequestUpdateAll( type ); vtkObject::SetGlobalWarningDisplay( warningLevel ); // Inform listeners that views have been initialized this->InvokeEvent( mitk::RenderingManagerViewsInitializedEvent() ); return boundingBoxInitialized; } bool RenderingManager ::InitializeViews( RequestType type ) { RenderWindowList::iterator it; for ( it = m_RenderWindowList.begin(); it != m_RenderWindowList.end(); ++it ) { mitk::BaseRenderer *baseRenderer = mitk::BaseRenderer::GetInstance( it->first ); int id = baseRenderer->GetMapperID(); if ( (type == REQUEST_UPDATE_ALL) || ((type == REQUEST_UPDATE_2DWINDOWS) && (id == 1)) || ((type == REQUEST_UPDATE_3DWINDOWS) && (id == 2)) ) { mitk::SliceNavigationController *nc = baseRenderer->GetSliceNavigationController(); // Re-initialize view direction nc->SetViewDirectionToDefault(); // Update the SNC nc->Update(); } } this->RequestUpdateAll( type ); return true; } bool RenderingManager::InitializeView( vtkRenderWindow * renderWindow, const Geometry3D * geometry, bool initializeGlobalTimeSNC ) { ProportionalTimeGeometry::Pointer propTimeGeometry = ProportionalTimeGeometry::New(); propTimeGeometry->Initialize(dynamic_cast(geometry->Clone().GetPointer()), 1); return InitializeView(renderWindow, propTimeGeometry, initializeGlobalTimeSNC ); } bool RenderingManager::InitializeView( vtkRenderWindow * renderWindow, const TimeGeometry * geometry, bool initializeGlobalTimeSNC ) { bool boundingBoxInitialized = false; int warningLevel = vtkObject::GetGlobalWarningDisplay(); vtkObject::GlobalWarningDisplayOff(); if ( (geometry != NULL ) && (const_cast< mitk::BoundingBox * >( geometry->GetBoundingBoxInWorld())->GetDiagonalLength2() > mitk::eps) ) { boundingBoxInitialized = true; } mitk::BaseRenderer *baseRenderer = mitk::BaseRenderer::GetInstance( renderWindow ); int id = baseRenderer->GetMapperID(); this->InternalViewInitialization( baseRenderer, geometry, boundingBoxInitialized, id ); if ( boundingBoxInitialized && initializeGlobalTimeSNC ) { m_TimeNavigationController->SetInputWorldTimeGeometry( geometry ); } m_TimeNavigationController->Update(); this->RequestUpdate( renderWindow ); vtkObject::SetGlobalWarningDisplay( warningLevel ); return boundingBoxInitialized; } bool RenderingManager::InitializeView( vtkRenderWindow * renderWindow ) { mitk::BaseRenderer *baseRenderer = mitk::BaseRenderer::GetInstance( renderWindow ); mitk::SliceNavigationController *nc = baseRenderer->GetSliceNavigationController(); // Re-initialize view direction nc->SetViewDirectionToDefault(); // Update the SNC nc->Update(); this->RequestUpdate( renderWindow ); return true; } void RenderingManager::InternalViewInitialization(mitk::BaseRenderer *baseRenderer, const mitk::TimeGeometry *geometry, bool boundingBoxInitialized, int mapperID ) { mitk::SliceNavigationController *nc = baseRenderer->GetSliceNavigationController(); // Re-initialize view direction nc->SetViewDirectionToDefault(); if ( boundingBoxInitialized ) { // Set geometry for NC nc->SetInputWorldTimeGeometry( geometry ); nc->Update(); if ( mapperID == 1 ) { // For 2D SNCs, steppers are set so that the cross is centered // in the image nc->GetSlice()->SetPos( nc->GetSlice()->GetSteps() / 2 ); } // Fit the render window DisplayGeometry baseRenderer->GetDisplayGeometry()->Fit(); baseRenderer->GetCameraController()->SetViewToAnterior(); } else { nc->Update(); } } const SliceNavigationController* RenderingManager::GetTimeNavigationController() const { return m_TimeNavigationController.GetPointer(); } SliceNavigationController* RenderingManager::GetTimeNavigationController() { return m_TimeNavigationController.GetPointer(); } void RenderingManager::ExecutePendingRequests() { m_UpdatePending = false; // Satisfy all pending update requests RenderWindowList::iterator it; int i = 0; for ( it = m_RenderWindowList.begin(); it != m_RenderWindowList.end(); ++it, ++i ) { if ( it->second == RENDERING_REQUESTED ) { this->ForceImmediateUpdate( it->first ); } } } void RenderingManager::RenderingStartCallback( vtkObject *caller, unsigned long , void *, void * ) { vtkRenderWindow *renderWindow = dynamic_cast< vtkRenderWindow * >( caller ); mitk::RenderingManager* renman = mitk::BaseRenderer::GetInstance(renderWindow)->GetRenderingManager(); RenderWindowList &renderWindowList = renman->m_RenderWindowList; if ( renderWindow ) { renderWindowList[renderWindow] = RENDERING_INPROGRESS; } renman->m_UpdatePending = false; } void RenderingManager ::RenderingProgressCallback( vtkObject *caller, unsigned long , void *, void * ) { vtkRenderWindow *renderWindow = dynamic_cast< vtkRenderWindow * >( caller ); mitk::RenderingManager* renman = mitk::BaseRenderer::GetInstance(renderWindow)->GetRenderingManager(); if ( renman->m_LODAbortMechanismEnabled ) { vtkRenderWindow *renderWindow = dynamic_cast< vtkRenderWindow * >( caller ); if ( renderWindow ) { BaseRenderer *renderer = BaseRenderer::GetInstance( renderWindow ); if ( renderer && (renderer->GetNumberOfVisibleLODEnabledMappers() > 0) ) { renman->DoMonitorRendering(); } } } } void RenderingManager ::RenderingEndCallback( vtkObject *caller, unsigned long , void *, void * ) { vtkRenderWindow *renderWindow = dynamic_cast< vtkRenderWindow * >( caller ); mitk::RenderingManager* renman = mitk::BaseRenderer::GetInstance(renderWindow)->GetRenderingManager(); RenderWindowList &renderWindowList = renman->m_RenderWindowList; RendererIntMap &nextLODMap = renman->m_NextLODMap; if ( renderWindow ) { BaseRenderer *renderer = BaseRenderer::GetInstance( renderWindow ); if ( renderer ) { renderWindowList[renderer->GetRenderWindow()] = RENDERING_INACTIVE; // Level-of-Detail handling if ( renderer->GetNumberOfVisibleLODEnabledMappers() > 0 ) { if(nextLODMap[renderer]==0) renman->StartOrResetTimer(); else nextLODMap[renderer] = 0; } } } } bool RenderingManager ::IsRendering() const { RenderWindowList::const_iterator it; for ( it = m_RenderWindowList.begin(); it != m_RenderWindowList.end(); ++it ) { if ( it->second == RENDERING_INPROGRESS ) { return true; } } return false; } void RenderingManager ::AbortRendering() { RenderWindowList::iterator it; for ( it = m_RenderWindowList.begin(); it != m_RenderWindowList.end(); ++it ) { if ( it->second == RENDERING_INPROGRESS ) { it->first->SetAbortRender( true ); m_RenderingAbortedMap[BaseRenderer::GetInstance(it->first)] = true; } } } int RenderingManager ::GetNextLOD( BaseRenderer *renderer ) { if ( renderer != NULL ) { return m_NextLODMap[renderer]; } else { return 0; } } void RenderingManager ::ExecutePendingHighResRenderingRequest() { RenderWindowList::iterator it; for ( it = m_RenderWindowList.begin(); it != m_RenderWindowList.end(); ++it ) { BaseRenderer *renderer = BaseRenderer::GetInstance( it->first ); if(renderer->GetNumberOfVisibleLODEnabledMappers()>0) { if(m_NextLODMap[renderer]==0) { m_NextLODMap[renderer]=1; RequestUpdate( it->first ); } } } } void RenderingManager ::SetMaximumLOD( unsigned int max ) { m_MaxLOD = max; } //enable/disable shading void RenderingManager ::SetShading(bool state, unsigned int lod) { if(lod>m_MaxLOD) { itkWarningMacro(<<"LOD out of range requested: " << lod << " maxLOD: " << m_MaxLOD); return; } m_ShadingEnabled[lod] = state; } bool RenderingManager ::GetShading(unsigned int lod) { if(lod>m_MaxLOD) { itkWarningMacro(<<"LOD out of range requested: " << lod << " maxLOD: " << m_MaxLOD); return false; } return m_ShadingEnabled[lod]; } //enable/disable the clipping plane void RenderingManager ::SetClippingPlaneStatus(bool status) { m_ClippingPlaneEnabled = status; } bool RenderingManager ::GetClippingPlaneStatus() { return m_ClippingPlaneEnabled; } void RenderingManager ::SetShadingValues(float ambient, float diffuse, float specular, float specpower) { m_ShadingValues[0] = ambient; m_ShadingValues[1] = diffuse; m_ShadingValues[2] = specular; m_ShadingValues[3] = specpower; } RenderingManager::FloatVector & RenderingManager ::GetShadingValues() { return m_ShadingValues; } void RenderingManager::SetDepthPeelingEnabled( bool enabled ) { RenderWindowList::iterator it; for ( it = m_RenderWindowList.begin(); it != m_RenderWindowList.end(); ++it ) { mitk::BaseRenderer *baseRenderer = mitk::BaseRenderer::GetInstance( it->first ); baseRenderer->SetDepthPeelingEnabled(enabled); } } void RenderingManager::SetMaxNumberOfPeels( int maxNumber ) { RenderWindowList::iterator it; for ( it = m_RenderWindowList.begin(); it != m_RenderWindowList.end(); ++it ) { mitk::BaseRenderer *baseRenderer = mitk::BaseRenderer::GetInstance( it->first ); baseRenderer->SetMaxNumberOfPeels(maxNumber); } } void RenderingManager::InitializePropertyList() { if (m_PropertyList.IsNull()) { m_PropertyList = PropertyList::New(); } this->SetProperty("coupled-zoom", BoolProperty::New(false)); this->SetProperty("coupled-plane-rotation", BoolProperty::New(false)); this->SetProperty("MIP-slice-rendering", BoolProperty::New(false)); } PropertyList::Pointer RenderingManager::GetPropertyList() const { return m_PropertyList; } BaseProperty* RenderingManager::GetProperty(const char *propertyKey) const { return m_PropertyList->GetProperty(propertyKey); } void RenderingManager::SetProperty(const char *propertyKey, BaseProperty* propertyValue) { m_PropertyList->SetProperty(propertyKey, propertyValue); } void RenderingManager::SetDataStorage( DataStorage* storage ) { if ( storage != NULL ) { m_DataStorage = storage; RenderingManager::RenderWindowVector::iterator iter; for ( iter = m_AllRenderWindows.begin(); iterSetDataStorage( m_DataStorage.GetPointer() ); } } } mitk::DataStorage* RenderingManager::GetDataStorage() { return m_DataStorage; } void RenderingManager::SetGlobalInteraction( mitk::GlobalInteraction* globalInteraction ) { if ( globalInteraction != NULL ) { m_GlobalInteraction = globalInteraction; } } mitk::GlobalInteraction* RenderingManager::GetGlobalInteraction() { return m_GlobalInteraction; } // Create and register generic RenderingManagerFactory. TestingRenderingManagerFactory renderingManagerFactory; } // namespace diff --git a/Core/Code/DataManagement/mitkAbstractTransformGeometry.cpp b/Core/Code/DataManagement/mitkAbstractTransformGeometry.cpp index 65b97a5586..0863b5fa86 100644 --- a/Core/Code/DataManagement/mitkAbstractTransformGeometry.cpp +++ b/Core/Code/DataManagement/mitkAbstractTransformGeometry.cpp @@ -1,270 +1,270 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkAbstractTransformGeometry.h" #include mitk::AbstractTransformGeometry::AbstractTransformGeometry() : m_Plane(NULL), m_FrameGeometry(NULL) { Initialize(); } mitk::AbstractTransformGeometry::AbstractTransformGeometry(const AbstractTransformGeometry& other) : Superclass(other) { if(other.m_ParametricBoundingBox.IsNotNull()) { this->SetParametricBounds(m_ParametricBoundingBox->GetBounds()); } this->SetPlane(other.m_Plane); this->SetFrameGeometry(other.m_FrameGeometry); } mitk::AbstractTransformGeometry::~AbstractTransformGeometry() { } void mitk::AbstractTransformGeometry::Initialize() { Superclass::Initialize(); m_ItkVtkAbstractTransform = itk::VtkAbstractTransform::New(); } vtkAbstractTransform* mitk::AbstractTransformGeometry::GetVtkAbstractTransform() const { return m_ItkVtkAbstractTransform->GetVtkAbstractTransform(); } mitk::ScalarType mitk::AbstractTransformGeometry::GetParametricExtentInMM(int direction) const { if(m_Plane.IsNull()) { itkExceptionMacro(<<"m_Plane is NULL."); } return m_Plane->GetExtentInMM(direction); } const mitk::Transform3D* mitk::AbstractTransformGeometry::GetParametricTransform() const { return m_ItkVtkAbstractTransform; } bool mitk::AbstractTransformGeometry::Project(const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const { assert(m_BoundingBox.IsNotNull()); mitk::Point2D pt2d_mm; bool isInside; isInside = Map(pt3d_mm, pt2d_mm); Map(pt2d_mm, projectedPt3d_mm); return isInside; //Point3D pt3d_units; //pt3d_units = m_ItkVtkAbstractTransform->BackTransform(pt3d_mm); //pt3d_units[2] = 0; //projectedPt3d_mm = m_ItkVtkAbstractTransform->TransformPoint(pt3d_units); //return const_cast(m_BoundingBox.GetPointer())->IsInside(pt3d_units); } bool mitk::AbstractTransformGeometry::Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const { assert((m_ItkVtkAbstractTransform.IsNotNull()) && (m_Plane.IsNotNull())); Point3D pt3d_units; pt3d_units = m_ItkVtkAbstractTransform->BackTransform(pt3d_mm); return m_Plane->Map(pt3d_units, pt2d_mm); } void mitk::AbstractTransformGeometry::Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const { assert((m_ItkVtkAbstractTransform.IsNotNull()) && (m_Plane.IsNotNull())); m_Plane->Map(pt2d_mm, pt3d_mm); pt3d_mm = m_ItkVtkAbstractTransform->TransformPoint(pt3d_mm); } bool mitk::AbstractTransformGeometry::Project(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { itkExceptionMacro("not implemented yet - replace GetIndexToWorldTransform by m_ItkVtkAbstractTransform->GetInverseVtkAbstractTransform()"); assert(m_BoundingBox.IsNotNull()); Vector3D vec3d_units; vec3d_units = GetIndexToWorldTransform()->BackTransform(vec3d_mm); vec3d_units[2] = 0; projectedVec3d_mm = GetIndexToWorldTransform()->TransformVector(vec3d_units); Point3D pt3d_units; pt3d_units = GetIndexToWorldTransform()->BackTransformPoint(atPt3d_mm); return const_cast(m_BoundingBox.GetPointer())->IsInside(pt3d_units); } bool mitk::AbstractTransformGeometry::Project(const mitk::Vector3D &/*vec3d_mm*/, mitk::Vector3D &/*projectedVec3d_mm*/) const { MITK_WARN << "Need additional point! No standard value defined. Please use Project(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm). Unfortunatley this one is not implemented at the moment. Sorry :("; itkExceptionMacro("not implemented yet - replace GetIndexToWorldTransform by m_ItkVtkAbstractTransform->GetInverseVtkAbstractTransform()"); return false; } bool mitk::AbstractTransformGeometry::Map(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const { assert((m_ItkVtkAbstractTransform.IsNotNull()) && (m_Plane.IsNotNull())); float vtkpt[3], vtkvec[3]; itk2vtk(atPt3d_mm, vtkpt); itk2vtk(vec3d_mm, vtkvec); m_ItkVtkAbstractTransform->GetInverseVtkAbstractTransform()->TransformVectorAtPoint(vtkpt, vtkvec, vtkvec); mitk::Vector3D vec3d_units; vtk2itk(vtkvec, vec3d_units); return m_Plane->Map(atPt3d_mm, vec3d_units, vec2d_mm); } void mitk::AbstractTransformGeometry::Map(const mitk::Point2D & atPt2d_mm, const mitk::Vector2D &vec2d_mm, mitk::Vector3D &vec3d_mm) const { m_Plane->Map(atPt2d_mm, vec2d_mm, vec3d_mm); Point3D atPt3d_mm; Map(atPt2d_mm, atPt3d_mm); float vtkpt[3], vtkvec[3]; itk2vtk(atPt3d_mm, vtkpt); itk2vtk(vec3d_mm, vtkvec); m_ItkVtkAbstractTransform->GetVtkAbstractTransform()->TransformVectorAtPoint(vtkpt, vtkvec, vtkvec); vtk2itk(vtkvec, vec3d_mm); } void mitk::AbstractTransformGeometry::IndexToWorld(const mitk::Point2D &pt_units, mitk::Point2D &pt_mm) const { m_Plane->IndexToWorld(pt_units, pt_mm); } void mitk::AbstractTransformGeometry::WorldToIndex(const mitk::Point2D &pt_mm, mitk::Point2D &pt_units) const { m_Plane->WorldToIndex(pt_mm, pt_units); } void mitk::AbstractTransformGeometry::IndexToWorld(const mitk::Point2D & /*atPt2d_units*/, const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const { MITK_WARN<<"Warning! Call of the deprecated function AbstractTransformGeometry::IndexToWorld(point, vec, vec). Use AbstractTransformGeometry::IndexToWorld(vec, vec) instead!"; this->IndexToWorld(vec_units, vec_mm); } void mitk::AbstractTransformGeometry::IndexToWorld(const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const { m_Plane->IndexToWorld(vec_units, vec_mm); } void mitk::AbstractTransformGeometry::WorldToIndex(const mitk::Point2D & /*atPt2d_mm*/, const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const { MITK_WARN<<"Warning! Call of the deprecated function AbstractTransformGeometry::WorldToIndex(point, vec, vec). Use AbstractTransformGeometry::WorldToIndex(vec, vec) instead!"; this->WorldToIndex(vec_mm, vec_units); } void mitk::AbstractTransformGeometry::WorldToIndex(const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const { m_Plane->WorldToIndex(vec_mm, vec_units); } bool mitk::AbstractTransformGeometry::IsAbove(const mitk::Point3D& pt3d_mm) const { assert((m_ItkVtkAbstractTransform.IsNotNull()) && (m_Plane.IsNotNull())); Point3D pt3d_ParametricWorld; pt3d_ParametricWorld = m_ItkVtkAbstractTransform->BackTransform(pt3d_mm); Point3D pt3d_ParametricUnits; ((Geometry3D*)m_Plane)->WorldToIndex(pt3d_ParametricWorld, pt3d_ParametricUnits); return (pt3d_ParametricUnits[2] > m_ParametricBoundingBox->GetBounds()[4]); } void mitk::AbstractTransformGeometry::SetVtkAbstractTransform(vtkAbstractTransform* aVtkAbstractTransform) { m_ItkVtkAbstractTransform->SetVtkAbstractTransform(aVtkAbstractTransform); } void mitk::AbstractTransformGeometry::SetPlane(const mitk::PlaneGeometry* aPlane) { if(aPlane!=NULL) { m_Plane = static_cast(aPlane->Clone().GetPointer()); BoundingBox::BoundsArrayType b=m_Plane->GetBoundingBox()->GetBounds(); SetParametricBounds(b); CalculateFrameGeometry(); } else { if(m_Plane.IsNull()) return; m_Plane=NULL; } Modified(); } void mitk::AbstractTransformGeometry::CalculateFrameGeometry() { if((m_Plane.IsNull()) || (m_FrameGeometry.IsNotNull())) return; //@warning affine-transforms and bounding-box should be set by specific sub-classes! SetBounds(m_Plane->GetBoundingBox()->GetBounds()); } void mitk::AbstractTransformGeometry::SetFrameGeometry(const mitk::Geometry3D* frameGeometry) { if((frameGeometry != NULL) && (frameGeometry->IsValid())) { m_FrameGeometry = static_cast(frameGeometry->Clone().GetPointer()); SetIndexToWorldTransform(m_FrameGeometry->GetIndexToWorldTransform()); SetBounds(m_FrameGeometry->GetBounds()); } else { m_FrameGeometry = NULL; } } unsigned long mitk::AbstractTransformGeometry::GetMTime() const { if(Superclass::GetMTime()GetMTime()) return m_ItkVtkAbstractTransform->GetMTime(); return Superclass::GetMTime(); } void mitk::AbstractTransformGeometry::SetOversampling(float oversampling) { if(m_Plane.IsNull()) { itkExceptionMacro(<< "m_Plane is not set."); } mitk::BoundingBox::BoundsArrayType bounds = m_Plane->GetBounds(); bounds[1]*=oversampling; bounds[3]*=oversampling; bounds[5]*=oversampling; SetParametricBounds(bounds); } -mitk::AffineGeometryFrame3D::Pointer mitk::AbstractTransformGeometry::Clone() const +mitk::Geometry3D::Pointer mitk::AbstractTransformGeometry::Clone() const { Self::Pointer newGeometry = new AbstractTransformGeometry(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } diff --git a/Core/Code/DataManagement/mitkAbstractTransformGeometry.h b/Core/Code/DataManagement/mitkAbstractTransformGeometry.h index 41c8b9cf9d..6de2f7b1a0 100644 --- a/Core/Code/DataManagement/mitkAbstractTransformGeometry.h +++ b/Core/Code/DataManagement/mitkAbstractTransformGeometry.h @@ -1,192 +1,192 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITKVTKABSTRACTTRANSFORMPLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #define MITKVTKABSTRACTTRANSFORMPLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #include #include "mitkGeometry2D.h" #include "mitkPlaneGeometry.h" #include "itkVtkAbstractTransform.h" class vtkAbstractTransform; namespace mitk { //##Documentation //## @brief Describes a geometry defined by an vtkAbstractTransform and a plane //## //## vtkAbstractTransform is the most general transform in vtk (superclass for //## all vtk geometric transformations). It defines an arbitrary 3D transformation, //## i.e., a transformation of 3D space into 3D space. In contrast, //## AbstractTransformGeometry (since it is a subclass of Geometry2D) describes a //## 2D manifold in 3D space. The 2D manifold is defined as the manifold that results //## from transforming a rectangle (given in m_Plane as a PlaneGeometry) by the //## vtkAbstractTransform (given in m_VtkAbstractTransform). //## The PlaneGeometry m_Plane is used to define the parameter space. 2D coordinates are //## first mapped by the PlaneGeometry and the resulting 3D coordinates are put into //## the vtkAbstractTransform. //## @note This class is the superclass of concrete geometries. Since there is no //## write access to the vtkAbstractTransform and m_Plane, this class is somehow //## abstract. For full write access from extern, use ExternAbstractTransformGeometry. //## @note The bounds of the PlaneGeometry are used as the parametric bounds. //## @sa ExternAbstractTransformGeometry //## @ingroup Geometry class MITK_CORE_EXPORT AbstractTransformGeometry : public Geometry2D { public: mitkClassMacro(AbstractTransformGeometry, Geometry2D); itkNewMacro(Self); //##Documentation //## @brief Get the vtkAbstractTransform (stored in m_VtkAbstractTransform) virtual vtkAbstractTransform* GetVtkAbstractTransform() const; virtual unsigned long GetMTime() const; //##Documentation //## @brief Get the rectangular area that is used for transformation by //## m_VtkAbstractTransform and therewith defines the 2D manifold described by //## AbstractTransformGeometry itkGetConstObjectMacro(Plane, PlaneGeometry); /** * \brief projects the given point onto the curved plane */ virtual bool Project(const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const; /** * \brief projects a given vector starting from given point onto the curved plane * \warning no satisfiyng implementation existing yet */ virtual bool Project(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const; /** * \brief projects a given vector starting from standard point onto the curved plane * \warning no satisfying implementation existing yet */ virtual bool Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const; virtual bool Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const; virtual void Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const; virtual bool Map(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const; virtual void Map(const mitk::Point2D & atPt2d_mm, const mitk::Vector2D &vec2d_mm, mitk::Vector3D &vec3d_mm) const; virtual void IndexToWorld(const mitk::Point2D &pt_units, mitk::Point2D &pt_mm) const; virtual void WorldToIndex(const mitk::Point2D &pt_mm, mitk::Point2D &pt_units) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## @deprecated First parameter (Point2D) is not used. If possible, please use void IndexToWorld(const mitk::Vector2D& vec_units, mitk::Vector2D& vec_mm) const. //## For further information about coordinates types, please see the Geometry documentation virtual void IndexToWorld(const mitk::Point2D &atPt2d_units, const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation virtual void IndexToWorld(const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## @deprecated First parameter (Point2D) is not used. If possible, please use void WorldToIndex(const mitk::Vector2D& vec_mm, mitk::Vector2D& vec_units) const. //## For further information about coordinates types, please see the Geometry documentation virtual void WorldToIndex(const mitk::Point2D &atPt2d_mm, const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## For further information about coordinates types, please see the Geometry documentation virtual void WorldToIndex(const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; virtual bool IsAbove(const Point3D& pt3d_mm) const; virtual mitk::ScalarType GetParametricExtentInMM(int direction) const; virtual const Transform3D* GetParametricTransform() const; //##Documentation //## @brief Change the parametric bounds to @a oversampling times //## the bounds of m_Plane. //## //## The change is done once (immediately). Later changes of the bounds //## of m_Plane will not influence the parametric bounds. (Consequently, //## there is no method to get the oversampling.) virtual void SetOversampling(float oversampling); virtual void Initialize(); //##Documentation //## @brief Calculates the standard part of a Geometry3D //## (IndexToWorldTransform and bounding box) around the //## curved geometry. Has to be implemented in subclasses. //## //## \sa SetFrameGeometry virtual void CalculateFrameGeometry(); //##Documentation //## @brief Set the frame geometry which is used as the standard //## part of an Geometry3D (IndexToWorldTransform and bounding box) //## //## Maybe used as a hint within which the interpolation shall occur //## by concrete sub-classes. //## \sa CalculateFrameGeometry virtual void SetFrameGeometry(const mitk::Geometry3D* frameGeometry); - virtual AffineGeometryFrame3D::Pointer Clone() const; + virtual Geometry3D::Pointer Clone() const; protected: AbstractTransformGeometry(); AbstractTransformGeometry(const AbstractTransformGeometry& other); virtual ~AbstractTransformGeometry(); //##Documentation //## @brief Set the vtkAbstractTransform (stored in m_VtkAbstractTransform) //## //## Protected in this class, made public in ExternAbstractTransformGeometry. virtual void SetVtkAbstractTransform(vtkAbstractTransform* aVtkAbstractTransform); //##Documentation //## @brief Set the rectangular area that is used for transformation by //## m_VtkAbstractTransform and therewith defines the 2D manifold described by //## ExternAbstractTransformGeometry //## //## Protected in this class, made public in ExternAbstractTransformGeometry. //## @note The bounds of the PlaneGeometry are used as the parametric bounds. //## @note The PlaneGeometry is cloned, @em not linked/referenced. virtual void SetPlane(const mitk::PlaneGeometry* aPlane); //##Documentation //## @brief The rectangular area that is used for transformation by //## m_VtkAbstractTransform and therewith defines the 2D manifold described by //## AbstractTransformGeometry. mitk::PlaneGeometry::Pointer m_Plane; itk::VtkAbstractTransform::Pointer m_ItkVtkAbstractTransform; mitk::Geometry3D::Pointer m_FrameGeometry; }; } // namespace mitk #endif /* MITKVTKABSTRACTTRANSFORMPLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C */ diff --git a/Core/Code/DataManagement/mitkDisplayGeometry.cpp b/Core/Code/DataManagement/mitkDisplayGeometry.cpp index f8873400d0..a82a8ef3ff 100644 --- a/Core/Code/DataManagement/mitkDisplayGeometry.cpp +++ b/Core/Code/DataManagement/mitkDisplayGeometry.cpp @@ -1,637 +1,637 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDisplayGeometry.h" -mitk::AffineGeometryFrame3D::Pointer mitk::DisplayGeometry::Clone() const +mitk::Geometry3D::Pointer mitk::DisplayGeometry::Clone() const { // itkExceptionMacro(<<"calling mitk::DisplayGeometry::Clone does not make much sense."); DisplayGeometry* returnValue = const_cast(this); return returnValue; } bool mitk::DisplayGeometry::IsValid() const { return m_Valid && m_WorldGeometry.IsNotNull() && m_WorldGeometry->IsValid(); } unsigned long mitk::DisplayGeometry::GetMTime() const { if((m_WorldGeometry.IsNotNull()) && (Geometry2D::GetMTime() < m_WorldGeometry->GetMTime())) { Modified(); } return Geometry2D::GetMTime(); } const mitk::TimeBounds& mitk::DisplayGeometry::GetTimeBounds() const { if(m_WorldGeometry.IsNull()) { return m_TimeBounds; } return m_WorldGeometry->GetTimeBounds(); } // size definition methods void mitk::DisplayGeometry::SetWorldGeometry(const Geometry2D* aWorldGeometry) { m_WorldGeometry = aWorldGeometry; Modified(); } bool mitk::DisplayGeometry::SetOriginInMM(const Vector2D& origin_mm) { m_OriginInMM = origin_mm; WorldToDisplay(m_OriginInMM, m_OriginInDisplayUnits); Modified(); return !this->RefitVisibleRect(); } mitk::Vector2D mitk::DisplayGeometry::GetOriginInMM() const { return m_OriginInMM; } mitk::Vector2D mitk::DisplayGeometry::GetOriginInDisplayUnits() const { return m_OriginInDisplayUnits; } void mitk::DisplayGeometry::SetSizeInDisplayUnits(unsigned int width, unsigned int height, bool keepDisplayedRegion) { Vector2D oldSizeInMM( m_SizeInMM ); Point2D oldCenterInMM; if(keepDisplayedRegion) { Point2D centerInDisplayUnits; centerInDisplayUnits[0] = m_SizeInDisplayUnits[0]*0.5; centerInDisplayUnits[1] = m_SizeInDisplayUnits[1]*0.5; DisplayToWorld(centerInDisplayUnits, oldCenterInMM); } m_SizeInDisplayUnits[0]=width; m_SizeInDisplayUnits[1]=height; if(m_SizeInDisplayUnits[0] <= 0) m_SizeInDisplayUnits[0] = 1; if(m_SizeInDisplayUnits[1] <= 0) m_SizeInDisplayUnits[1] = 1; DisplayToWorld(m_SizeInDisplayUnits, m_SizeInMM); if(keepDisplayedRegion) { Point2D positionOfOldCenterInCurrentDisplayUnits; WorldToDisplay(oldCenterInMM, positionOfOldCenterInCurrentDisplayUnits); Point2D currentNewCenterInDisplayUnits; currentNewCenterInDisplayUnits[0] = m_SizeInDisplayUnits[0]*0.5; currentNewCenterInDisplayUnits[1] = m_SizeInDisplayUnits[1]*0.5; Vector2D shift; shift=positionOfOldCenterInCurrentDisplayUnits.GetVectorFromOrigin()-currentNewCenterInDisplayUnits; MoveBy(shift); Zoom(m_SizeInMM.GetNorm()/oldSizeInMM.GetNorm(), currentNewCenterInDisplayUnits); } Modified(); } mitk::Vector2D mitk::DisplayGeometry::GetSizeInDisplayUnits() const { return m_SizeInDisplayUnits; } mitk::Vector2D mitk::DisplayGeometry::GetSizeInMM() const { return m_SizeInMM; } unsigned int mitk::DisplayGeometry::GetDisplayWidth() const { assert(m_SizeInDisplayUnits[0] >= 0); return (unsigned int)m_SizeInDisplayUnits[0]; } unsigned int mitk::DisplayGeometry::GetDisplayHeight() const { assert(m_SizeInDisplayUnits[1] >= 0); return (unsigned int)m_SizeInDisplayUnits[1]; } // zooming, panning, restriction of both void mitk::DisplayGeometry::SetConstrainZoomingAndPanning(bool constrain) { m_ConstrainZoomingAndPanning = constrain; if (m_ConstrainZoomingAndPanning) { this->RefitVisibleRect(); } } bool mitk::DisplayGeometry::GetConstrainZommingAndPanning() const { return m_ConstrainZoomingAndPanning; } bool mitk::DisplayGeometry::SetScaleFactor(ScalarType mmPerDisplayUnit) { if(mmPerDisplayUnit<0.0001) { mmPerDisplayUnit=0.0001; } m_ScaleFactorMMPerDisplayUnit = mmPerDisplayUnit; assert(m_ScaleFactorMMPerDisplayUnit < ScalarTypeNumericTraits::infinity()); DisplayToWorld(m_SizeInDisplayUnits, m_SizeInMM); return !this->RefitVisibleRect(); } mitk::ScalarType mitk::DisplayGeometry::GetScaleFactorMMPerDisplayUnit() const { return m_ScaleFactorMMPerDisplayUnit; } // Zooms with a factor (1.0=identity) around the specified center in display units bool mitk::DisplayGeometry::Zoom(ScalarType factor, const Point2D& centerInDisplayUnits) { assert(factor > 0); if ( SetScaleFactor(m_ScaleFactorMMPerDisplayUnit/factor) ) { return SetOriginInMM(m_OriginInMM-centerInDisplayUnits.GetVectorFromOrigin()*(1-factor)*m_ScaleFactorMMPerDisplayUnit); } else { return false; } } // Zooms with a factor (1.0=identity) around the specified center, but tries (if its within view contraints) to match the center in display units with the center in world coordinates. bool mitk::DisplayGeometry::ZoomWithFixedWorldCoordinates(ScalarType factor, const Point2D& focusDisplayUnits, const Point2D& focusUnitsInMM ) { assert(factor > 0); SetScaleFactor(m_ScaleFactorMMPerDisplayUnit/factor); SetOriginInMM(focusUnitsInMM.GetVectorFromOrigin()-focusDisplayUnits.GetVectorFromOrigin()*m_ScaleFactorMMPerDisplayUnit); return true; } bool mitk::DisplayGeometry::MoveBy(const Vector2D& shiftInDisplayUnits) { SetOriginInMM(m_OriginInMM+shiftInDisplayUnits*m_ScaleFactorMMPerDisplayUnit); Modified(); return !this->RefitVisibleRect(); } void mitk::DisplayGeometry::Fit() { if((m_WorldGeometry.IsNull()) || (m_WorldGeometry->IsValid() == false)) return; /// \FIXME: try to remove all the casts int width=(int)m_SizeInDisplayUnits[0]; int height=(int)m_SizeInDisplayUnits[1]; ScalarType w = width; ScalarType h = height; const ScalarType& widthInMM = m_WorldGeometry->GetParametricExtentInMM(0); const ScalarType& heightInMM = m_WorldGeometry->GetParametricExtentInMM(1); ScalarType aspRatio=((ScalarType)widthInMM)/heightInMM; ScalarType x = (ScalarType)w/widthInMM; ScalarType y = (ScalarType)h/heightInMM; if (x > y) { w = (int) (aspRatio*h); } else { h = (int) (w/aspRatio); } if(w>0) { SetScaleFactor(widthInMM/w); } Vector2D origin_display; origin_display[0]=-(width-w)/2.0; origin_display[1]=-(height-h)/2.0; SetOriginInMM(origin_display*m_ScaleFactorMMPerDisplayUnit); this->RefitVisibleRect(); Modified(); } // conversion methods void mitk::DisplayGeometry::DisplayToWorld(const Point2D &pt_display, Point2D &pt_mm) const { pt_mm[0]=m_ScaleFactorMMPerDisplayUnit*pt_display[0]+m_OriginInMM[0]; pt_mm[1]=m_ScaleFactorMMPerDisplayUnit*pt_display[1]+m_OriginInMM[1]; } void mitk::DisplayGeometry::WorldToDisplay(const Point2D &pt_mm, Point2D &pt_display) const { pt_display[0]=(pt_mm[0]-m_OriginInMM[0])*(1.0/m_ScaleFactorMMPerDisplayUnit); pt_display[1]=(pt_mm[1]-m_OriginInMM[1])*(1.0/m_ScaleFactorMMPerDisplayUnit); } void mitk::DisplayGeometry::DisplayToWorld(const Vector2D &vec_display, Vector2D &vec_mm) const { vec_mm=vec_display*m_ScaleFactorMMPerDisplayUnit; } void mitk::DisplayGeometry::WorldToDisplay(const Vector2D &vec_mm, Vector2D &vec_display) const { vec_display=vec_mm*(1.0/m_ScaleFactorMMPerDisplayUnit); } void mitk::DisplayGeometry::ULDisplayToMM(const Point2D &pt_ULdisplay, Point2D &pt_mm) const { ULDisplayToDisplay(pt_ULdisplay, pt_mm); DisplayToWorld(pt_mm, pt_mm); } void mitk::DisplayGeometry::MMToULDisplay(const Point2D &pt_mm, Point2D &pt_ULdisplay) const { WorldToDisplay(pt_mm, pt_ULdisplay); DisplayToULDisplay(pt_ULdisplay, pt_ULdisplay); } void mitk::DisplayGeometry::ULDisplayToMM(const Vector2D &vec_ULdisplay, Vector2D &vec_mm) const { ULDisplayToDisplay(vec_ULdisplay, vec_mm); DisplayToWorld(vec_mm, vec_mm); } void mitk::DisplayGeometry::MMToULDisplay(const Vector2D &vec_mm, Vector2D &vec_ULdisplay) const { WorldToDisplay(vec_mm, vec_ULdisplay); DisplayToULDisplay(vec_ULdisplay, vec_ULdisplay); } void mitk::DisplayGeometry::ULDisplayToDisplay(const Point2D &pt_ULdisplay, Point2D &pt_display) const { pt_display[0]=pt_ULdisplay[0]; pt_display[1]=GetDisplayHeight()-pt_ULdisplay[1]; } void mitk::DisplayGeometry::DisplayToULDisplay(const Point2D &pt_display, Point2D &pt_ULdisplay) const { ULDisplayToDisplay(pt_display, pt_ULdisplay); } void mitk::DisplayGeometry::ULDisplayToDisplay(const Vector2D &vec_ULdisplay, Vector2D &vec_display) const { vec_display[0]= vec_ULdisplay[0]; vec_display[1]=-vec_ULdisplay[1]; } void mitk::DisplayGeometry::DisplayToULDisplay(const Vector2D &vec_display, Vector2D &vec_ULdisplay) const { ULDisplayToDisplay(vec_display, vec_ULdisplay); } bool mitk::DisplayGeometry::Project(const Point3D &pt3d_mm, Point3D &projectedPt3d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Project(pt3d_mm, projectedPt3d_mm); } else { return false; } } bool mitk::DisplayGeometry::Project(const Point3D & atPt3d_mm, const Vector3D &vec3d_mm, Vector3D &projectedVec3d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Project(atPt3d_mm, vec3d_mm, projectedVec3d_mm); } else { return false; } } bool mitk::DisplayGeometry::Project(const Vector3D &vec3d_mm, Vector3D &projectedVec3d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Project(vec3d_mm, projectedVec3d_mm); } else { return false; } } bool mitk::DisplayGeometry::Map(const Point3D &pt3d_mm, Point2D &pt2d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Map(pt3d_mm, pt2d_mm); } else { return false; } } void mitk::DisplayGeometry::Map(const Point2D &pt2d_mm, Point3D &pt3d_mm) const { if(m_WorldGeometry.IsNull()) return; m_WorldGeometry->Map(pt2d_mm, pt3d_mm); } bool mitk::DisplayGeometry::Map(const Point3D & atPt3d_mm, const Vector3D &vec3d_mm, Vector2D &vec2d_mm) const { if(m_WorldGeometry.IsNotNull()) { return m_WorldGeometry->Map(atPt3d_mm, vec3d_mm, vec2d_mm); } else { return false; } } void mitk::DisplayGeometry::Map(const Point2D & atPt2d_mm, const Vector2D &vec2d_mm, Vector3D &vec3d_mm) const { if(m_WorldGeometry.IsNull()) return; m_WorldGeometry->Map(atPt2d_mm, vec2d_mm, vec3d_mm); } // protected methods mitk::DisplayGeometry::DisplayGeometry() :m_ScaleFactorMMPerDisplayUnit(1.0) ,m_WorldGeometry(NULL) ,m_ConstrainZoomingAndPanning(true) ,m_MaxWorldViewPercentage(1.0) ,m_MinWorldViewPercentage(0.1) { m_OriginInMM.Fill(0.0); m_OriginInDisplayUnits.Fill(0.0); m_SizeInMM.Fill(1.0); m_SizeInDisplayUnits.Fill(10.0); } mitk::DisplayGeometry::~DisplayGeometry() { } bool mitk::DisplayGeometry::RefitVisibleRect() { // do nothing if not asked to if (!m_ConstrainZoomingAndPanning) return false; // don't allow recursion (need to be fixed, singleton) static bool inRecalculate = false; if (inRecalculate) return false; inRecalculate = true; // rename some basic measures of the current viewport and world geometry (MM = milimeters Px = Pixels = display units) float displayXMM = m_OriginInMM[0]; float displayYMM = m_OriginInMM[1]; float displayWidthPx = m_SizeInDisplayUnits[0]; float displayHeightPx = m_SizeInDisplayUnits[1]; float displayWidthMM = m_SizeInDisplayUnits[0] * m_ScaleFactorMMPerDisplayUnit; float displayHeightMM = m_SizeInDisplayUnits[1] * m_ScaleFactorMMPerDisplayUnit; float worldWidthMM = m_WorldGeometry->GetParametricExtentInMM(0); float worldHeightMM = m_WorldGeometry->GetParametricExtentInMM(1); // reserve variables for the correction logic to save a corrected origin and zoom factor Vector2D newOrigin = m_OriginInMM; bool correctPanning = false; float newScaleFactor = m_ScaleFactorMMPerDisplayUnit; bool correctZooming = false; // start of the correction logic // zoom to big means: // at a given percentage of the world's width/height should be visible. Otherwise // the whole screen could show only one pixel // // zoom to small means: // zooming out should be limited at the point where the smaller of the world's sides is completely visible bool zoomXtooSmall = displayWidthPx * m_ScaleFactorMMPerDisplayUnit > m_MaxWorldViewPercentage * worldWidthMM; bool zoomXtooBig = displayWidthPx * m_ScaleFactorMMPerDisplayUnit < m_MinWorldViewPercentage * worldWidthMM; bool zoomYtooSmall = displayHeightPx * m_ScaleFactorMMPerDisplayUnit > m_MaxWorldViewPercentage * worldHeightMM; bool zoomYtooBig = displayHeightPx * m_ScaleFactorMMPerDisplayUnit < m_MinWorldViewPercentage * worldHeightMM; // constrain zooming in both direction if ( zoomXtooBig && zoomYtooBig) { double fx = worldWidthMM * m_MinWorldViewPercentage / displayWidthPx; double fy = worldHeightMM * m_MinWorldViewPercentage / displayHeightPx; newScaleFactor = fx < fy ? fx : fy; correctZooming = true; } // constrain zooming in x direction else if ( zoomXtooBig ) { newScaleFactor = worldWidthMM * m_MinWorldViewPercentage / displayWidthPx; correctZooming = true; } // constrain zooming in y direction else if ( zoomYtooBig ) { newScaleFactor = worldHeightMM * m_MinWorldViewPercentage / displayHeightPx; correctZooming = true; } // constrain zooming out // we stop zooming out at these situations: // // *** display // --- image // // ********************** // * * x side maxed out // * * // *--------------------* // *| |* // *| |* // *--------------------* // * * // * * // * * // ********************** // // ********************** // * |------| * y side maxed out // * | | * // * | | * // * | | * // * | | * // * | | * // * | | * // * | | * // * |------| * // ********************** // // In both situations we center the not-maxed out direction // if ( zoomXtooSmall && zoomYtooSmall ) { // determine and set the bigger scale factor float fx = worldWidthMM * m_MaxWorldViewPercentage / displayWidthPx; float fy = worldHeightMM * m_MaxWorldViewPercentage / displayHeightPx; newScaleFactor = fx > fy ? fx : fy; correctZooming = true; } // actually execute correction if (correctZooming) { SetScaleFactor(newScaleFactor); } displayWidthMM = m_SizeInDisplayUnits[0] * m_ScaleFactorMMPerDisplayUnit; displayHeightMM = m_SizeInDisplayUnits[1] * m_ScaleFactorMMPerDisplayUnit; // constrain panning if(worldWidthMM center x newOrigin[0] = (worldWidthMM - displayWidthMM) / 2.0; correctPanning = true; } else { // make sure left display border inside our world if (displayXMM < 0) { newOrigin[0] = 0; correctPanning = true; } // make sure right display border inside our world else if (displayXMM + displayWidthMM > worldWidthMM) { newOrigin[0] = worldWidthMM - displayWidthMM; correctPanning = true; } } if (worldHeightMM center y newOrigin[1] = (worldHeightMM - displayHeightMM) / 2.0; correctPanning = true; } else { // make sure top display border inside our world if (displayYMM + displayHeightMM > worldHeightMM) { newOrigin[1] = worldHeightMM - displayHeightMM; correctPanning = true; } // make sure bottom display border inside our world else if (displayYMM < 0) { newOrigin[1] = 0; correctPanning = true; } } if (correctPanning) { SetOriginInMM( newOrigin ); } inRecalculate = false; if ( correctPanning || correctZooming ) { Modified(); } // return true if any correction has been made return correctPanning || correctZooming; } void mitk::DisplayGeometry::PrintSelf(std::ostream& os, itk::Indent indent) const { if(m_WorldGeometry.IsNull()) { os << indent << " WorldGeometry: " << "NULL" << std::endl; } else { m_WorldGeometry->Print(os, indent); os << indent << " OriginInMM: " << m_OriginInMM << std::endl; os << indent << " OriginInDisplayUnits: " << m_OriginInDisplayUnits << std::endl; os << indent << " SizeInMM: " << m_SizeInMM << std::endl; os << indent << " SizeInDisplayUnits: " << m_SizeInDisplayUnits << std::endl; os << indent << " ScaleFactorMMPerDisplayUni: " << m_ScaleFactorMMPerDisplayUnit << std::endl; } Superclass::PrintSelf(os,indent); } diff --git a/Core/Code/DataManagement/mitkDisplayGeometry.h b/Core/Code/DataManagement/mitkDisplayGeometry.h index 042e0a16a7..cc52d34ad7 100644 --- a/Core/Code/DataManagement/mitkDisplayGeometry.h +++ b/Core/Code/DataManagement/mitkDisplayGeometry.h @@ -1,240 +1,240 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkDisplayGeometry_h #define mitkDisplayGeometry_h #include "mitkGeometry2D.h" namespace mitk { /** \brief Describes the geometry on the display/screen for 2D display. The main purpose of this class is to convert between display coordinates (in display-units) and world coordinates (in mm). DisplayGeometry depends on the size of the display area (widget width and height, m_SizeInDisplayUnits) and on a Geometry2D (m_WoldGeometry). It represents a recangular view on this world-geometry. E.g., you can tell the DisplayGeometry to fit the world-geometry in the display area by calling Fit(). Provides methods for zooming and panning. Zooming and panning can be restricted within reasonable bounds by setting the ConstrainZoomingAndPanning flag. In these cases you can re-define what bounds you accept as "reasonable" by calling \warning \em Units refers to the units of the underlying world-geometry. Take care, whether these are really the units you want to convert to. E.g., when you want to convert a point \a pt_display (which is 2D) given in display coordinates into a point in units of a BaseData-object @a datum (the requested point is 3D!), use \code displaygeometry->DisplayToWorld(pt_display, pt2d_mm); displaygeometry->Map(pt2d_mm, pt3d_mm); datum->GetGeometry()->WorldToIndex(pt3d_mm, pt3d_datum_units); \endcode Even, if you want to convert the 2D point \a pt_display into a 2D point in units on a certain 2D geometry \a certaingeometry, it is safer to use \code displaygeometry->DisplayToWorld(pt_display, pt_mm); certaingeometry->WorldToIndex(pt_mm, pt_certain_geometry_units); \endcode unless you can be sure that the underlying geometry of \a displaygeometry is really the \a certaingeometry. \ingroup Geometry */ class MITK_CORE_EXPORT DisplayGeometry : public Geometry2D { public: mitkClassMacro(DisplayGeometry,Geometry2D); /// Method for creation through the object factory. itkNewMacro(Self); /// \brief duplicates the geometry, NOT useful for this sub-class - virtual AffineGeometryFrame3D::Pointer Clone() const; + virtual Geometry3D::Pointer Clone() const; virtual bool IsValid() const; /// \return this objects modified time. virtual unsigned long GetMTime() const; virtual const TimeBounds& GetTimeBounds() const; // size definition methods virtual void SetWorldGeometry(const Geometry2D* aWorldGeometry); itkGetConstObjectMacro(WorldGeometry, Geometry2D); /// \return if new origin was within accepted limits virtual bool SetOriginInMM(const Vector2D& origin_mm); virtual Vector2D GetOriginInMM() const; virtual Vector2D GetOriginInDisplayUnits() const; /** \brief Set the size of the display in display units. This method must be called every time the display is resized (normally, the GUI-toolkit informs about resizing). \param keepDisplayedRegion: if \a true (the default), the displayed contents is zoomed/shrinked so that the displayed region is (approximately) the same as before: The point at the center will be kept at the center and the length of the diagonal of the displayed region \em in \em units will also be kept. When the aspect ration changes, the displayed region includes the old displayed region, but cannot be exaclty the same. */ virtual void SetSizeInDisplayUnits(unsigned int width, unsigned int height, bool keepDisplayedRegion=true); virtual Vector2D GetSizeInDisplayUnits() const; virtual Vector2D GetSizeInMM() const; unsigned int GetDisplayWidth() const; unsigned int GetDisplayHeight() const; // zooming, panning, restriction of both virtual void SetConstrainZoomingAndPanning(bool constrain); virtual bool GetConstrainZommingAndPanning() const; /// what percentage of the world should be visible at maximum zoom out (default 1.0, i.e. 100% of width or height) itkGetMacro(MaxWorldViewPercentage, float); itkSetMacro(MaxWorldViewPercentage, float); /// what percentage of the world should be visible at maximum zoom in (default 0.1, i.e. 10% of width or height) itkGetMacro(MinWorldViewPercentage, float); itkSetMacro(MinWorldViewPercentage, float); virtual bool SetScaleFactor(ScalarType mmPerDisplayUnit); ScalarType GetScaleFactorMMPerDisplayUnit() const; /** * \brief Zooms with a factor (1.0=identity) to/from the specified center in display units * \return true if zoom request was within accepted limits */ virtual bool Zoom(ScalarType factor, const Point2D& centerInDisplayUnits); /** * \brief Zooms with a factor (1.0=identity) to/from the specified center, trying to preserve the center of zoom in world coordiantes * * Same zoom as mentioned above but tries (if it's within view contraints) to match the center in display units with the center in world coordinates. * * \return true if zoom request was within accepted limits */ virtual bool ZoomWithFixedWorldCoordinates(ScalarType factor, const Point2D& focusDisplayUnits, const Point2D& focusUnitsInMM ); // \return true if move request was within accepted limits virtual bool MoveBy(const Vector2D& shiftInDisplayUnits); // \brief align display with world, make world completely visible virtual void Fit(); // conversion methods virtual void DisplayToWorld(const Point2D &pt_display, Point2D &pt_mm) const; virtual void WorldToDisplay(const Point2D &pt_mm, Point2D &pt_display) const; virtual void DisplayToWorld(const Vector2D &vec_display, Vector2D &vec_mm) const; virtual void WorldToDisplay(const Vector2D &vec_mm, Vector2D &vec_display) const; virtual void ULDisplayToMM(const Point2D &pt_ULdisplay, Point2D &pt_mm) const; virtual void MMToULDisplay(const Point2D &pt_mm, Point2D &pt_ULdisplay) const; virtual void ULDisplayToMM(const Vector2D &vec_ULdisplay, Vector2D &vec_mm) const; virtual void MMToULDisplay(const Vector2D &vec_mm, Vector2D &vec_ULdisplay) const; virtual void ULDisplayToDisplay(const Point2D &pt_ULdisplay, Point2D &pt_display) const; virtual void DisplayToULDisplay(const Point2D &pt_display, Point2D &pt_ULdisplay) const; virtual void ULDisplayToDisplay(const Vector2D &vec_ULdisplay, Vector2D &vec_display) const; virtual void DisplayToULDisplay(const Vector2D &vec_display, Vector2D &vec_ULdisplay) const; /** * \brief projects the given point onto current 2D world geometry plane */ virtual bool Project(const Point3D &pt3d_mm, Point3D &projectedPt3d_mm) const; /** * \brief projects the given vector onto current 2D world geometry plane. * \warning DEPRECATED, please use Project(const Vector3D &vec3d_mm, Vector3D &projectedVec3d_mm) instead */ virtual bool Project(const Point3D & atPt3d_mm, const Vector3D &vec3d_mm, Vector3D &projectedVec3d_mm) const; /** * \brief projects the given vector onto current 2D world geometry plane */ virtual bool Project(const Vector3D &vec3d_mm, Vector3D &projectedVec3d_mm) const; virtual bool Map(const Point3D &pt3d_mm, Point2D &pt2d_mm) const; virtual void Map(const Point2D &pt2d_mm, Point3D &pt3d_mm) const; virtual bool Map(const Point3D & atPt3d_mm, const Vector3D &vec3d_mm, Vector2D &vec2d_mm) const; virtual void Map(const Point2D & atPt2d_mm, const Vector2D &vec2d_mm, Vector3D &vec3d_mm) const; protected: DisplayGeometry(); virtual ~DisplayGeometry(); /** \brief Called after zooming/panning to restrict these operations to sensible measures. \return true if a correction in either zooming or panning was made Enforces a couple of constraints on the relation of the current viewport and the current world geometry. The basic logic in this lengthy method is:
  1. Make display region big enough (in case of too large zoom factors)
  2. Make display region small enough (so that the image cannot be scaled into a single screen pixel
  3. Correct panning for each border (left, right, bottom, top)
The little more complicated implementation is illustrated in the code itself. */ virtual bool RefitVisibleRect(); virtual void PrintSelf(std::ostream& os, itk::Indent indent) const; Vector2D m_OriginInMM; Vector2D m_OriginInDisplayUnits; ScalarType m_ScaleFactorMMPerDisplayUnit; Vector2D m_SizeInMM; Vector2D m_SizeInDisplayUnits; Geometry2D::ConstPointer m_WorldGeometry; bool m_ConstrainZoomingAndPanning; float m_MaxWorldViewPercentage; float m_MinWorldViewPercentage; }; } // namespace #endif // include guard diff --git a/Core/Code/DataManagement/mitkGeometry2D.cpp b/Core/Code/DataManagement/mitkGeometry2D.cpp index 950cbb8c05..9a8bc6bfd2 100644 --- a/Core/Code/DataManagement/mitkGeometry2D.cpp +++ b/Core/Code/DataManagement/mitkGeometry2D.cpp @@ -1,284 +1,284 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkGeometry2D.h" #include mitk::Geometry2D::Geometry2D() : m_ScaleFactorMMPerUnitX( 1.0 ), m_ScaleFactorMMPerUnitY( 1.0 ), m_ReferenceGeometry( NULL ) { } mitk::Geometry2D::Geometry2D(const Geometry2D& other) : Geometry3D(other), m_ScaleFactorMMPerUnitX( other.m_ScaleFactorMMPerUnitX), m_ScaleFactorMMPerUnitY( other.m_ScaleFactorMMPerUnitY), m_ReferenceGeometry( other.m_ReferenceGeometry ) { } mitk::Geometry2D::~Geometry2D() { } void mitk::Geometry2D::SetIndexToWorldTransform( mitk::AffineTransform3D* transform) { Superclass::SetIndexToWorldTransform(transform); m_ScaleFactorMMPerUnitX=GetExtentInMM(0)/GetExtent(0); m_ScaleFactorMMPerUnitY=GetExtentInMM(1)/GetExtent(1); assert(m_ScaleFactorMMPerUnitX(m_BoundingBox.GetPointer())->IsInside(pt3d_units); } void mitk::Geometry2D::Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const { Point3D pt3d_units; pt3d_units[0]=pt2d_mm[0]/m_ScaleFactorMMPerUnitX; pt3d_units[1]=pt2d_mm[1]/m_ScaleFactorMMPerUnitY; pt3d_units[2]=0; pt3d_mm = GetParametricTransform()->TransformPoint(pt3d_units); } void mitk::Geometry2D::IndexToWorld( const mitk::Point2D &/*pt_units*/, mitk::Point2D &/*pt_mm*/) const { itkExceptionMacro(<< "No general transform possible (only affine) ==> no general" \ " IndexToWorld(const mitk::Point2D &pt_mm, mitk::Point2D &pt_units)" \ " possible. Has to be implemented in sub-class."); } void mitk::Geometry2D::WorldToIndex( const mitk::Point2D &/*pt_mm*/, mitk::Point2D &/*pt_units*/) const { itkExceptionMacro(<< "No general back transform possible (only affine) ==> no general" \ " WorldToIndex(const mitk::Point2D &pt_mm, mitk::Point2D &pt_units)" \ " possible. Has to be implemented in sub-class."); } void mitk::Geometry2D::IndexToWorld(const mitk::Point2D &/*atPt2d_units*/, const mitk::Vector2D &/*vec_units*/, mitk::Vector2D &/*vec_mm*/) const { itkExceptionMacro(<< "No general transform possible (only affine) ==> no general" \ " IndexToWorld(const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units)" \ " possible. Has to be implemented in sub-class."); } void mitk::Geometry2D::WorldToIndex(const mitk::Point2D &/*atPt2d_mm*/, const mitk::Vector2D &/*vec_mm*/, mitk::Vector2D &/*vec_units*/) const { itkExceptionMacro(<< "No general back transform possible (only affine) ==> no general" \ " WorldToIndex(const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units)" \ " possible. Has to be implemented in sub-class."); } void mitk::Geometry2D::SetSizeInUnits(mitk::ScalarType width, mitk::ScalarType height) { ScalarType bounds[6]={0, width, 0, height, 0, 1}; ScalarType extent, newextentInMM; if(GetExtent(0)>0) { extent = GetExtent(0); if(width>extent) newextentInMM = GetExtentInMM(0)/width*extent; else newextentInMM = GetExtentInMM(0)*extent/width; SetExtentInMM(0, newextentInMM); } if(GetExtent(1)>0) { extent = GetExtent(1); if(width>extent) newextentInMM = GetExtentInMM(1)/height*extent; else newextentInMM = GetExtentInMM(1)*extent/height; SetExtentInMM(1, newextentInMM); } SetBounds(bounds); } bool mitk::Geometry2D::Project( const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const { assert(m_BoundingBox.IsNotNull()); Point3D pt3d_units; BackTransform(pt3d_mm, pt3d_units); pt3d_units[2] = 0; projectedPt3d_mm = GetParametricTransform()->TransformPoint(pt3d_units); return const_cast(m_BoundingBox.GetPointer())->IsInside(pt3d_units); } bool mitk::Geometry2D::Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { assert(m_BoundingBox.IsNotNull()); Vector3D vec3d_units; BackTransform(vec3d_mm, vec3d_units); vec3d_units[2] = 0; projectedVec3d_mm = GetParametricTransform()->TransformVector(vec3d_units); return true; } bool mitk::Geometry2D::Project(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const { MITK_WARN << "Deprecated function! Call Project(vec3D,vec3D) instead."; assert(m_BoundingBox.IsNotNull()); Vector3D vec3d_units; BackTransform(atPt3d_mm, vec3d_mm, vec3d_units); vec3d_units[2] = 0; projectedVec3d_mm = GetParametricTransform()->TransformVector(vec3d_units); Point3D pt3d_units; BackTransform(atPt3d_mm, pt3d_units); return const_cast(m_BoundingBox.GetPointer())->IsInside(pt3d_units); } bool mitk::Geometry2D::Map(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const { Point2D pt2d_mm_start, pt2d_mm_end; Point3D pt3d_mm_end; bool inside=Map(atPt3d_mm, pt2d_mm_start); pt3d_mm_end = atPt3d_mm+vec3d_mm; inside&=Map(pt3d_mm_end, pt2d_mm_end); vec2d_mm=pt2d_mm_end-pt2d_mm_start; return inside; } void mitk::Geometry2D::Map(const mitk::Point2D &/*atPt2d_mm*/, const mitk::Vector2D &/*vec2d_mm*/, mitk::Vector3D &/*vec3d_mm*/) const { //@todo implement parallel to the other Map method! assert(false); } mitk::ScalarType mitk::Geometry2D::SignedDistance(const mitk::Point3D& pt3d_mm) const { Point3D projectedPoint; Project(pt3d_mm, projectedPoint); Vector3D direction = pt3d_mm-projectedPoint; ScalarType distance = direction.GetNorm(); if(IsAbove(pt3d_mm) == false) distance*=-1.0; return distance; } bool mitk::Geometry2D::IsAbove(const mitk::Point3D& pt3d_mm) const { Point3D pt3d_units; Geometry3D::WorldToIndex(pt3d_mm, pt3d_units); return (pt3d_units[2] > m_BoundingBox->GetBounds()[4]); } -mitk::AffineGeometryFrame3D::Pointer +mitk::Geometry3D::Pointer mitk::Geometry2D::Clone() const { Self::Pointer newGeometry = new Geometry2D(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void mitk::Geometry2D::PrintSelf(std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf(os,indent); os << indent << " ScaleFactorMMPerUnitX: " << m_ScaleFactorMMPerUnitX << std::endl; os << indent << " ScaleFactorMMPerUnitY: " << m_ScaleFactorMMPerUnitY << std::endl; } void mitk::Geometry2D::SetReferenceGeometry( mitk::Geometry3D *geometry ) { m_ReferenceGeometry = geometry; } mitk::Geometry3D * mitk::Geometry2D::GetReferenceGeometry() const { return m_ReferenceGeometry; } bool mitk::Geometry2D::HasReferenceGeometry() const { return ( m_ReferenceGeometry != NULL ); } diff --git a/Core/Code/DataManagement/mitkGeometry2D.h b/Core/Code/DataManagement/mitkGeometry2D.h index 7b8d936eed..7c0dc1189e 100644 --- a/Core/Code/DataManagement/mitkGeometry2D.h +++ b/Core/Code/DataManagement/mitkGeometry2D.h @@ -1,273 +1,273 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef GEOMETRY2D_H_HEADER_INCLUDED_C1F4D8E0 #define GEOMETRY2D_H_HEADER_INCLUDED_C1F4D8E0 #include #include "mitkGeometry3D.h" namespace mitk { /** * \brief Describes the geometry of a two-dimensional object * * Describes a two-dimensional manifold, i.e., to put it simply, * an object that can be described using a 2D coordinate-system. * * Geometry2D can map points between 3D world coordinates * (in mm) and the described 2D coordinate-system (in mm) by first projecting * the 3D point onto the 2D manifold and then calculating the 2D-coordinates * (in mm). These 2D-mm-coordinates can be further converted into * 2D-unit-coordinates (e.g., pixels), giving a parameter representation of * the object with parameter values inside a rectangle * (e.g., [0,0]..[width, height]), which is the bounding box (bounding range * in z-direction always [0]..[1]). * * A Geometry2D describes the 2D representation within a 3D object and is * therefore itself a Geometry3D (derived from Geometry3D). For example, * a single CT-image (slice) is 2D in the sense that you can access the * pixels using 2D-coordinates, but is also 3D, as the pixels are really * voxels, thus have an extension (thickness) in the 3rd dimension. * * Most often, instances of Geometry2D will be used to descibe a plane, * which is represented by the sub-class PlaneGeometry, but curved * surfaces are also possible. * * Optionally, a reference Geometry3D can be specified, which usually would * be the geometry associated with the underlying dataset. This is currently * used for calculating the intersection of inclined / rotated planes * (represented as Geometry2D) with the bounding box of the associated * Geometry3D. * * \warning The Geometry2Ds are not necessarily up-to-date and not even * initialized. As described in the previous paragraph, one of the * Generate-/Copy-/UpdateOutputInformation methods have to initialize it. * mitk::BaseData::GetGeometry2D() makes sure, that the Geometry2D is * up-to-date before returning it (by setting the update extent appropriately * and calling UpdateOutputInformation). * * Rule: everything is in mm (or ms for temporal information) if not * stated otherwise. * \ingroup Geometry */ class MITK_CORE_EXPORT Geometry2D : public mitk::Geometry3D { public: mitkClassMacro(Geometry2D, mitk::Geometry3D); itkNewMacro(Self); /** * \brief Project a 3D point given in mm (\a pt3d_mm) onto the 2D * geometry. The result is a 2D point in mm (\a pt2d_mm). * * The result is a 2D point in mm (\a pt2d_mm) relative to the upper-left * corner of the geometry. To convert this point into units (e.g., pixels * in case of an image), use WorldToIndex. * \return true projection was possible * \sa Project(const mitk::Point3D &pt3d_mm, mitk::Point3D * &projectedPt3d_mm) */ virtual bool Map(const mitk::Point3D &pt3d_mm, mitk::Point2D &pt2d_mm) const; /** * \brief Converts a 2D point given in mm (\a pt2d_mm) relative to the * upper-left corner of the geometry into the corresponding * world-coordinate (a 3D point in mm, \a pt3d_mm). * * To convert a 2D point given in units (e.g., pixels in case of an * image) into a 2D point given in mm (as required by this method), use * IndexToWorld. */ virtual void Map(const mitk::Point2D &pt2d_mm, mitk::Point3D &pt3d_mm) const; /** * \brief Convert a 2D point given in units (e.g., pixels in case of an * image) into a 2D point given in mm */ virtual void IndexToWorld( const mitk::Point2D &pt_units, mitk::Point2D &pt_mm) const; /** * \brief Convert a 2D point given in mm into a 2D point given in mm * (e.g., pixels in case of an image) */ virtual void WorldToIndex( const mitk::Point2D &pt_mm, mitk::Point2D &pt_units) const; /** * \brief Convert a 2D vector given in units (e.g., pixels in case of an * image) into a 2D vector given in mm * \warning strange: in contrast to vtkTransform the class itk::Transform * does not have the parameter, \em where the vector that is to be * transformed is located. This method here should also need this * information for general transforms. */ virtual void IndexToWorld( const mitk::Point2D &atPt2d_units, const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; /** * \brief Convert a 2D vector given in mm into a 2D point vector in mm * (e.g., pixels in case of an image) * \warning strange: in contrast to vtkTransform the class itk::Transform * does not have the parameter, \em where the vector that is to be * transformed is located. This method here should also need this * information for general transforms. */ virtual void WorldToIndex( const mitk::Point2D &atPt2d_mm, const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; /** * \brief Set the width and height of this 2D-geometry in units by calling * SetBounds. This does \a not change the extent in mm! * * For an image, this is the number of pixels in x-/y-direction. * \note In contrast to calling SetBounds directly, this does \a not change * the extent in mm! */ virtual void SetSizeInUnits(mitk::ScalarType width, mitk::ScalarType height); /** * \brief Project a 3D point given in mm (\a pt3d_mm) onto the 2D * geometry. The result is a 3D point in mm (\a projectedPt3d_mm). * * \return true projection was possible */ virtual bool Project(const mitk::Point3D &pt3d_mm, mitk::Point3D &projectedPt3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 2D vector in mm (\a vec2d_mm). * * The result is a 2D vector in mm (\a vec2d_mm) relative to the * upper-left * corner of the geometry. To convert this point into units (e.g., pixels * in case of an image), use WorldToIndex. * \return true projection was possible * \sa Project(const mitk::Vector3D &vec3d_mm, mitk::Vector3D * &projectedVec3d_mm) */ virtual bool Map(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector2D &vec2d_mm) const; /** * \brief Converts a 2D vector given in mm (\a vec2d_mm) relative to the * upper-left corner of the geometry into the corresponding * world-coordinate (a 3D vector in mm, \a vec3d_mm). * * To convert a 2D vector given in units (e.g., pixels in case of an * image) into a 2D vector given in mm (as required by this method), use * IndexToWorld. */ virtual void Map(const mitk::Point2D & atPt2d_mm, const mitk::Vector2D &vec2d_mm, mitk::Vector3D &vec3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 3D vector in mm (\a projectedVec3d_mm). * * DEPRECATED. Use Project(vector,vector) instead * * \return true projection was possible */ virtual bool Project(const mitk::Point3D & atPt3d_mm, const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const; /** * \brief Project a 3D vector given in mm (\a vec3d_mm) onto the 2D * geometry. The result is a 3D vector in mm (\a projectedVec3d_mm). * * \return true projection was possible */ virtual bool Project( const mitk::Vector3D &vec3d_mm, mitk::Vector3D &projectedVec3d_mm) const; /** * \brief Distance of the point from the geometry * (bounding-box \em not considered) * */ inline ScalarType Distance(const Point3D& pt3d_mm) const { return fabs(SignedDistance(pt3d_mm)); } /** * \brief Signed distance of the point from the geometry * (bounding-box \em not considered) * */ virtual ScalarType SignedDistance(const Point3D& pt3d_mm) const; /** * \brief Test if the point is above the geometry * (bounding-box \em not considered) * */ virtual bool IsAbove(const Point3D& pt3d_mm) const; virtual void SetIndexToWorldTransform(mitk::AffineTransform3D* transform); virtual void SetExtentInMM(int direction, ScalarType extentInMM); - virtual AffineGeometryFrame3D::Pointer Clone() const; + virtual Geometry3D::Pointer Clone() const; /** * \brief Set the geometrical frame of reference in which this Geometry2D * is placed. * * This would usually be the Geometry3D of the underlying dataset, but * setting it is optional. */ void SetReferenceGeometry( mitk::Geometry3D *geometry ); /** * \brief Get the geometrical frame of reference for this Geometry2D. */ Geometry3D *GetReferenceGeometry() const; bool HasReferenceGeometry() const; protected: Geometry2D(); Geometry2D(const Geometry2D& other); virtual ~Geometry2D(); virtual void PrintSelf(std::ostream& os, itk::Indent indent) const; /** * \brief factor to convert x-coordinates from mm to units and vice versa * */ mutable mitk::ScalarType m_ScaleFactorMMPerUnitX; /** * \brief factor to convert y-coordinates from mm to units and vice versa * */ mutable mitk::ScalarType m_ScaleFactorMMPerUnitY; mitk::Geometry3D *m_ReferenceGeometry; }; } // namespace mitk #endif /* GEOMETRY2D_H_HEADER_INCLUDED_C1F4D8E0 */ diff --git a/Core/Code/DataManagement/mitkGeometry3D.cpp b/Core/Code/DataManagement/mitkGeometry3D.cpp index a5c7ff1c52..fea5c250d7 100644 --- a/Core/Code/DataManagement/mitkGeometry3D.cpp +++ b/Core/Code/DataManagement/mitkGeometry3D.cpp @@ -1,772 +1,817 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include "mitkGeometry3D.h" #include "mitkMatrixConvert.h" #include "mitkRotationOperation.h" #include "mitkRestorePlanePositionOperation.h" #include "mitkPointOperation.h" #include "mitkInteractionConst.h" //#include "mitkStatusBar.h" #include #include // Standard constructor for the New() macro. Sets the geometry to 3 dimensions mitk::Geometry3D::Geometry3D() : m_ParametricBoundingBox(NULL), m_ImageGeometry(false), m_Valid(true), m_FrameOfReferenceID(0), m_IndexToWorldTransformLastModified(0) { FillVector3D(m_FloatSpacing, 1,1,1); m_VtkMatrix = vtkMatrix4x4::New(); m_VtkIndexToWorldTransform = vtkMatrixToLinearTransform::New(); m_VtkIndexToWorldTransform->SetInput(m_VtkMatrix); Initialize(); } mitk::Geometry3D::Geometry3D(const Geometry3D& other) : Superclass(), mitk::OperationActor(), m_ParametricBoundingBox(other.m_ParametricBoundingBox),m_TimeBounds(other.m_TimeBounds), m_ImageGeometry(other.m_ImageGeometry), m_Valid(other.m_Valid), m_FrameOfReferenceID(other.m_FrameOfReferenceID), m_IndexToWorldTransformLastModified(other.m_IndexToWorldTransformLastModified), m_RotationQuaternion( other.m_RotationQuaternion ) , m_Origin(other.m_Origin) { // AffineGeometryFrame SetBounds(other.GetBounds()); //SetIndexToObjectTransform(other.GetIndexToObjectTransform()); //SetObjectToNodeTransform(other.GetObjectToNodeTransform()); //SetIndexToWorldTransform(other.GetIndexToWorldTransform()); // this is not used in AffineGeometryFrame of ITK, thus there are not Get and Set methods // m_IndexToNodeTransform = other.m_IndexToNodeTransform; // m_InvertedTransform = TransformType::New(); // m_InvertedTransform = TransformType::New(); // m_InvertedTransform->DeepCopy(other.m_InvertedTransform); m_VtkMatrix = vtkMatrix4x4::New(); m_VtkMatrix->DeepCopy(other.m_VtkMatrix); if (other.m_ParametricBoundingBox.IsNotNull()) { m_ParametricBoundingBox = other.m_ParametricBoundingBox->DeepCopy(); } FillVector3D(m_FloatSpacing,other.m_FloatSpacing[0],other.m_FloatSpacing[1],other.m_FloatSpacing[2]); m_VtkIndexToWorldTransform = vtkMatrixToLinearTransform::New(); m_VtkIndexToWorldTransform->DeepCopy(other.m_VtkIndexToWorldTransform); m_VtkIndexToWorldTransform->SetInput(m_VtkMatrix); other.InitializeGeometry(this); } mitk::Geometry3D::~Geometry3D() { m_VtkMatrix->Delete(); m_VtkIndexToWorldTransform->Delete(); } static void CopySpacingFromTransform(mitk::AffineTransform3D* transform, mitk::Vector3D& spacing, float floatSpacing[3]) { mitk::AffineTransform3D::MatrixType::InternalMatrixType vnlmatrix; vnlmatrix = transform->GetMatrix().GetVnlMatrix(); spacing[0]=vnlmatrix.get_column(0).magnitude(); spacing[1]=vnlmatrix.get_column(1).magnitude(); spacing[2]=vnlmatrix.get_column(2).magnitude(); floatSpacing[0]=spacing[0]; floatSpacing[1]=spacing[1]; floatSpacing[2]=spacing[2]; } void mitk::Geometry3D::Initialize() { float b[6] = {0,1,0,1,0,1}; SetFloatBounds(b); - m_IndexToObjectTransform = TransformType::New(); - m_ObjectToNodeTransform = TransformType::New(); - if(m_IndexToWorldTransform.IsNull()) m_IndexToWorldTransform = TransformType::New(); else m_IndexToWorldTransform->SetIdentity(); CopySpacingFromTransform(m_IndexToWorldTransform, m_Spacing, m_FloatSpacing); vtk2itk(m_IndexToWorldTransform->GetOffset(), m_Origin); m_VtkMatrix->Identity(); m_TimeBounds[0]=ScalarTypeNumericTraits::NonpositiveMin(); m_TimeBounds[1]=ScalarTypeNumericTraits::max(); m_FrameOfReferenceID = 0; m_ImageGeometry = false; } void mitk::Geometry3D::TransferItkToVtkTransform() { // copy m_IndexToWorldTransform into m_VtkIndexToWorldTransform TransferItkTransformToVtkMatrix(m_IndexToWorldTransform.GetPointer(), m_VtkMatrix); m_VtkIndexToWorldTransform->Modified(); } void mitk::Geometry3D::TransferVtkToItkTransform() { TransferVtkMatrixToItkTransform(m_VtkMatrix, m_IndexToWorldTransform.GetPointer()); CopySpacingFromTransform(m_IndexToWorldTransform, m_Spacing, m_FloatSpacing); vtk2itk(m_IndexToWorldTransform->GetOffset(), m_Origin); } void mitk::Geometry3D::SetIndexToWorldTransformByVtkMatrix(vtkMatrix4x4* vtkmatrix) { m_VtkMatrix->DeepCopy(vtkmatrix); TransferVtkToItkTransform(); } void mitk::Geometry3D::SetTimeBounds(const TimeBounds& timebounds) { if(m_TimeBounds != timebounds) { m_TimeBounds = timebounds; Modified(); } } void mitk::Geometry3D::SetFloatBounds(const float bounds[6]) { mitk::BoundingBox::BoundsArrayType b; const float *input = bounds; int i=0; for(mitk::BoundingBox::BoundsArrayType::Iterator it = b.Begin(); i < 6 ;++i) *it++ = (mitk::ScalarType)*input++; SetBoundsArray(b, m_BoundingBox); } void mitk::Geometry3D::SetFloatBounds(const double bounds[6]) { mitk::BoundingBox::BoundsArrayType b; const double *input = bounds; int i=0; for(mitk::BoundingBox::BoundsArrayType::Iterator it = b.Begin(); i < 6 ;++i) *it++ = (mitk::ScalarType)*input++; SetBoundsArray(b, m_BoundingBox); } void mitk::Geometry3D::SetParametricBounds(const BoundingBox::BoundsArrayType& bounds) { SetBoundsArray(bounds, m_ParametricBoundingBox); } void mitk::Geometry3D::WorldToIndex(const mitk::Point3D &pt_mm, mitk::Point3D &pt_units) const { BackTransform(pt_mm, pt_units); } void mitk::Geometry3D::IndexToWorld(const mitk::Point3D &pt_units, mitk::Point3D &pt_mm) const { pt_mm = m_IndexToWorldTransform->TransformPoint(pt_units); } void mitk::Geometry3D::WorldToIndex(const mitk::Point3D & /*atPt3d_mm*/, const mitk::Vector3D &vec_mm, mitk::Vector3D &vec_units) const { MITK_WARN<<"Warning! Call of the deprecated function Geometry3D::WorldToIndex(point, vec, vec). Use Geometry3D::WorldToIndex(vec, vec) instead!"; //BackTransform(atPt3d_mm, vec_mm, vec_units); this->WorldToIndex(vec_mm, vec_units); } void mitk::Geometry3D::WorldToIndex( const mitk::Vector3D &vec_mm, mitk::Vector3D &vec_units) const { BackTransform( vec_mm, vec_units); } void mitk::Geometry3D::IndexToWorld(const mitk::Point3D &/*atPt3d_units*/, const mitk::Vector3D &vec_units, mitk::Vector3D &vec_mm) const { MITK_WARN<<"Warning! Call of the deprecated function Geometry3D::IndexToWorld(point, vec, vec). Use Geometry3D::IndexToWorld(vec, vec) instead!"; //vec_mm = m_IndexToWorldTransform->TransformVector(vec_units); this->IndexToWorld(vec_units, vec_mm); } void mitk::Geometry3D::IndexToWorld(const mitk::Vector3D &vec_units, mitk::Vector3D &vec_mm) const { vec_mm = m_IndexToWorldTransform->TransformVector(vec_units); } void mitk::Geometry3D::SetIndexToWorldTransform(mitk::AffineTransform3D* transform) { if(m_IndexToWorldTransform.GetPointer() != transform) { - Superclass::SetIndexToWorldTransform(transform); + m_IndexToWorldTransform = transform; CopySpacingFromTransform(m_IndexToWorldTransform, m_Spacing, m_FloatSpacing); vtk2itk(m_IndexToWorldTransform->GetOffset(), m_Origin); TransferItkToVtkTransform(); Modified(); } } -mitk::AffineGeometryFrame3D::Pointer mitk::Geometry3D::Clone() const +mitk::Geometry3D::Pointer mitk::Geometry3D::Clone() const { Self::Pointer newGeometry = new Self(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } /* void mitk::Geometry3D::InitializeGeometry(Geometry3D * newGeometry) const { Superclass::InitializeGeometry(newGeometry); newGeometry->SetTimeBounds(m_TimeBounds); //newGeometry->GetVtkTransform()->SetMatrix(m_VtkIndexToWorldTransform->GetMatrix()); IW //newGeometry->TransferVtkToItkTransform(); //MH newGeometry->SetFrameOfReferenceID(GetFrameOfReferenceID()); newGeometry->m_ImageGeometry = m_ImageGeometry; } */ void mitk::Geometry3D::SetExtentInMM(int direction, ScalarType extentInMM) { ScalarType len = GetExtentInMM(direction); if(fabs(len - extentInMM)>=mitk::eps) { AffineTransform3D::MatrixType::InternalMatrixType vnlmatrix; vnlmatrix = m_IndexToWorldTransform->GetMatrix().GetVnlMatrix(); if(len>extentInMM) vnlmatrix.set_column(direction, vnlmatrix.get_column(direction)/len*extentInMM); else vnlmatrix.set_column(direction, vnlmatrix.get_column(direction)*extentInMM/len); Matrix3D matrix; matrix = vnlmatrix; m_IndexToWorldTransform->SetMatrix(matrix); Modified(); } } mitk::BoundingBox::Pointer mitk::Geometry3D::CalculateBoundingBoxRelativeToTransform(const mitk::AffineTransform3D* transform) const { mitk::BoundingBox::PointsContainer::Pointer pointscontainer=mitk::BoundingBox::PointsContainer::New(); mitk::BoundingBox::PointIdentifier pointid=0; unsigned char i; if(transform!=NULL) { mitk::AffineTransform3D::Pointer inverse = mitk::AffineTransform3D::New(); transform->GetInverse(inverse); for(i=0; i<8; ++i) pointscontainer->InsertElement( pointid++, inverse->TransformPoint( GetCornerPoint(i) )); } else { for(i=0; i<8; ++i) pointscontainer->InsertElement( pointid++, GetCornerPoint(i) ); } mitk::BoundingBox::Pointer result = mitk::BoundingBox::New(); result->SetPoints(pointscontainer); result->ComputeBoundingBox(); return result; } #include void mitk::Geometry3D::ExecuteOperation(Operation* operation) { vtkTransform *vtktransform = vtkTransform::New(); vtktransform->SetMatrix(m_VtkMatrix); switch (operation->GetOperationType()) { case OpNOTHING: break; case OpMOVE: { mitk::PointOperation *pointOp = dynamic_cast(operation); if (pointOp == NULL) { //mitk::StatusBar::GetInstance()->DisplayText("received wrong type of operation!See mitkAffineInteractor.cpp", 10000); return; } mitk::Point3D newPos = pointOp->GetPoint(); ScalarType data[3]; vtktransform->GetPosition(data); vtktransform->PostMultiply(); vtktransform->Translate(newPos[0], newPos[1], newPos[2]); vtktransform->PreMultiply(); break; } case OpSCALE: { mitk::PointOperation *pointOp = dynamic_cast(operation); if (pointOp == NULL) { //mitk::StatusBar::GetInstance()->DisplayText("received wrong type of operation!See mitkAffineInteractor.cpp", 10000); return; } mitk::Point3D newScale = pointOp->GetPoint(); ScalarType data[3]; /* calculate new scale: newscale = oldscale * (oldscale + scaletoadd)/oldscale */ data[0] = 1 + (newScale[0] / GetMatrixColumn(0).magnitude()); data[1] = 1 + (newScale[1] / GetMatrixColumn(1).magnitude()); data[2] = 1 + (newScale[2] / GetMatrixColumn(2).magnitude()); mitk::Point3D center = const_cast(m_BoundingBox.GetPointer())->GetCenter(); ScalarType pos[3]; vtktransform->GetPosition(pos); vtktransform->PostMultiply(); vtktransform->Translate(-pos[0], -pos[1], -pos[2]); vtktransform->Translate(-center[0], -center[1], -center[2]); vtktransform->PreMultiply(); vtktransform->Scale(data[0], data[1], data[2]); vtktransform->PostMultiply(); vtktransform->Translate(+center[0], +center[1], +center[2]); vtktransform->Translate(pos[0], pos[1], pos[2]); vtktransform->PreMultiply(); break; } case OpROTATE: { mitk::RotationOperation *rotateOp = dynamic_cast(operation); if (rotateOp == NULL) { //mitk::StatusBar::GetInstance()->DisplayText("received wrong type of operation!See mitkAffineInteractor.cpp", 10000); return; } Vector3D rotationVector = rotateOp->GetVectorOfRotation(); Point3D center = rotateOp->GetCenterOfRotation(); ScalarType angle = rotateOp->GetAngleOfRotation(); vtktransform->PostMultiply(); vtktransform->Translate(-center[0], -center[1], -center[2]); vtktransform->RotateWXYZ(angle, rotationVector[0], rotationVector[1], rotationVector[2]); vtktransform->Translate(center[0], center[1], center[2]); vtktransform->PreMultiply(); break; } case OpRESTOREPLANEPOSITION: { //Copy necessary to avoid vtk warning vtkMatrix4x4* matrix = vtkMatrix4x4::New(); TransferItkTransformToVtkMatrix(dynamic_cast(operation)->GetTransform().GetPointer(), matrix); vtktransform->SetMatrix(matrix); break; } default: vtktransform->Delete(); return; } m_VtkMatrix->DeepCopy(vtktransform->GetMatrix()); TransferVtkToItkTransform(); Modified(); vtktransform->Delete(); } void mitk::Geometry3D::BackTransform(const mitk::Point3D &in, mitk::Point3D& out) const { ScalarType temp[3]; unsigned int i, j; const TransformType::OffsetType& offset = m_IndexToWorldTransform->GetOffset(); // Remove offset for (j = 0; j < 3; j++) { temp[j] = in[j] - offset[j]; } // Get WorldToIndex transform if (m_IndexToWorldTransformLastModified != m_IndexToWorldTransform->GetMTime()) { m_InvertedTransform = TransformType::New(); if (!m_IndexToWorldTransform->GetInverse( m_InvertedTransform.GetPointer() )) { itkExceptionMacro( "Internal ITK matrix inversion error, cannot proceed." ); } m_IndexToWorldTransformLastModified = m_IndexToWorldTransform->GetMTime(); } // Check for valid matrix inversion const TransformType::MatrixType& inverse = m_InvertedTransform->GetMatrix(); if(inverse.GetVnlMatrix().has_nans()) { itkExceptionMacro( "Internal ITK matrix inversion error, cannot proceed. Matrix was: " << std::endl << m_IndexToWorldTransform->GetMatrix() << "Suggested inverted matrix is:" << std::endl << inverse ); } // Transform point for (i = 0; i < 3; i++) { out[i] = 0.0; for (j = 0; j < 3; j++) { out[i] += inverse[i][j]*temp[j]; } } } void mitk::Geometry3D::BackTransform(const mitk::Point3D &/*at*/, const mitk::Vector3D &in, mitk::Vector3D& out) const { MITK_INFO<<"Warning! Call of the deprecated function Geometry3D::BackTransform(point, vec, vec). Use Geometry3D::BackTransform(vec, vec) instead!"; //// Get WorldToIndex transform //if (m_IndexToWorldTransformLastModified != m_IndexToWorldTransform->GetMTime()) //{ // m_InvertedTransform = TransformType::New(); // if (!m_IndexToWorldTransform->GetInverse( m_InvertedTransform.GetPointer() )) // { // itkExceptionMacro( "Internal ITK matrix inversion error, cannot proceed." ); // } // m_IndexToWorldTransformLastModified = m_IndexToWorldTransform->GetMTime(); //} //// Check for valid matrix inversion //const TransformType::MatrixType& inverse = m_InvertedTransform->GetMatrix(); //if(inverse.GetVnlMatrix().has_nans()) //{ // itkExceptionMacro( "Internal ITK matrix inversion error, cannot proceed. Matrix was: " << std::endl // << m_IndexToWorldTransform->GetMatrix() << "Suggested inverted matrix is:" << std::endl // << inverse ); //} //// Transform vector //for (unsigned int i = 0; i < 3; i++) //{ // out[i] = 0.0; // for (unsigned int j = 0; j < 3; j++) // { // out[i] += inverse[i][j]*in[j]; // } //} this->BackTransform(in, out); } void mitk::Geometry3D::BackTransform(const mitk::Vector3D& in, mitk::Vector3D& out) const { // Get WorldToIndex transform if (m_IndexToWorldTransformLastModified != m_IndexToWorldTransform->GetMTime()) { m_InvertedTransform = TransformType::New(); if (!m_IndexToWorldTransform->GetInverse( m_InvertedTransform.GetPointer() )) { itkExceptionMacro( "Internal ITK matrix inversion error, cannot proceed." ); } m_IndexToWorldTransformLastModified = m_IndexToWorldTransform->GetMTime(); } // Check for valid matrix inversion const TransformType::MatrixType& inverse = m_InvertedTransform->GetMatrix(); if(inverse.GetVnlMatrix().has_nans()) { itkExceptionMacro( "Internal ITK matrix inversion error, cannot proceed. Matrix was: " << std::endl << m_IndexToWorldTransform->GetMatrix() << "Suggested inverted matrix is:" << std::endl << inverse ); } // Transform vector for (unsigned int i = 0; i < 3; i++) { out[i] = 0.0; for (unsigned int j = 0; j < 3; j++) { out[i] += inverse[i][j]*in[j]; } } } const float* mitk::Geometry3D::GetFloatSpacing() const { return m_FloatSpacing; } void mitk::Geometry3D::SetSpacing(const mitk::Vector3D& aSpacing) { if(mitk::Equal(m_Spacing, aSpacing) == false) { assert(aSpacing[0]>0 && aSpacing[1]>0 && aSpacing[2]>0); m_Spacing = aSpacing; AffineTransform3D::MatrixType::InternalMatrixType vnlmatrix; vnlmatrix = m_IndexToWorldTransform->GetMatrix().GetVnlMatrix(); mitk::VnlVector col; col = vnlmatrix.get_column(0); col.normalize(); col*=aSpacing[0]; vnlmatrix.set_column(0, col); col = vnlmatrix.get_column(1); col.normalize(); col*=aSpacing[1]; vnlmatrix.set_column(1, col); col = vnlmatrix.get_column(2); col.normalize(); col*=aSpacing[2]; vnlmatrix.set_column(2, col); Matrix3D matrix; matrix = vnlmatrix; AffineTransform3D::Pointer transform = AffineTransform3D::New(); transform->SetMatrix(matrix); transform->SetOffset(m_IndexToWorldTransform->GetOffset()); SetIndexToWorldTransform(transform.GetPointer()); itk2vtk(m_Spacing, m_FloatSpacing); } } void mitk::Geometry3D::SetOrigin(const Point3D & origin) { if(origin!=GetOrigin()) { m_Origin = origin; m_IndexToWorldTransform->SetOffset(m_Origin.GetVectorFromOrigin()); Modified(); TransferItkToVtkTransform(); } } void mitk::Geometry3D::Translate(const Vector3D & vector) { if((vector[0] != 0) || (vector[1] != 0) || (vector[2] != 0)) { this->SetOrigin(m_Origin + vector); // m_IndexToWorldTransform->SetOffset(m_IndexToWorldTransform->GetOffset()+vector); // TransferItkToVtkTransform(); // Modified(); } } void mitk::Geometry3D::SetIdentity() { m_IndexToWorldTransform->SetIdentity(); m_Origin.Fill(0); Modified(); TransferItkToVtkTransform(); } void mitk::Geometry3D::Compose( const mitk::AffineGeometryFrame3D::TransformType * other, bool pre ) { m_IndexToWorldTransform->Compose(other, pre); CopySpacingFromTransform(m_IndexToWorldTransform, m_Spacing, m_FloatSpacing); vtk2itk(m_IndexToWorldTransform->GetOffset(), m_Origin); Modified(); TransferItkToVtkTransform(); } void mitk::Geometry3D::Compose( const vtkMatrix4x4 * vtkmatrix, bool pre ) { mitk::AffineGeometryFrame3D::TransformType::Pointer itkTransform = mitk::AffineGeometryFrame3D::TransformType::New(); TransferVtkMatrixToItkTransform(vtkmatrix, itkTransform.GetPointer()); Compose(itkTransform, pre); } const std::string mitk::Geometry3D::GetTransformAsString( TransformType* transformType ) { std::ostringstream out; out << '['; for( int i=0; i<3; ++i ) { out << '['; for( int j=0; j<3; ++j ) out << transformType->GetMatrix().GetVnlMatrix().get(i, j) << ' '; out << ']'; } out << "]["; for( int i=0; i<3; ++i ) out << transformType->GetOffset()[i] << ' '; out << "]\0"; return out.str(); } void mitk::Geometry3D::PrintSelf(std::ostream& os, itk::Indent indent) const { os << indent << " IndexToWorldTransform: "; if(m_IndexToWorldTransform.IsNull()) os << "NULL" << std::endl; else { // from itk::MatrixOffsetTransformBase unsigned int i, j; os << std::endl; os << indent << "Matrix: " << std::endl; for (i = 0; i < 3; i++) { os << indent.GetNextIndent(); for (j = 0; j < 3; j++) { os << m_IndexToWorldTransform->GetMatrix()[i][j] << " "; } os << std::endl; } os << indent << "Offset: " << m_IndexToWorldTransform->GetOffset() << std::endl; os << indent << "Center: " << m_IndexToWorldTransform->GetCenter() << std::endl; os << indent << "Translation: " << m_IndexToWorldTransform->GetTranslation() << std::endl; os << indent << "Inverse: " << std::endl; for (i = 0; i < 3; i++) { os << indent.GetNextIndent(); for (j = 0; j < 3; j++) { os << m_IndexToWorldTransform->GetInverseMatrix()[i][j] << " "; } os << std::endl; } // from itk::ScalableAffineTransform os << indent << "Scale : "; for (i = 0; i < 3; i++) { os << m_IndexToWorldTransform->GetScale()[i] << " "; } os << std::endl; } os << indent << " BoundingBox: "; if(m_BoundingBox.IsNull()) os << "NULL" << std::endl; else { os << indent << "( "; for (unsigned int i=0; i<3; i++) { os << m_BoundingBox->GetBounds()[2*i] << "," << m_BoundingBox->GetBounds()[2*i+1] << " "; } os << " )" << std::endl; } os << indent << " Origin: " << m_Origin << std::endl; os << indent << " ImageGeometry: " << m_ImageGeometry << std::endl; os << indent << " Spacing: " << m_Spacing << std::endl; os << indent << " TimeBounds: " << m_TimeBounds << std::endl; } mitk::Point3D mitk::Geometry3D::GetCornerPoint(int id) const { assert(id >= 0); assert(m_BoundingBox.IsNotNull()); BoundingBox::BoundsArrayType bounds = m_BoundingBox->GetBounds(); Point3D cornerpoint; switch(id) { case 0: FillVector3D(cornerpoint, bounds[0],bounds[2],bounds[4]); break; case 1: FillVector3D(cornerpoint, bounds[0],bounds[2],bounds[5]); break; case 2: FillVector3D(cornerpoint, bounds[0],bounds[3],bounds[4]); break; case 3: FillVector3D(cornerpoint, bounds[0],bounds[3],bounds[5]); break; case 4: FillVector3D(cornerpoint, bounds[1],bounds[2],bounds[4]); break; case 5: FillVector3D(cornerpoint, bounds[1],bounds[2],bounds[5]); break; case 6: FillVector3D(cornerpoint, bounds[1],bounds[3],bounds[4]); break; case 7: FillVector3D(cornerpoint, bounds[1],bounds[3],bounds[5]); break; default: { itkExceptionMacro(<<"A cube only has 8 corners. These are labeled 0-7."); return NULL; } } if(m_ImageGeometry) { // Here i have to adjust the 0.5 offset manually, because the cornerpoint is the corner of the // bounding box. The bounding box itself is no image, so it is corner-based FillVector3D(cornerpoint, cornerpoint[0]-0.5, cornerpoint[1]-0.5, cornerpoint[2]-0.5); } return m_IndexToWorldTransform->TransformPoint(cornerpoint); } mitk::Point3D mitk::Geometry3D::GetCornerPoint(bool xFront, bool yFront, bool zFront) const { assert(m_BoundingBox.IsNotNull()); BoundingBox::BoundsArrayType bounds = m_BoundingBox->GetBounds(); Point3D cornerpoint; cornerpoint[0] = (xFront ? bounds[0] : bounds[1]); cornerpoint[1] = (yFront ? bounds[2] : bounds[3]); cornerpoint[2] = (zFront ? bounds[4] : bounds[5]); if(m_ImageGeometry) { // Here i have to adjust the 0.5 offset manually, because the cornerpoint is the corner of the // bounding box. The bounding box itself is no image, so it is corner-based FillVector3D(cornerpoint, cornerpoint[0]-0.5, cornerpoint[1]-0.5, cornerpoint[2]-0.5); } return m_IndexToWorldTransform->TransformPoint(cornerpoint); } void mitk::Geometry3D::ResetSubTransforms() { } void mitk::Geometry3D::ChangeImageGeometryConsideringOriginOffset( const bool isAnImageGeometry ) { // If Geometry is switched to ImageGeometry, you have to put an offset to the origin, because // imageGeometries origins are pixel-center-based // ... and remove the offset, if you switch an imageGeometry back to a normal geometry // For more information please see the Geometry documentation page if(m_ImageGeometry == isAnImageGeometry) return; const BoundingBox::BoundsArrayType& boundsarray = this->GetBoundingBox()->GetBounds(); Point3D originIndex; FillVector3D(originIndex, boundsarray[0], boundsarray[2], boundsarray[4]); if(isAnImageGeometry == true) FillVector3D( originIndex, originIndex[0] + 0.5, originIndex[1] + 0.5, originIndex[2] + 0.5 ); else FillVector3D( originIndex, originIndex[0] - 0.5, originIndex[1] - 0.5, originIndex[2] - 0.5 ); Point3D originWorld; originWorld = GetIndexToWorldTransform() ->TransformPoint( originIndex ); // instead could as well call IndexToWorld(originIndex,originWorld); SetOrigin(originWorld); this->SetImageGeometry(isAnImageGeometry); } bool mitk::Geometry3D::Is2DConvertable() { bool isConvertableWithoutLoss = true; do { if (this->GetSpacing()[2] != 1) { isConvertableWithoutLoss = false; break; } if (this->GetOrigin()[2] != 0) { isConvertableWithoutLoss = false; break; } mitk::Vector3D col0, col1, col2; col0.Set_vnl_vector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(0)); col1.Set_vnl_vector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(1)); col2.Set_vnl_vector(this->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(2)); if ((col0[2] != 0) || (col1[2] != 0) || (col2[0] != 0) || (col2[1] != 0) || (col2[2] != 1)) { isConvertableWithoutLoss = false; break; } } while (0); return isConvertableWithoutLoss; } + +/** Initialize the geometry */ +void +mitk::Geometry3D::InitializeGeometry(Geometry3D* newGeometry) const +{ + newGeometry->SetBounds(m_BoundingBox->GetBounds()); + // we have to create a new transform!! + + if(m_IndexToWorldTransform) + { + TransformType::Pointer indexToWorldTransform = TransformType::New(); + indexToWorldTransform->SetCenter( m_IndexToWorldTransform->GetCenter() ); + indexToWorldTransform->SetMatrix( m_IndexToWorldTransform->GetMatrix() ); + indexToWorldTransform->SetOffset( m_IndexToWorldTransform->GetOffset() ); + newGeometry->SetIndexToWorldTransform(indexToWorldTransform); + } +} + +void mitk::Geometry3D::SetBoundsArray(const BoundsArrayType& bounds, BoundingBoxPointer& boundingBox) +{ + boundingBox = BoundingBoxType::New(); + + BoundingBoxType::PointsContainer::Pointer pointscontainer = + BoundingBoxType::PointsContainer::New(); + BoundingBoxType::PointType p; + BoundingBoxType::PointIdentifier pointid; + + for(pointid=0; pointid<2;++pointid) + { + unsigned int i; + for(i=0; iInsertElement(pointid, p); + } + + boundingBox->SetPoints(pointscontainer); + boundingBox->ComputeBoundingBox(); + this->Modified(); +} + + +/** Set the bounds */ +void mitk::Geometry3D::SetBounds(const BoundsArrayType& bounds) +{ + SetBoundsArray(bounds, m_BoundingBox); +} \ No newline at end of file diff --git a/Core/Code/DataManagement/mitkGeometry3D.h b/Core/Code/DataManagement/mitkGeometry3D.h index 3734994d50..51d9b05443 100644 --- a/Core/Code/DataManagement/mitkGeometry3D.h +++ b/Core/Code/DataManagement/mitkGeometry3D.h @@ -1,670 +1,710 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef GEOMETRY3D_H_HEADER_INCLUDED_C1EBD0AD #define GEOMETRY3D_H_HEADER_INCLUDED_C1EBD0AD #include #include #include "mitkVector.h" #include "mitkOperationActor.h" #include #include #include #include +#include "itkScalableAffineTransform.h" +#include "itkBoundingBox.h" class vtkLinearTransform; class vtkMatrixToLinearTransform; class vtkMatrix4x4; namespace mitk { //##Documentation //## @brief Standard 3D-BoundingBox typedef //## //## Standard 3D-BoundingBox typedef to get rid of template arguments (3D, type). typedef itk::BoundingBox BoundingBox; //##Documentation //## @brief Standard typedef for time-bounds typedef itk::FixedArray TimeBounds; typedef itk::FixedArray FixedArrayType; -typedef itk::AffineGeometryFrame AffineGeometryFrame3D; +typedef itk::AffineGeometryFrame AffineGeometryFrame3D; + //##Documentation //## @brief Describes the geometry of a data object //## //## At least, it can return the bounding box of the data object. //## //## The class holds //## \li a bounding box which is axes-parallel in intrinsic coordinates //## (often integer indices of pixels), to be accessed by //## GetBoundingBox() //## \li a transform to convert intrinsic coordinates into a //## world-coordinate system with coordinates in millimeters //## and milliseconds (all are floating point values), to //## be accessed by GetIndexToWorldTransform() //## \li a life span, i.e. a bounding box in time in ms (with //## start and end time), to be accessed by GetTimeBounds(). //## The default is minus infinity to plus infinity. //## //## Geometry3D and its sub-classes allow converting between //## intrinsic coordinates (called index or unit coordinates) //## and world-coordinates (called world or mm coordinates), //## e.g. WorldToIndex. //## In case you need integer index coordinates, provide an //## mitk::Index3D (or itk::Index) as target variable to //## WorldToIndex, otherwise you will get a continuous index //## (floating point values). //## //## An important sub-class is SlicedGeometry3D, which descibes //## data objects consisting of slices, e.g., objects of type Image. //## Conversions between world coordinates (in mm) and unit coordinates //## (e.g., pixels in the case of an Image) can be performed. //## //## For more information on related classes, see \ref Geometry. //## //## Geometry3D instances referring to an Image need a slightly //## different definition of corners, see SetImageGeometry. This //## is usualy automatically called by Image. //## //## Geometry3D have to be initialized in the method GenerateOutputInformation() //## of BaseProcess (or CopyInformation/ UpdateOutputInformation of BaseData, //## if possible, e.g., by analyzing pic tags in Image) subclasses. See also //## itk::ProcessObject::GenerateOutputInformation(), //## itk::DataObject::CopyInformation() and //## itk::DataObject::UpdateOutputInformation(). //## //## Rule: everything is in mm (ms) if not stated otherwise. //## @ingroup Geometry -class MITK_CORE_EXPORT Geometry3D : public AffineGeometryFrame3D, public OperationActor +class MITK_CORE_EXPORT Geometry3D : public itk::Object, public OperationActor { public: - mitkClassMacro(Geometry3D, AffineGeometryFrame3D); + mitkClassMacro(Geometry3D, itk::Object); typedef itk::QuaternionRigidTransform< ScalarType > QuaternionTransformType; typedef QuaternionTransformType::VnlQuaternionType VnlQuaternionType; /** Method for creation through the object factory. */ itkNewMacro(Self); +typedef itk::ScalableAffineTransform TransformType; +typedef itk::BoundingBox BoundingBoxType; +typedef BoundingBoxType::BoundsArrayType BoundsArrayType; +typedef BoundingBoxType::Pointer BoundingBoxPointer; + // a bit of a misuse, but we want only doxygen to see the following: #ifdef DOXYGEN_SKIP //##Documentation //## @brief Get the transformation used to convert from index //## to world coordinates itkGetObjectMacro(IndexToWorldTransform, AffineTransform3D); #endif //## @brief Set the transformation used to convert from index //## to world coordinates virtual void SetIndexToWorldTransform(mitk::AffineTransform3D* transform); //##Documentation //## @brief Convenience method for setting the ITK transform //## (m_IndexToWorldTransform) via an vtkMatrix4x4 //## \sa SetIndexToWorldTransform virtual void SetIndexToWorldTransformByVtkMatrix(vtkMatrix4x4* vtkmatrix); #ifdef DOXYGEN_SKIP //##Documentation //## @brief Get bounding box (in index/unit coordinates) itkGetConstObjectMacro(BoundingBox, BoundingBoxType); //##Documentation //## @brief Get bounding box (in index/unit coordinates) as a BoundsArrayType const BoundsArrayType GetBounds() const { assert(m_BoundingBox.IsNotNull()); return m_BoundingBox->GetBounds(); } +#endif //##Documentation //## \brief Set the bounding box (in index/unit coordinates) //## //## Only possible via the BoundsArray to make clear that a //## copy of the bounding-box is stored, not a reference to it. -virtual void SetBounds(const BoundsArrayType& bounds); -#endif + virtual void SetBounds(const BoundsArrayType& bounds); //##Documentation //## @brief Set the bounding box (in index/unit coordinates) via a float array virtual void SetFloatBounds(const float bounds[6]); //##Documentation //## @brief Set the bounding box (in index/unit coordinates) via a double array virtual void SetFloatBounds(const double bounds[6]); //##Documentation //## @brief When switching from an Image Geometry to a normal Geometry (and the other way around), you have to change the origin as well (See Geometry Documentation)! This function will change the "isImageGeometry" bool flag and changes the origin respectively. virtual void ChangeImageGeometryConsideringOriginOffset( const bool isAnImageGeometry ); //##Documentation //## @brief Checks, if the given geometry can be converted to 2D without information loss //## e.g. when a 2D image is saved, the matrix is usually cropped to 2x2, and when you load it back to MITK //## it will be filled with standard values. This function checks, if information would be lost during this //## procedure virtual bool Is2DConvertable(); //##Documentation //## @brief Get the time bounds (in ms) itkGetConstReferenceMacro(TimeBounds, TimeBounds); //##Documentation //## @brief Set the time bounds (in ms) virtual void SetTimeBounds(const TimeBounds& timebounds); //##Documentation //## @brief Get the position of the corner number \a id (in world coordinates) //## //## See SetImageGeometry for how a corner is defined on images. Point3D GetCornerPoint(int id) const; //##Documentation //## @brief Get the position of a corner (in world coordinates) //## //## See SetImageGeometry for how a corner is defined on images. Point3D GetCornerPoint(bool xFront=true, bool yFront=true, bool zFront=true) const; //##Documentation //## @brief Get vector along bounding-box in the specified @a direction in mm //## //## The length of the vector is the size of the bounding-box in the //## specified @a direction in mm //## \sa GetMatrixColumn Vector3D GetAxisVector(unsigned int direction) const { Vector3D frontToBack; frontToBack.Set_vnl_vector(m_IndexToWorldTransform->GetMatrix().GetVnlMatrix().get_column(direction)); frontToBack *= GetExtent(direction); return frontToBack; } //##Documentation //## @brief Get the center of the bounding-box in mm //## Point3D GetCenter() const { assert(m_BoundingBox.IsNotNull()); return m_IndexToWorldTransform->TransformPoint(m_BoundingBox->GetCenter()); } //##Documentation //## @brief Get the squared length of the diagonal of the bounding-box in mm //## double GetDiagonalLength2() const { Vector3D diagonalvector = GetCornerPoint()-GetCornerPoint(false, false, false); return diagonalvector.GetSquaredNorm(); } //##Documentation //## @brief Get the length of the diagonal of the bounding-box in mm //## double GetDiagonalLength() const { return sqrt(GetDiagonalLength2()); } //##Documentation //## @brief Get a VnlVector along bounding-box in the specified //## @a direction, length is spacing //## //## \sa GetAxisVector VnlVector GetMatrixColumn(unsigned int direction) const { return m_IndexToWorldTransform->GetMatrix().GetVnlMatrix().get_column(direction); } #ifdef DOXYGEN_SKIP //##Documentation //## @brief Get the extent of the bounding box (in index/unit coordinates) //## //## To access the extent in mm use GetExtentInMM ScalarType GetExtent(unsigned int direction) const; #endif //##Documentation //## @brief Get the extent of the bounding-box in the specified @a direction in mm //## //## Equals length of GetAxisVector(direction). ScalarType GetExtentInMM(int direction) const { return m_IndexToWorldTransform->GetMatrix().GetVnlMatrix().get_column(direction).magnitude()*GetExtent(direction); } //##Documentation //## @brief Set the extent of the bounding-box in the specified @a direction in mm //## //## @note This changes the matrix in the transform, @a not the bounds, which are given in units! virtual void SetExtentInMM(int direction, ScalarType extentInMM); //##Documentation //## @brief Get the m_IndexToWorldTransform as a vtkLinearTransform vtkLinearTransform* GetVtkTransform() const { return (vtkLinearTransform*)m_VtkIndexToWorldTransform; } //##Documentation //## @brief Set the origin, i.e. the upper-left corner of the plane //## virtual void SetOrigin(const Point3D& origin); //##Documentation //## @brief Translate the origin by a vector //## virtual void Translate(const Vector3D& vector); //##Documentation //## @brief Set the transform to identity //## virtual void SetIdentity(); //##Documentation //## @brief Compose new IndexToWorldTransform with a given transform. //## //## This method composes m_IndexToWorldTransform with another transform, //## modifying self to be the composition of self and other. //## If the argument pre is true, then other is precomposed with self; //## that is, the resulting transformation consists of first applying //## other to the source, followed by self. If pre is false or omitted, //## then other is post-composed with self; that is the resulting //## transformation consists of first applying self to the source, //## followed by other. virtual void Compose( const AffineGeometryFrame3D::TransformType * other, bool pre = 0 ); //##Documentation //## @brief Compose new IndexToWorldTransform with a given vtkMatrix4x4. //## //## Converts the vtkMatrix4x4 into a itk-transform and calls the previous method. virtual void Compose( const vtkMatrix4x4 * vtkmatrix, bool pre = 0 ); //##Documentation //## @brief Get the origin, e.g. the upper-left corner of the plane const Point3D& GetOrigin() const { return m_Origin; } //##Documentation //## @brief Get the origin as VnlVector //## //## \sa GetOrigin VnlVector GetOriginVnl() const { return const_cast(this)->m_Origin.Get_vnl_vector(); } //##Documentation //## @brief Convert world coordinates (in mm) of a \em point to (continuous!) index coordinates //## \warning If you need (discrete) integer index coordinates (e.g., for iterating easily over an image), //## use WorldToIndex(const mitk::Point3D& pt_mm, itk::Index &index). //## For further information about coordinates types, please see the Geometry documentation void WorldToIndex(const mitk::Point3D& pt_mm, mitk::Point3D& pt_units) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em point to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation void IndexToWorld(const mitk::Point3D& pt_units, mitk::Point3D& pt_mm) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## @deprecated First parameter (Point3D) is not used. If possible, please use void WorldToIndex(const mitk::Vector3D& vec_mm, mitk::Vector3D& vec_units) const. //## For further information about coordinates types, please see the Geometry documentation void WorldToIndex(const mitk::Point3D& atPt3d_mm, const mitk::Vector3D& vec_mm, mitk::Vector3D& vec_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## For further information about coordinates types, please see the Geometry documentation void WorldToIndex(const mitk::Vector3D& vec_mm, mitk::Vector3D& vec_units) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## @deprecated First parameter (Point3D) is not used. If possible, please use void IndexToWorld(const mitk::Vector3D& vec_units, mitk::Vector3D& vec_mm) const. //## For further information about coordinates types, please see the Geometry documentation void IndexToWorld(const mitk::Point3D& atPt3d_units, const mitk::Vector3D& vec_units, mitk::Vector3D& vec_mm) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation void IndexToWorld(const mitk::Vector3D& vec_units, mitk::Vector3D& vec_mm) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em point to (discrete!) index coordinates. //## This method rounds to integer indices! //## For further information about coordinates types, please see the Geometry documentation template void WorldToIndex(const mitk::Point3D& pt_mm, itk::Index &index) const { typedef itk::Index IndexType; mitk::Point3D pt_units; this->WorldToIndex(pt_mm, pt_units); int i, dim=index.GetIndexDimension(); if(dim>3) { index.Fill(0); dim=3; } for(i=0;i( pt_units[i] ); index[i]=itk::Math::RoundHalfIntegerUp( pt_units[i] ); } } //##Documentation //## @brief Deprecated for use with ITK version 3.10 or newer. //## Convert world coordinates (in mm) of a \em point to //## ITK physical coordinates (in mm, but without a possible rotation) //## //## This method is useful if you have want to access an mitk::Image //## via an itk::Image. ITK v3.8 and older did not support rotated (tilted) //## images, i.e., ITK images are always parallel to the coordinate axes. //## When accessing a (possibly rotated) mitk::Image via an itk::Image //## the rotational part of the transformation in the Geometry3D is //## simply discarded; in other word: only the origin and spacing is //## used by ITK, not the complete matrix available in MITK. //## With WorldToItkPhysicalPoint you can convert an MITK world //## coordinate (including the rotation) into a coordinate that //## can be used with the ITK image as a ITK physical coordinate //## (excluding the rotation). template void WorldToItkPhysicalPoint(const mitk::Point3D& pt_mm, itk::Point& itkPhysicalPoint) const { mitk::vtk2itk(pt_mm, itkPhysicalPoint); } //##Documentation //## @brief Deprecated for use with ITK version 3.10 or newer. //## Convert ITK physical coordinates of a \em point (in mm, //## but without a rotation) into MITK world coordinates (in mm) //## //## For more information, see WorldToItkPhysicalPoint. template void ItkPhysicalPointToWorld(const itk::Point& itkPhysicalPoint, mitk::Point3D& pt_mm) const { mitk::vtk2itk(itkPhysicalPoint, pt_mm); } //##Documentation //## @brief Initialize the Geometry3D virtual void Initialize(); //##Documentation //## @brief Is this an ImageGeometry? //## //## For more information, see SetImageGeometry itkGetConstMacro(ImageGeometry, bool); //##Documentation //## @brief Define that this Geometry3D is refering to an Image //## //## A geometry referring to an Image needs a slightly different //## definition of the position of the corners (see GetCornerPoint). //## The position of a voxel is defined by the position of its center. //## If we would use the origin (position of the (center of) the first //## voxel) as a corner and display this point, it would seem to be //## \em not at the corner but a bit within the image. Even worse for //## the opposite corner of the image: here the corner would appear //## outside the image (by half of the voxel diameter). Thus, we have //## to correct for this and to be able to do that, we need to know //## that the Geometry3D is referring to an Image. itkSetMacro(ImageGeometry, bool); itkBooleanMacro(ImageGeometry); //##Documentation //## @brief Is this Geometry3D in a state that is valid? virtual bool IsValid() const { return m_Valid; } //##Documentation //## @brief Test whether the point \a p (world coordinates in mm) is //## inside the bounding box bool IsInside(const mitk::Point3D& p) const { mitk::Point3D index; WorldToIndex(p, index); return IsIndexInside(index); } //##Documentation //## @brief Test whether the point \a p ((continous!)index coordinates in units) is //## inside the bounding box bool IsIndexInside(const mitk::Point3D& index) const { bool inside = false; //if it is an image geometry, we need to convert the index to discrete values //this is done by applying the rounding function also used in WorldToIndex (see line 323) if (m_ImageGeometry) { mitk::Point3D discretIndex; discretIndex[0]=itk::Math::RoundHalfIntegerUp( index[0] ); discretIndex[1]=itk::Math::RoundHalfIntegerUp( index[1] ); discretIndex[2]=itk::Math::RoundHalfIntegerUp( index[2] ); inside = m_BoundingBox->IsInside(discretIndex); //we have to check if the index is at the upper border of each dimension, // because the boundingbox is not centerbased if (inside) { const BoundingBox::BoundsArrayType& bounds = m_BoundingBox->GetBounds(); if((discretIndex[0] == bounds[1]) || (discretIndex[1] == bounds[3]) || (discretIndex[2] == bounds[5])) inside = false; } } else inside = m_BoundingBox->IsInside(index); return inside; } //##Documentation //## @brief Convenience method for working with ITK indices template bool IsIndexInside(const itk::Index &index) const { int i, dim=index.GetIndexDimension(); Point3D pt_index; pt_index.Fill(0); for ( i = 0; i < dim; ++i ) { pt_index[i] = index[i]; } return IsIndexInside(pt_index); } //##Documentation //## @brief Get the spacing (size of a pixel). //## itkGetConstReferenceMacro(Spacing, mitk::Vector3D); //##Documentation //## @brief Get the spacing as a float[3] array. const float* GetFloatSpacing() const; //##Documentation //## @brief Set the spacing (m_Spacing) virtual void SetSpacing(const mitk::Vector3D& aSpacing); //##Documentation //## @brief Get the DICOM FrameOfReferenceID referring to the //## used world coordinate system itkGetConstMacro(FrameOfReferenceID, unsigned int); //##Documentation //## @brief Set the DICOM FrameOfReferenceID referring to the //## used world coordinate system itkSetMacro(FrameOfReferenceID, unsigned int); //##Documentation //## @brief Copy the ITK transform //## (m_IndexToWorldTransform) to the VTK transform //## \sa SetIndexToWorldTransform void TransferItkToVtkTransform(); //##Documentation //## @brief Copy the VTK transform //## to the ITK transform (m_IndexToWorldTransform) //## \sa SetIndexToWorldTransform void TransferVtkToItkTransform(); //##Documentation //## @brief Get the parametric bounding-box //## //## See AbstractTransformGeometry for an example usage of this. itkGetConstObjectMacro(ParametricBoundingBox, BoundingBox); //##Documentation //## @brief Get the parametric bounds //## //## See AbstractTransformGeometry for an example usage of this. const BoundingBox::BoundsArrayType& GetParametricBounds() const { assert(m_ParametricBoundingBox.IsNotNull()); return m_ParametricBoundingBox->GetBounds(); } //##Documentation //## @brief Get the parametric extent //## //## See AbstractTransformGeometry for an example usage of this. mitk::ScalarType GetParametricExtent(int direction) const { assert(direction>=0 && direction<3); assert(m_ParametricBoundingBox.IsNotNull()); BoundingBoxType::BoundsArrayType bounds = m_ParametricBoundingBox->GetBounds(); return bounds[direction*2+1]-bounds[direction*2]; } //##Documentation //## @brief Get the parametric extent in mm //## //## See AbstractTransformGeometry for an example usage of this. virtual mitk::ScalarType GetParametricExtentInMM(int direction) const { return GetExtentInMM(direction); } //##Documentation //## @brief Get the parametric transform //## //## See AbstractTransformGeometry for an example usage of this. virtual const Transform3D* GetParametricTransform() const { return m_IndexToWorldTransform; } //##Documentation //## @brief Calculates a bounding-box around the geometry relative //## to a coordinate system defined by a transform //## mitk::BoundingBox::Pointer CalculateBoundingBoxRelativeToTransform(const mitk::AffineTransform3D* transform) const; //##Documentation //## @brief clones the geometry //## //## Overwrite in all sub-classes. //## Normally looks like: //## \code //## Self::Pointer newGeometry = new Self(*this); //## newGeometry->UnRegister(); //## return newGeometry.GetPointer(); //## \endcode - virtual AffineGeometryFrame3D::Pointer Clone() const; + virtual Geometry3D::Pointer Clone() const; //##Documentation //##@brief executes affine operations (translate, rotate, scale) virtual void ExecuteOperation(Operation* operation); + + + /** Set/Get the IndexToWorldTransform */ + itkGetConstObjectMacro(IndexToWorldTransform, AffineTransform3D); + itkGetObjectMacro(IndexToWorldTransform, AffineTransform3D); + /** Get the bounding box */ + itkGetConstObjectMacro(BoundingBox, BoundingBoxType); + + const BoundsArrayType GetBounds() const + { + assert(m_BoundingBox.IsNotNull()); + return m_BoundingBox->GetBounds(); + } + + /** Get the extent of the bounding box */ + ScalarType GetExtent(unsigned int direction) const + { + assert(directionGetBounds(); + return bounds[direction*2+1]-bounds[direction*2]; + } protected: Geometry3D(); Geometry3D(const Geometry3D& other); + + virtual void InitializeGeometry(Self * newGeometry) const; + void SetBoundsArray(const BoundsArrayType& bounds, + BoundingBoxPointer& boundingBox); + + static const std::string GetTransformAsString( TransformType* transformType ); + static const unsigned int NDimensions = 3; virtual ~Geometry3D(); virtual void PrintSelf(std::ostream& os, itk::Indent indent) const; virtual void BackTransform(const mitk::Point3D& in, mitk::Point3D& out) const; //##Documentation //## @brief Deprecated virtual void BackTransform(const mitk::Point3D& at, const mitk::Vector3D& in, mitk::Vector3D& out) const; //Without redundant parameter Point3D virtual void BackTransform(const mitk::Vector3D& in, mitk::Vector3D& out) const; //##Documentation //## @brief Set the parametric bounds //## //## Protected in this class, made public in some sub-classes, e.g., //## ExternAbstractTransformGeometry. virtual void SetParametricBounds(const BoundingBox::BoundsArrayType& bounds); /** Resets sub-transforms that compose m_IndexToWorldTransform, by using * the current value of m_IndexToWorldTransform and setting the rotation * component to zero. */ virtual void ResetSubTransforms(); mutable mitk::BoundingBox::Pointer m_ParametricBoundingBox; mutable mitk::TimeBounds m_TimeBounds; vtkMatrix4x4* m_VtkMatrix; bool m_ImageGeometry; + AffineTransform3D::Pointer m_IndexToWorldTransform; + mutable BoundingBoxPointer m_BoundingBox; + //##Documentation //## @brief Spacing of the data. Only significant if the geometry describes //## an Image (m_ImageGeometry==true). mitk::Vector3D m_Spacing; bool m_Valid; unsigned int m_FrameOfReferenceID; static const std::string INDEX_TO_OBJECT_TRANSFORM; static const std::string OBJECT_TO_NODE_TRANSFORM; static const std::string INDEX_TO_NODE_TRANSFORM; static const std::string INDEX_TO_WORLD_TRANSFORM; private: mutable TransformType::Pointer m_InvertedTransform; mutable unsigned long m_IndexToWorldTransformLastModified; VnlQuaternionType m_RotationQuaternion; float m_FloatSpacing[3]; vtkMatrixToLinearTransform* m_VtkIndexToWorldTransform; //##Documentation //## @brief Origin, i.e. upper-left corner of the plane //## Point3D m_Origin; }; } // namespace mitk #endif /* GEOMETRY3D_H_HEADER_INCLUDED_C1EBD0AD */ diff --git a/Core/Code/DataManagement/mitkImage.cpp b/Core/Code/DataManagement/mitkImage.cpp index 147c9dc8af..e921a9dbe0 100644 --- a/Core/Code/DataManagement/mitkImage.cpp +++ b/Core/Code/DataManagement/mitkImage.cpp @@ -1,1290 +1,1290 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkImage.h" #include "mitkImageStatisticsHolder.h" #include "mitkPixelTypeMultiplex.h" #include #include #include #define FILL_C_ARRAY( _arr, _size, _value) for(unsigned int i=0u; i<_size; i++) \ { _arr[i] = _value; } mitk::Image::Image() : m_Dimension(0), m_Dimensions(NULL), m_ImageDescriptor(NULL), m_OffsetTable(NULL), m_CompleteData(NULL), m_ImageStatistics(NULL) { m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; FILL_C_ARRAY( m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); m_Initialized = false; } mitk::Image::Image(const Image &other) : SlicedData(other), m_Dimension(0), m_Dimensions(NULL), m_ImageDescriptor(NULL), m_OffsetTable(NULL), m_CompleteData(NULL), m_ImageStatistics(NULL) { m_Dimensions = new unsigned int[MAX_IMAGE_DIMENSIONS]; FILL_C_ARRAY( m_Dimensions, MAX_IMAGE_DIMENSIONS, 0u); this->Initialize( other.GetPixelType(), other.GetDimension(), other.GetDimensions()); //Since the above called "Initialize" method doesn't take the geometry into account we need to set it //here manually this->SetTimeGeometry(other.GetTimeGeometry()->Clone().GetPointer()); if (this->GetDimension() > 3) { const unsigned int time_steps = this->GetDimension(3); for (unsigned int i = 0u; i < time_steps; ++i) { ImageDataItemPointer volume = const_cast(other).GetVolumeData(i); this->SetVolume(volume->GetData(), i); } } else { ImageDataItemPointer volume = const_cast(other).GetVolumeData(0); this->SetVolume(volume->GetData(), 0); } } mitk::Image::~Image() { Clear(); m_ReferenceCountLock.Lock(); m_ReferenceCount = 3; m_ReferenceCountLock.Unlock(); m_ReferenceCountLock.Lock(); m_ReferenceCount = 0; m_ReferenceCountLock.Unlock(); if(m_OffsetTable != NULL) delete [] m_OffsetTable; if(m_ImageStatistics != NULL) delete m_ImageStatistics; } const mitk::PixelType mitk::Image::GetPixelType(int n) const { return this->m_ImageDescriptor->GetChannelTypeById(n); } unsigned int mitk::Image::GetDimension() const { return m_Dimension; } unsigned int mitk::Image::GetDimension(int i) const { if((i>=0) && (i<(int)m_Dimension)) return m_Dimensions[i]; return 1; } void* mitk::Image::GetData() { if(m_Initialized==false) { if(GetSource().IsNull()) return NULL; if(GetSource()->Updating()==false) GetSource()->UpdateOutputInformation(); } m_CompleteData=GetChannelData(); // update channel's data // if data was not available at creation point, the m_Data of channel descriptor is NULL // if data present, it won't be overwritten m_ImageDescriptor->GetChannelDescriptor(0).SetData(m_CompleteData->GetData()); return m_CompleteData->GetData(); } template void AccessPixel( const mitk::PixelType ptype, void* data, const unsigned int offset, double& value ) { value = 0.0; if( data == NULL ) return; if(ptype.GetBpe() != 24) { value = (double) (((T*) data)[ offset ]); } else { const unsigned int rgboffset = 3 * offset; double returnvalue = (((T*) data)[rgboffset ]); returnvalue += (((T*) data)[rgboffset + 1]); returnvalue += (((T*) data)[rgboffset + 2]); value = returnvalue; } } double mitk::Image::GetPixelValueByIndex(const mitk::Index3D &position, unsigned int timestep) { double value = 0; if (this->GetTimeSteps() < timestep) { timestep = this->GetTimeSteps(); } value = 0.0; const unsigned int* imageDims = this->m_ImageDescriptor->GetDimensions(); const mitk::PixelType ptype = this->m_ImageDescriptor->GetChannelTypeById(0); // Comparison ?>=0 not needed since all position[i] and timestep are unsigned int // (position[0]>=0 && position[1] >=0 && position[2]>=0 && timestep>=0) // bug-11978 : we still need to catch index with negative values if ( position[0] < 0 || position[1] < 0 || position[2] < 0 ) { MITK_WARN << "Given position ("<< position << ") is out of image range, returning 0." ; } // check if the given position is inside the index range of the image, the 3rd dimension needs to be compared only if the dimension is not 0 else if ( (unsigned int)position[0] >= imageDims[0] || (unsigned int)position[1] >= imageDims[1] || ( imageDims[2] && (unsigned int)position[2] >= imageDims[2] )) { MITK_WARN << "Given position ("<< position << ") is out of image range, returning 0." ; } else { const unsigned int offset = position[0] + position[1]*imageDims[0] + position[2]*imageDims[0]*imageDims[1] + timestep*imageDims[0]*imageDims[1]*imageDims[2]; mitkPixelTypeMultiplex3( AccessPixel, ptype, this->GetData(), offset, value ); } return value; } double mitk::Image::GetPixelValueByWorldCoordinate(const mitk::Point3D& position, unsigned int timestep) { double value = 0.0; if (this->GetTimeSteps() < timestep) { timestep = this->GetTimeSteps(); } Index3D itkIndex; this->GetGeometry()->WorldToIndex(position, itkIndex); value = this->GetPixelValueByIndex( itkIndex, timestep); return value; } mitk::ImageVtkAccessor* mitk::Image::GetVtkImageData(int t, int n) { if(m_Initialized==false) { if(GetSource().IsNull()) return NULL; if(GetSource()->Updating()==false) GetSource()->UpdateOutputInformation(); } ImageDataItemPointer volume=GetVolumeData(t, n); if(volume.GetPointer()==NULL || volume->GetVtkImageData(this) == NULL) return NULL; SlicedGeometry3D* geom3d = GetSlicedGeometry(t); float *fspacing = const_cast(geom3d->GetFloatSpacing()); double dspacing[3] = {fspacing[0],fspacing[1],fspacing[2]}; volume->GetVtkImageData(this)->SetSpacing( dspacing ); return volume->GetVtkImageData(this); } mitk::Image::ImageDataItemPointer mitk::Image::GetSliceData(int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { if(IsValidSlice(s,t,n)==false) return NULL; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // slice directly available? int pos=GetSliceIndex(s,t,n); if(m_Slices[pos].GetPointer()!=NULL) return m_Slices[pos]; // is slice available as part of a volume that is available? ImageDataItemPointer sl, ch, vol; vol=m_Volumes[GetVolumeIndex(t,n)]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) { sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*m_OffsetTable[2]*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // is slice available as part of a channel that is available? ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) { sl=new ImageDataItem(*ch, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, (((size_t) s)*m_OffsetTable[2]+((size_t) t)*m_OffsetTable[3])*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // slice is unavailable. Can we calculate it? if((GetSource().IsNotNull()) && (GetSource()->Updating()==false)) { // ... wir mussen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, s); m_RequestedRegion.SetIndex(3, t); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, 1); m_RequestedRegion.SetSize(3, 1); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized=true; GetSource()->Update(); if(IsSliceSet(s,t,n)) //yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetSliceData(s,t,n,data,importMemoryManagement); else return NULL; } else { ImageDataItemPointer item = AllocateSliceData(s,t,n,data,importMemoryManagement); item->SetComplete(true); return item; } } mitk::Image::ImageDataItemPointer mitk::Image::GetVolumeData(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { if(IsValidVolume(t,n)==false) return NULL; ImageDataItemPointer ch, vol; // volume directly available? int pos=GetVolumeIndex(t,n); vol=m_Volumes[pos]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) return vol; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is volume available as part of a channel that is available? ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) { vol=new ImageDataItem(*ch, m_ImageDescriptor, 3, data, importMemoryManagement == ManageMemory, (((size_t) t)*m_OffsetTable[3])*(ptypeSize)); vol->SetComplete(true); return m_Volumes[pos]=vol; } // let's see if all slices of the volume are set, so that we can (could) combine them to a volume bool complete=true; unsigned int s; for(s=0;sSetComplete(true); } else { mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(n); vol=m_Volumes[pos]; // ok, let's combine the slices! if(vol.GetPointer()==NULL) vol=new ImageDataItem( chPixelType, 3, m_Dimensions, NULL, true); vol->SetComplete(true); size_t size=m_OffsetTable[2]*(ptypeSize); for(s=0;sGetParent()!=vol) { // copy data of slices in volume size_t offset = ((size_t) s)*size; std::memcpy(static_cast(vol->GetData())+offset, sl->GetData(), size); // FIXME mitkIpPicDescriptor * pic = sl->GetPicDescriptor(); // replace old slice with reference to volume sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*size); sl->SetComplete(true); //mitkIpFuncCopyTags(sl->GetPicDescriptor(), pic); m_Slices[posSl]=sl; } } //if(vol->GetPicDescriptor()->info->tags_head==NULL) // mitkIpFuncCopyTags(vol->GetPicDescriptor(), m_Slices[GetSliceIndex(0,t,n)]->GetPicDescriptor()); } return m_Volumes[pos]=vol; } // volume is unavailable. Can we calculate it? if((GetSource().IsNotNull()) && (GetSource()->Updating()==false)) { // ... wir muessen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, 0); m_RequestedRegion.SetIndex(3, t); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, m_Dimensions[2]); m_RequestedRegion.SetSize(3, 1); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized=true; GetSource()->Update(); if(IsVolumeSet(t,n)) //yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetVolumeData(t,n,data,importMemoryManagement); else return NULL; } else { ImageDataItemPointer item = AllocateVolumeData(t,n,data,importMemoryManagement); item->SetComplete(true); return item; } } mitk::Image::ImageDataItemPointer mitk::Image::GetChannelData(int n, void *data, ImportMemoryManagementType importMemoryManagement) { if(IsValidChannel(n)==false) return NULL; ImageDataItemPointer ch, vol; ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) return ch; // let's see if all volumes are set, so that we can (could) combine them to a channel if(IsChannelSet(n)) { // if there is only one time frame we do not need to combine anything if(m_Dimensions[3]<=1) { vol=GetVolumeData(0,n,data,importMemoryManagement); ch=new ImageDataItem(*vol, m_ImageDescriptor, m_ImageDescriptor->GetNumberOfDimensions(), data, importMemoryManagement == ManageMemory); ch->SetComplete(true); } else { const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ch=m_Channels[n]; // ok, let's combine the volumes! if(ch.GetPointer()==NULL) ch=new ImageDataItem(this->m_ImageDescriptor, NULL, true); ch->SetComplete(true); size_t size=m_OffsetTable[m_Dimension-1]*(ptypeSize); unsigned int t; ImageDataItemPointerArray::iterator slicesIt = m_Slices.begin()+n*m_Dimensions[2]*m_Dimensions[3]; for(t=0;tGetParent()!=ch) { // copy data of volume in channel size_t offset = ((size_t) t)*m_OffsetTable[3]*(ptypeSize); std::memcpy(static_cast(ch->GetData())+offset, vol->GetData(), size); // REVEIW FIX mitkIpPicDescriptor * pic = vol->GetPicDescriptor(); // replace old volume with reference to channel vol=new ImageDataItem(*ch, m_ImageDescriptor, 3, data, importMemoryManagement == ManageMemory, offset); vol->SetComplete(true); //mitkIpFuncCopyTags(vol->GetPicDescriptor(), pic); m_Volumes[posVol]=vol; // get rid of slices - they may point to old volume ImageDataItemPointer dnull=NULL; for(unsigned int i = 0; i < m_Dimensions[2]; ++i, ++slicesIt) { assert(slicesIt != m_Slices.end()); *slicesIt = dnull; } } } // REVIEW FIX // if(ch->GetPicDescriptor()->info->tags_head==NULL) // mitkIpFuncCopyTags(ch->GetPicDescriptor(), m_Volumes[GetVolumeIndex(0,n)]->GetPicDescriptor()); } return m_Channels[n]=ch; } // channel is unavailable. Can we calculate it? if((GetSource().IsNotNull()) && (GetSource()->Updating()==false)) { // ... wir muessen rechnen!!! .... m_RequestedRegion.SetIndex(0, 0); m_RequestedRegion.SetIndex(1, 0); m_RequestedRegion.SetIndex(2, 0); m_RequestedRegion.SetIndex(3, 0); m_RequestedRegion.SetIndex(4, n); m_RequestedRegion.SetSize(0, m_Dimensions[0]); m_RequestedRegion.SetSize(1, m_Dimensions[1]); m_RequestedRegion.SetSize(2, m_Dimensions[2]); m_RequestedRegion.SetSize(3, m_Dimensions[3]); m_RequestedRegion.SetSize(4, 1); m_RequestedRegionInitialized=true; GetSource()->Update(); // did it work? if(IsChannelSet(n)) //yes: now we can call ourselves without the risk of a endless loop (see "if" above) return GetChannelData(n,data,importMemoryManagement); else return NULL; } else { ImageDataItemPointer item = AllocateChannelData(n,data,importMemoryManagement); item->SetComplete(true); return item; } } bool mitk::Image::IsSliceSet(int s, int t, int n) const { if(IsValidSlice(s,t,n)==false) return false; if(m_Slices[GetSliceIndex(s,t,n)].GetPointer()!=NULL) return true; ImageDataItemPointer ch, vol; vol=m_Volumes[GetVolumeIndex(t,n)]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) return true; ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) return true; return false; } bool mitk::Image::IsVolumeSet(int t, int n) const { if(IsValidVolume(t,n)==false) return false; ImageDataItemPointer ch, vol; // volume directly available? vol=m_Volumes[GetVolumeIndex(t,n)]; if((vol.GetPointer()!=NULL) && (vol->IsComplete())) return true; // is volume available as part of a channel that is available? ch=m_Channels[n]; if((ch.GetPointer()!=NULL) && (ch->IsComplete())) return true; // let's see if all slices of the volume are set, so that we can (could) combine them to a volume unsigned int s; for(s=0;sIsComplete())) return true; // let's see if all volumes are set, so that we can (could) combine them to a channel unsigned int t; for(t=0;t(data), s, t, n, CopyMemory); } bool mitk::Image::SetVolume(const void *data, int t, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportVolume(const_cast(data), t, n, CopyMemory); } bool mitk::Image::SetChannel(const void *data, int n) { // const_cast is no risk for ImportMemoryManagementType == CopyMemory return SetImportChannel(const_cast(data), n, CopyMemory); } bool mitk::Image::SetImportSlice(void *data, int s, int t, int n, ImportMemoryManagementType importMemoryManagement) { if(IsValidSlice(s,t,n)==false) return false; ImageDataItemPointer sl; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); if(IsSliceSet(s,t,n)) { sl=GetSliceData(s,t,n,data,importMemoryManagement); if(sl->GetManageMemory()==false) { sl=AllocateSliceData(s,t,n,data,importMemoryManagement); if(sl.GetPointer()==NULL) return false; } if ( sl->GetData() != data ) std::memcpy(sl->GetData(), data, m_OffsetTable[2]*(ptypeSize)); sl->Modified(); //we have changed the data: call Modified()! Modified(); } else { sl=AllocateSliceData(s,t,n,data,importMemoryManagement); if(sl.GetPointer()==NULL) return false; if ( sl->GetData() != data ) std::memcpy(sl->GetData(), data, m_OffsetTable[2]*(ptypeSize)); //we just added a missing slice, which is not regarded as modification. //Therefore, we do not call Modified()! } return true; } bool mitk::Image::SetImportVolume(void *data, int t, int n, ImportMemoryManagementType importMemoryManagement) { if(IsValidVolume(t,n)==false) return false; const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ImageDataItemPointer vol; if(IsVolumeSet(t,n)) { vol=GetVolumeData(t,n,data,importMemoryManagement); if(vol->GetManageMemory()==false) { vol=AllocateVolumeData(t,n,data,importMemoryManagement); if(vol.GetPointer()==NULL) return false; } if ( vol->GetData() != data ) std::memcpy(vol->GetData(), data, m_OffsetTable[3]*(ptypeSize)); vol->Modified(); vol->SetComplete(true); //we have changed the data: call Modified()! Modified(); } else { vol=AllocateVolumeData(t,n,data,importMemoryManagement); if(vol.GetPointer()==NULL) return false; if ( vol->GetData() != data ) { std::memcpy(vol->GetData(), data, m_OffsetTable[3]*(ptypeSize)); } vol->SetComplete(true); this->m_ImageDescriptor->GetChannelDescriptor(n).SetData( vol->GetData() ); //we just added a missing Volume, which is not regarded as modification. //Therefore, we do not call Modified()! } return true; } bool mitk::Image::SetImportChannel(void *data, int n, ImportMemoryManagementType importMemoryManagement) { if(IsValidChannel(n)==false) return false; // channel descriptor const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ImageDataItemPointer ch; if(IsChannelSet(n)) { ch=GetChannelData(n,data,importMemoryManagement); if(ch->GetManageMemory()==false) { ch=AllocateChannelData(n,data,importMemoryManagement); if(ch.GetPointer()==NULL) return false; } if ( ch->GetData() != data ) std::memcpy(ch->GetData(), data, m_OffsetTable[4]*(ptypeSize)); ch->Modified(); ch->SetComplete(true); //we have changed the data: call Modified()! Modified(); } else { ch=AllocateChannelData(n,data,importMemoryManagement); if(ch.GetPointer()==NULL) return false; if ( ch->GetData() != data ) std::memcpy(ch->GetData(), data, m_OffsetTable[4]*(ptypeSize)); ch->SetComplete(true); this->m_ImageDescriptor->GetChannelDescriptor(n).SetData( ch->GetData() ); //we just added a missing Channel, which is not regarded as modification. //Therefore, we do not call Modified()! } return true; } void mitk::Image::Initialize() { ImageDataItemPointerArray::iterator it, end; for( it=m_Slices.begin(), end=m_Slices.end(); it!=end; ++it ) { (*it)=NULL; } for( it=m_Volumes.begin(), end=m_Volumes.end(); it!=end; ++it ) { (*it)=NULL; } for( it=m_Channels.begin(), end=m_Channels.end(); it!=end; ++it ) { (*it)=NULL; } m_CompleteData = NULL; if( m_ImageStatistics == NULL) { m_ImageStatistics = new mitk::ImageStatisticsHolder( this ); } SetRequestedRegionToLargestPossibleRegion(); } void mitk::Image::Initialize(const mitk::ImageDescriptor::Pointer inDesc) { // store the descriptor this->m_ImageDescriptor = inDesc; // initialize image this->Initialize( inDesc->GetChannelDescriptor(0).GetPixelType(), inDesc->GetNumberOfDimensions(), inDesc->GetDimensions(), 1 ); } void mitk::Image::Initialize(const mitk::PixelType& type, unsigned int dimension, const unsigned int *dimensions, unsigned int channels) { Clear(); m_Dimension=dimension; if(!dimensions) itkExceptionMacro(<< "invalid zero dimension image"); unsigned int i; for(i=0;im_ImageDescriptor = mitk::ImageDescriptor::New(); this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); for(i=0;i<4;++i) { m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize (i, m_Dimensions[i]); } m_LargestPossibleRegion.SetIndex(i, 0); m_LargestPossibleRegion.SetSize(i, channels); if(m_LargestPossibleRegion.GetNumberOfPixels()==0) { delete [] m_Dimensions; m_Dimensions = NULL; return; } for( unsigned int i=0u; im_ImageDescriptor->AddNewChannel( type ); } PlaneGeometry::Pointer planegeometry = PlaneGeometry::New(); planegeometry->InitializeStandardPlane(m_Dimensions[0], m_Dimensions[1]); SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(planegeometry, m_Dimensions[2]); if(dimension>=4) { TimeBounds timebounds; timebounds[0] = 0.0; timebounds[1] = 1.0; slicedGeometry->SetTimeBounds(timebounds); } ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); for (TimeStepType step = 0; step < timeGeometry->GetNumberOfTimeSteps(); ++step) { timeGeometry->GetGeometryForTimeStep(step)->ImageGeometryOn(); } SetTimeGeometry(timeGeometry); ImageDataItemPointer dnull=NULL; m_Channels.assign(GetNumberOfChannels(), dnull); m_Volumes.assign(GetNumberOfChannels()*m_Dimensions[3], dnull); m_Slices.assign(GetNumberOfChannels()*m_Dimensions[3]*m_Dimensions[2], dnull); ComputeOffsetTable(); Initialize(); m_Initialized = true; } void mitk::Image::Initialize(const mitk::PixelType& type, const mitk::Geometry3D& geometry, unsigned int channels, int tDim ) { mitk::ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); - AffineGeometryFrame3D::Pointer geometry3D = geometry.Clone(); - timeGeometry->Initialize(dynamic_cast(geometry3D.GetPointer()), tDim); + Geometry3D::Pointer geometry3D = geometry.Clone(); + timeGeometry->Initialize(geometry3D.GetPointer(), tDim); this->Initialize(type, *timeGeometry, channels, tDim); } void mitk::Image::Initialize(const mitk::PixelType& type, const mitk::TimeGeometry& geometry, unsigned int channels, int tDim ) { const ProportionalTimeGeometry& ptG = dynamic_cast(geometry); unsigned int dimensions[5]; dimensions[0] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(0)+0.5); dimensions[1] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(1)+0.5); dimensions[2] = (unsigned int)(geometry.GetGeometryForTimeStep(0)->GetExtent(2)+0.5); dimensions[3] = (tDim > 0) ? tDim : geometry.GetNumberOfTimeSteps(); dimensions[4] = 0; unsigned int dimension = 2; if ( dimensions[2] > 1 ) dimension = 3; if ( dimensions[3] > 1 ) dimension = 4; Initialize( type, dimension, dimensions, channels ); if (geometry.GetNumberOfTimeSteps() > 1) SetTimeGeometry(geometry.Clone().GetPointer()); else Superclass::SetGeometry(geometry.GetGeometryForTimeStep(0)); /* //Old //TODO_GOETZ Really necessary? mitk::BoundingBox::BoundsArrayType bounds = geometry.GetBoundingBoxInWorld()->GetBounds(); if( (bounds[0] != 0.0) || (bounds[2] != 0.0) || (bounds[4] != 0.0) ) { SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); mitk::Point3D origin; origin.Fill(0.0); slicedGeometry->IndexToWorld(origin, origin); bounds[1]-=bounds[0]; bounds[3]-=bounds[2]; bounds[5]-=bounds[4]; bounds[0] = 0.0; bounds[2] = 0.0; bounds[4] = 0.0; this->m_ImageDescriptor->Initialize( this->m_Dimensions, this->m_Dimension ); slicedGeometry->SetBounds(bounds); slicedGeometry->GetIndexToWorldTransform()->SetOffset(origin.Get_vnl_vector().data_block()); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); }*/ } void mitk::Image::Initialize(const mitk::PixelType& type, int sDim, const mitk::Geometry2D& geometry2d, bool flipped, unsigned int channels, int tDim ) { SlicedGeometry3D::Pointer slicedGeometry = SlicedGeometry3D::New(); slicedGeometry->InitializeEvenlySpaced(static_cast(geometry2d.Clone().GetPointer()), sDim, flipped); Initialize(type, *slicedGeometry, channels, tDim); } void mitk::Image::Initialize(const mitk::Image* image) { Initialize(image->GetPixelType(), *image->GetTimeGeometry()); } void mitk::Image::Initialize(vtkImageData* vtkimagedata, int channels, int tDim, int sDim, int pDim) { if(vtkimagedata==NULL) return; m_Dimension=vtkimagedata->GetDataDimension(); unsigned int i, *tmpDimensions=new unsigned int[m_Dimension>4?m_Dimension:4]; for(i=0;iGetDimensions()[i]; if(m_Dimension<4) { unsigned int *p; for(i=0,p=tmpDimensions+m_Dimension;i<4-m_Dimension;++i, ++p) *p=1; } if(pDim>=0) { tmpDimensions[1]=pDim; if(m_Dimension < 2) m_Dimension = 2; } if(sDim>=0) { tmpDimensions[2]=sDim; if(m_Dimension < 3) m_Dimension = 3; } if(tDim>=0) { tmpDimensions[3]=tDim; if(m_Dimension < 4) m_Dimension = 4; } switch ( vtkimagedata->GetScalarType() ) { case VTK_BIT: case VTK_CHAR: //pixelType.Initialize(typeid(char), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_CHAR: //pixelType.Initialize(typeid(unsigned char), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_SHORT: //pixelType.Initialize(typeid(short), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_SHORT: //pixelType.Initialize(typeid(unsigned short), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_INT: //pixelType.Initialize(typeid(int), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_INT: //pixelType.Initialize(typeid(unsigned int), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_LONG: //pixelType.Initialize(typeid(long), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_UNSIGNED_LONG: //pixelType.Initialize(typeid(unsigned long), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_FLOAT: //pixelType.Initialize(typeid(float), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; case VTK_DOUBLE: //pixelType.Initialize(typeid(double), vtkimagedata->GetNumberOfScalarComponents()); Initialize(mitk::MakeScalarPixelType(), m_Dimension, tmpDimensions, channels); break; default: break; } /* Initialize(pixelType, m_Dimension, tmpDimensions, channels); */ const double *spacinglist = vtkimagedata->GetSpacing(); Vector3D spacing; FillVector3D(spacing, spacinglist[0], 1.0, 1.0); if(m_Dimension>=2) spacing[1]=spacinglist[1]; if(m_Dimension>=3) spacing[2]=spacinglist[2]; // access origin of vtkImage Point3D origin; vtkFloatingPointType vtkorigin[3]; vtkimagedata->GetOrigin(vtkorigin); FillVector3D(origin, vtkorigin[0], 0.0, 0.0); if(m_Dimension>=2) origin[1]=vtkorigin[1]; if(m_Dimension>=3) origin[2]=vtkorigin[2]; SlicedGeometry3D* slicedGeometry = GetSlicedGeometry(0); // re-initialize PlaneGeometry with origin and direction PlaneGeometry* planeGeometry = static_cast(slicedGeometry->GetGeometry2D(0)); planeGeometry->SetOrigin(origin); // re-initialize SlicedGeometry3D slicedGeometry->SetOrigin(origin); slicedGeometry->SetSpacing(spacing); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, m_Dimensions[3]); SetTimeGeometry(timeGeometry); delete [] tmpDimensions; } bool mitk::Image::IsValidSlice(int s, int t, int n) const { if(m_Initialized) return ((s>=0) && (s<(int)m_Dimensions[2]) && (t>=0) && (t< (int) m_Dimensions[3]) && (n>=0) && (n< (int)GetNumberOfChannels())); else return false; } bool mitk::Image::IsValidVolume(int t, int n) const { if(m_Initialized) return IsValidSlice(0, t, n); else return false; } bool mitk::Image::IsValidChannel(int n) const { if(m_Initialized) return IsValidSlice(0, 0, n); else return false; } void mitk::Image::ComputeOffsetTable() { if(m_OffsetTable!=NULL) delete [] m_OffsetTable; m_OffsetTable=new size_t[m_Dimension>4 ? m_Dimension+1 : 4+1]; unsigned int i; size_t num=1; m_OffsetTable[0] = 1; for (i=0; i < m_Dimension; ++i) { num *= m_Dimensions[i]; m_OffsetTable[i+1] = num; } for (;i < 4; ++i) m_OffsetTable[i+1] = num; } bool mitk::Image::IsValidTimeStep(int t) const { return ( ( m_Dimension >= 4 && t <= (int)m_Dimensions[3] && t > 0 ) || (t == 0) ); } void mitk::Image::Expand(unsigned int timeSteps) { if(timeSteps < 1) itkExceptionMacro(<< "Invalid timestep in Image!"); Superclass::Expand(timeSteps); } int mitk::Image::GetSliceIndex(int s, int t, int n) const { if(IsValidSlice(s,t,n)==false) return false; return ((size_t)s)+((size_t) t)*m_Dimensions[2]+((size_t) n)*m_Dimensions[3]*m_Dimensions[2]; //?? } int mitk::Image::GetVolumeIndex(int t, int n) const { if(IsValidVolume(t,n)==false) return false; return ((size_t)t)+((size_t) n)*m_Dimensions[3]; //?? } mitk::Image::ImageDataItemPointer mitk::Image::AllocateSliceData(int s, int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { int pos; pos=GetSliceIndex(s,t,n); const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is slice available as part of a volume that is available? ImageDataItemPointer sl, ch, vol; vol=m_Volumes[GetVolumeIndex(t,n)]; if(vol.GetPointer()!=NULL) { sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*m_OffsetTable[2]*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // is slice available as part of a channel that is available? ch=m_Channels[n]; if(ch.GetPointer()!=NULL) { sl=new ImageDataItem(*ch, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, (((size_t) s)*m_OffsetTable[2]+((size_t) t)*m_OffsetTable[3])*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; } // allocate new volume (instead of a single slice to keep data together!) m_Volumes[GetVolumeIndex(t,n)]=vol=AllocateVolumeData(t,n,NULL,importMemoryManagement); sl=new ImageDataItem(*vol, m_ImageDescriptor, 2, data, importMemoryManagement == ManageMemory, ((size_t) s)*m_OffsetTable[2]*(ptypeSize)); sl->SetComplete(true); return m_Slices[pos]=sl; ////ALTERNATIVE: //// allocate new slice //sl=new ImageDataItem(*m_PixelType, 2, m_Dimensions); //m_Slices[pos]=sl; //return vol; } mitk::Image::ImageDataItemPointer mitk::Image::AllocateVolumeData(int t, int n, void *data, ImportMemoryManagementType importMemoryManagement) { int pos; pos=GetVolumeIndex(t,n); const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); // is volume available as part of a channel that is available? ImageDataItemPointer ch, vol; ch=m_Channels[n]; if(ch.GetPointer()!=NULL) { vol=new ImageDataItem(*ch, m_ImageDescriptor, 3, data,importMemoryManagement == ManageMemory, (((size_t) t)*m_OffsetTable[3])*(ptypeSize)); return m_Volumes[pos]=vol; } mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(n); // allocate new volume if(importMemoryManagement == CopyMemory) { vol=new ImageDataItem( chPixelType, 3, m_Dimensions, NULL, true); if(data != NULL) std::memcpy(vol->GetData(), data, m_OffsetTable[3]*(ptypeSize)); } else { vol=new ImageDataItem( chPixelType, 3, m_Dimensions, data, importMemoryManagement == ManageMemory); } m_Volumes[pos]=vol; return vol; } mitk::Image::ImageDataItemPointer mitk::Image::AllocateChannelData(int n, void *data, ImportMemoryManagementType importMemoryManagement) { ImageDataItemPointer ch; // allocate new channel if(importMemoryManagement == CopyMemory) { const size_t ptypeSize = this->m_ImageDescriptor->GetChannelTypeById(n).GetSize(); ch=new ImageDataItem(this->m_ImageDescriptor, NULL, true); if(data != NULL) std::memcpy(ch->GetData(), data, m_OffsetTable[4]*(ptypeSize)); } else { ch=new ImageDataItem(this->m_ImageDescriptor, data, importMemoryManagement == ManageMemory); } m_Channels[n]=ch; return ch; } unsigned int* mitk::Image::GetDimensions() const { return m_Dimensions; } void mitk::Image::Clear() { Superclass::Clear(); delete [] m_Dimensions; m_Dimensions = NULL; } void mitk::Image::SetGeometry(Geometry3D* aGeometry3D) { // Please be aware of the 0.5 offset/pixel-center issue! See Geometry documentation for further information if(aGeometry3D->GetImageGeometry()==false) { MITK_INFO << "WARNING: Applied a non-image geometry onto an image. Please be SURE that this geometry is pixel-center-based! If it is not, you need to call Geometry3D->ChangeImageGeometryConsideringOriginOffset(true) before calling image->setGeometry(..)\n"; } Superclass::SetGeometry(aGeometry3D); for (TimeStepType step = 0; step < GetTimeGeometry()->GetNumberOfTimeSteps(); ++step) GetTimeGeometry()->GetGeometryForTimeStep(step)->ImageGeometryOn(); } void mitk::Image::PrintSelf(std::ostream& os, itk::Indent indent) const { unsigned char i; if(m_Initialized) { os << indent << " Dimension: " << m_Dimension << std::endl; os << indent << " Dimensions: "; for(i=0; i < m_Dimension; ++i) os << GetDimension(i) << " "; os << std::endl; for(unsigned int ch=0; ch < this->m_ImageDescriptor->GetNumberOfChannels(); ch++) { mitk::PixelType chPixelType = this->m_ImageDescriptor->GetChannelTypeById(ch); os << indent << " Channel: " << this->m_ImageDescriptor->GetChannelName(ch) << std::endl; os << indent << " PixelType: " << chPixelType.GetTypeId().name() << std::endl; os << indent << " BitsPerElement: " << chPixelType.GetSize() << std::endl; os << indent << " NumberOfComponents: " << chPixelType.GetNumberOfComponents() << std::endl; os << indent << " BitsPerComponent: " << chPixelType.GetBitsPerComponent() << std::endl; } } else { os << indent << " Image not initialized: m_Initialized: false" << std::endl; } Superclass::PrintSelf(os,indent); } bool mitk::Image::IsRotated() const { const mitk::Geometry3D* geo = this->GetGeometry(); bool ret = false; if(geo) { const vnl_matrix_fixed & mx = geo->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix(); float ref = 0; for(short k = 0; k < 3; ++k) ref += mx[k][k]; ref/=1000; // Arbitrary value; if a non-diagonal (nd) element is bigger then this, matrix is considered nd. for(short i = 0; i < 3; ++i) { for(short j = 0; j < 3; ++j) { if(i != j) { if(std::abs(mx[i][j]) > ref) // matrix is nd ret = true; } } } } return ret; } #include "mitkImageStatisticsHolder.h" //##Documentation mitk::ScalarType mitk::Image::GetScalarValueMin(int t) const { return m_ImageStatistics->GetScalarValueMin(t); } //##Documentation //## \brief Get the maximum for scalar images mitk::ScalarType mitk::Image::GetScalarValueMax(int t) const { return m_ImageStatistics->GetScalarValueMax(t); } //##Documentation //## \brief Get the second smallest value for scalar images mitk::ScalarType mitk::Image::GetScalarValue2ndMin(int t) const { return m_ImageStatistics->GetScalarValue2ndMin(t); } mitk::ScalarType mitk::Image::GetScalarValueMinNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetScalarValueMinNoRecompute(t); } mitk::ScalarType mitk::Image::GetScalarValue2ndMinNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetScalarValue2ndMinNoRecompute(t); } mitk::ScalarType mitk::Image::GetScalarValue2ndMax(int t) const { return m_ImageStatistics->GetScalarValue2ndMax(t); } mitk::ScalarType mitk::Image::GetScalarValueMaxNoRecompute( unsigned int t) const { return m_ImageStatistics->GetScalarValueMaxNoRecompute(t); } mitk::ScalarType mitk::Image::GetScalarValue2ndMaxNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetScalarValue2ndMaxNoRecompute(t); } mitk::ScalarType mitk::Image::GetCountOfMinValuedVoxels(int t ) const { return m_ImageStatistics->GetCountOfMinValuedVoxels(t); } mitk::ScalarType mitk::Image::GetCountOfMaxValuedVoxels(int t) const { return m_ImageStatistics->GetCountOfMaxValuedVoxels(t); } unsigned int mitk::Image::GetCountOfMaxValuedVoxelsNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetCountOfMaxValuedVoxelsNoRecompute(t); } unsigned int mitk::Image::GetCountOfMinValuedVoxelsNoRecompute( unsigned int t ) const { return m_ImageStatistics->GetCountOfMinValuedVoxelsNoRecompute(t); } diff --git a/Core/Code/DataManagement/mitkLandmarkBasedCurvedGeometry.h b/Core/Code/DataManagement/mitkLandmarkBasedCurvedGeometry.h index 07571f1a18..3b7bf07fee 100644 --- a/Core/Code/DataManagement/mitkLandmarkBasedCurvedGeometry.h +++ b/Core/Code/DataManagement/mitkLandmarkBasedCurvedGeometry.h @@ -1,60 +1,60 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITKLANDMARKBASEDCURVEDGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #define MITKLANDMARKBASEDCURVEDGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #include "mitkAbstractTransformGeometry.h" #include "mitkPointSet.h" namespace mitk { //##Documentation //## @brief Superclass of AbstractTransformGeometry sub-classes defined //## by a set of landmarks. //## //## @ingroup Geometry class MITK_CORE_EXPORT LandmarkBasedCurvedGeometry : public AbstractTransformGeometry { public: mitkClassMacro(LandmarkBasedCurvedGeometry, AbstractTransformGeometry); //##Documentation //## @brief Set the landmarks through which the geometry shall pass itkSetConstObjectMacro(TargetLandmarks, mitk::PointSet::DataType::PointsContainer); //##Documentation //## @brief Get the landmarks through which the geometry shall pass itkGetConstObjectMacro(TargetLandmarks, mitk::PointSet::DataType::PointsContainer); virtual void ComputeGeometry() = 0; - virtual AffineGeometryFrame3D::Pointer Clone() const = 0; + virtual Geometry3D::Pointer Clone() const = 0; protected: LandmarkBasedCurvedGeometry(); LandmarkBasedCurvedGeometry(const LandmarkBasedCurvedGeometry& other); virtual ~LandmarkBasedCurvedGeometry(); mitk::PointSet::DataType::PointsContainer::ConstPointer m_TargetLandmarks; }; } // namespace mitk #endif /* MITKLANDMARKBASEDCURVEDGEOMETRY_H_HEADER_INCLUDED_C1C68A2C */ diff --git a/Core/Code/DataManagement/mitkLandmarkProjectorBasedCurvedGeometry.cpp b/Core/Code/DataManagement/mitkLandmarkProjectorBasedCurvedGeometry.cpp index 2b2db24763..aa58b0070d 100644 --- a/Core/Code/DataManagement/mitkLandmarkProjectorBasedCurvedGeometry.cpp +++ b/Core/Code/DataManagement/mitkLandmarkProjectorBasedCurvedGeometry.cpp @@ -1,82 +1,82 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkLandmarkProjectorBasedCurvedGeometry.h" #include mitk::LandmarkProjectorBasedCurvedGeometry::LandmarkProjectorBasedCurvedGeometry() : m_LandmarkProjector(NULL), m_InterpolatingAbstractTransform(NULL) { } mitk::LandmarkProjectorBasedCurvedGeometry::LandmarkProjectorBasedCurvedGeometry(const mitk::LandmarkProjectorBasedCurvedGeometry& other) : Superclass(other) { this->SetLandmarkProjector(other.m_LandmarkProjector); this->ComputeGeometry(); } mitk::LandmarkProjectorBasedCurvedGeometry::~LandmarkProjectorBasedCurvedGeometry() { if(m_InterpolatingAbstractTransform!=NULL) m_InterpolatingAbstractTransform->Delete(); } void mitk::LandmarkProjectorBasedCurvedGeometry::SetLandmarkProjector(mitk::LandmarkProjector* aLandmarkProjector) { itkDebugMacro("setting LandmarkProjector to " << aLandmarkProjector ); if(m_LandmarkProjector != aLandmarkProjector) { m_LandmarkProjector = aLandmarkProjector; if(m_LandmarkProjector.IsNotNull()) { if(m_FrameGeometry.IsNotNull()) m_LandmarkProjector->SetFrameGeometry(m_FrameGeometry); if(m_InterpolatingAbstractTransform == NULL) { itkWarningMacro(<<"m_InterpolatingAbstractTransform not set."); } m_LandmarkProjector->SetInterpolatingAbstractTransform(GetInterpolatingAbstractTransform()); SetVtkAbstractTransform(m_LandmarkProjector->GetCompleteAbstractTransform()); } Modified(); } } void mitk::LandmarkProjectorBasedCurvedGeometry::SetFrameGeometry(const mitk::Geometry3D* frameGeometry) { Superclass::SetFrameGeometry(frameGeometry); if(m_LandmarkProjector.IsNotNull()) m_LandmarkProjector->SetFrameGeometry(frameGeometry); } void mitk::LandmarkProjectorBasedCurvedGeometry::ComputeGeometry() { if(m_LandmarkProjector.IsNull()) { itkExceptionMacro(<< "m_LandmarkProjector is not set."); } m_LandmarkProjector->ProjectLandmarks(m_TargetLandmarks); SetPlane(m_LandmarkProjector->GetParameterPlane()); } -mitk::AffineGeometryFrame3D::Pointer mitk::LandmarkProjectorBasedCurvedGeometry::Clone() const +mitk::Geometry3D::Pointer mitk::LandmarkProjectorBasedCurvedGeometry::Clone() const { - mitk::AffineGeometryFrame3D::Pointer newGeometry = new LandmarkProjectorBasedCurvedGeometry(*this); + mitk::Geometry3D::Pointer newGeometry = new LandmarkProjectorBasedCurvedGeometry(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } diff --git a/Core/Code/DataManagement/mitkLandmarkProjectorBasedCurvedGeometry.h b/Core/Code/DataManagement/mitkLandmarkProjectorBasedCurvedGeometry.h index 6b487c4bb1..b563f52cc8 100644 --- a/Core/Code/DataManagement/mitkLandmarkProjectorBasedCurvedGeometry.h +++ b/Core/Code/DataManagement/mitkLandmarkProjectorBasedCurvedGeometry.h @@ -1,61 +1,61 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITKLANDMARKPROJECTORBASEDCURVEDGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #define MITKLANDMARKPROJECTORBASEDCURVEDGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #include "mitkLandmarkBasedCurvedGeometry.h" #include "mitkLandmarkProjector.h" namespace mitk { //##Documentation //## @brief Superclass of AbstractTransformGeometry sub-classes defined //## by a set of landmarks. //## //## @ingroup Geometry class MITK_CORE_EXPORT LandmarkProjectorBasedCurvedGeometry : public LandmarkBasedCurvedGeometry { public: mitkClassMacro(LandmarkProjectorBasedCurvedGeometry, LandmarkBasedCurvedGeometry); void SetLandmarkProjector(mitk::LandmarkProjector* aLandmarkProjector); itkGetConstObjectMacro(LandmarkProjector, mitk::LandmarkProjector); virtual void SetFrameGeometry(const mitk::Geometry3D* frameGeometry); virtual void ComputeGeometry(); itkGetConstMacro(InterpolatingAbstractTransform, vtkAbstractTransform*); - mitk::AffineGeometryFrame3D::Pointer Clone() const; + mitk::Geometry3D::Pointer Clone() const; protected: LandmarkProjectorBasedCurvedGeometry(); LandmarkProjectorBasedCurvedGeometry(const LandmarkProjectorBasedCurvedGeometry& other); virtual ~LandmarkProjectorBasedCurvedGeometry(); mitk::LandmarkProjector::Pointer m_LandmarkProjector; vtkAbstractTransform* m_InterpolatingAbstractTransform; }; } // namespace mitk #endif /* MITKLANDMARKPROJECTORBASEDCURVEDGEOMETRY_H_HEADER_INCLUDED_C1C68A2C */ diff --git a/Core/Code/DataManagement/mitkPlaneGeometry.cpp b/Core/Code/DataManagement/mitkPlaneGeometry.cpp index 03375c052a..dafa42358c 100644 --- a/Core/Code/DataManagement/mitkPlaneGeometry.cpp +++ b/Core/Code/DataManagement/mitkPlaneGeometry.cpp @@ -1,777 +1,777 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlaneGeometry.h" #include "mitkPlaneOperation.h" #include "mitkInteractionConst.h" #include "mitkLine.h" #include #include namespace mitk { mitk::PlaneGeometry::PlaneGeometry() { Initialize(); } mitk::PlaneGeometry::~PlaneGeometry() { } void PlaneGeometry::Initialize() { Superclass::Initialize(); } void PlaneGeometry::EnsurePerpendicularNormal(mitk::AffineTransform3D *transform) { //ensure row(2) of transform to be perpendicular to plane, keep length. VnlVector normal = vnl_cross_3d( transform->GetMatrix().GetVnlMatrix().get_column(0), transform->GetMatrix().GetVnlMatrix().get_column(1) ); normal.normalize(); ScalarType len = transform->GetMatrix() .GetVnlMatrix().get_column(2).two_norm(); if (len==0) len = 1; normal*=len; Matrix3D matrix = transform->GetMatrix(); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); } void PlaneGeometry::SetIndexToWorldTransform(mitk::AffineTransform3D *transform) { EnsurePerpendicularNormal(transform); Superclass::SetIndexToWorldTransform(transform); } void PlaneGeometry::SetBounds(const BoundingBox::BoundsArrayType &bounds) { //currently the unit rectangle must be starting at the origin [0,0] assert(bounds[0]==0); assert(bounds[2]==0); //the unit rectangle must be two-dimensional assert(bounds[1]>0); assert(bounds[3]>0); Superclass::SetBounds(bounds); } void PlaneGeometry::IndexToWorld( const Point2D &pt_units, Point2D &pt_mm ) const { pt_mm[0]=m_ScaleFactorMMPerUnitX*pt_units[0]; pt_mm[1]=m_ScaleFactorMMPerUnitY*pt_units[1]; } void PlaneGeometry::WorldToIndex( const Point2D &pt_mm, Point2D &pt_units ) const { pt_units[0]=pt_mm[0]*(1.0/m_ScaleFactorMMPerUnitX); pt_units[1]=pt_mm[1]*(1.0/m_ScaleFactorMMPerUnitY); } void PlaneGeometry::IndexToWorld( const Point2D & /*atPt2d_units*/, const Vector2D &vec_units, Vector2D &vec_mm) const { MITK_WARN<<"Warning! Call of the deprecated function PlaneGeometry::IndexToWorld(point, vec, vec). Use PlaneGeometry::IndexToWorld(vec, vec) instead!"; this->IndexToWorld(vec_units, vec_mm); } void PlaneGeometry::IndexToWorld(const Vector2D &vec_units, Vector2D &vec_mm) const { vec_mm[0] = m_ScaleFactorMMPerUnitX * vec_units[0]; vec_mm[1] = m_ScaleFactorMMPerUnitY * vec_units[1]; } void PlaneGeometry::WorldToIndex( const Point2D & /*atPt2d_mm*/, const Vector2D &vec_mm, Vector2D &vec_units) const { MITK_WARN<<"Warning! Call of the deprecated function PlaneGeometry::WorldToIndex(point, vec, vec). Use PlaneGeometry::WorldToIndex(vec, vec) instead!"; this->WorldToIndex(vec_mm, vec_units); } void PlaneGeometry::WorldToIndex( const Vector2D &vec_mm, Vector2D &vec_units) const { vec_units[0] = vec_mm[0] * ( 1.0 / m_ScaleFactorMMPerUnitX ); vec_units[1] = vec_mm[1] * ( 1.0 / m_ScaleFactorMMPerUnitY ); } void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const Vector3D & spacing, PlaneGeometry::PlaneOrientation planeorientation, ScalarType zPosition, bool frontside, bool rotated ) { AffineTransform3D::Pointer transform; transform = AffineTransform3D::New(); AffineTransform3D::MatrixType matrix; AffineTransform3D::MatrixType::InternalMatrixType &vnlmatrix = matrix.GetVnlMatrix(); vnlmatrix.set_identity(); vnlmatrix(0,0) = spacing[0]; vnlmatrix(1,1) = spacing[1]; vnlmatrix(2,2) = spacing[2]; transform->SetIdentity(); transform->SetMatrix(matrix); InitializeStandardPlane(width, height, transform.GetPointer(), planeorientation, zPosition, frontside, rotated); } void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const AffineTransform3D* transform, PlaneGeometry::PlaneOrientation planeorientation, ScalarType zPosition, bool frontside, bool rotated ) { Superclass::Initialize(); //construct standard view Point3D origin; VnlVector rightDV(3), bottomDV(3); origin.Fill(0); int normalDirection; switch(planeorientation) { case Axial: if(frontside) { if(rotated==false) { FillVector3D(origin, 0, 0, zPosition); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 1, 0); } else { FillVector3D(origin, width, height, zPosition); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, -1, 0); } } else { if(rotated==false) { FillVector3D(origin, width, 0, zPosition); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 1, 0); } else { FillVector3D(origin, 0, height, zPosition); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, -1, 0); } } normalDirection = 2; break; case Frontal: if(frontside) { if(rotated==false) { FillVector3D(origin, 0, zPosition, 0); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 0, 1); } else { FillVector3D(origin, width, zPosition, height); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 0, -1); } } else { if(rotated==false) { FillVector3D(origin, width, zPosition, 0); FillVector3D(rightDV, -1, 0, 0); FillVector3D(bottomDV, 0, 0, 1); } else { FillVector3D(origin, 0, zPosition, height); FillVector3D(rightDV, 1, 0, 0); FillVector3D(bottomDV, 0, 0, -1); } } normalDirection = 1; break; case Sagittal: if(frontside) { if(rotated==false) { FillVector3D(origin, zPosition, 0, 0); FillVector3D(rightDV, 0, 1, 0); FillVector3D(bottomDV, 0, 0, 1); } else { FillVector3D(origin, zPosition, width, height); FillVector3D(rightDV, 0, -1, 0); FillVector3D(bottomDV, 0, 0, -1); } } else { if(rotated==false) { FillVector3D(origin, zPosition, width, 0); FillVector3D(rightDV, 0, -1, 0); FillVector3D(bottomDV, 0, 0, 1); } else { FillVector3D(origin, zPosition, 0, height); FillVector3D(rightDV, 0, 1, 0); FillVector3D(bottomDV, 0, 0, -1); } } normalDirection = 0; break; default: itkExceptionMacro("unknown PlaneOrientation"); } if ( transform != NULL ) { origin = transform->TransformPoint( origin ); rightDV = transform->TransformVector( rightDV ); bottomDV = transform->TransformVector( bottomDV ); } ScalarType bounds[6]= { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); if ( transform == NULL ) { this->SetMatrixByVectors( rightDV, bottomDV ); } else { this->SetMatrixByVectors( rightDV, bottomDV, transform->GetMatrix().GetVnlMatrix() .get_column(normalDirection).magnitude() ); } this->SetOrigin(origin); } void PlaneGeometry::InitializeStandardPlane( const Geometry3D *geometry3D, PlaneOrientation planeorientation, ScalarType zPosition, bool frontside, bool rotated ) { this->SetReferenceGeometry( const_cast< Geometry3D * >( geometry3D ) ); ScalarType width, height; const BoundingBox::BoundsArrayType& boundsarray = geometry3D->GetBoundingBox()->GetBounds(); Vector3D originVector; FillVector3D(originVector, boundsarray[0], boundsarray[2], boundsarray[4]); if(geometry3D->GetImageGeometry()) { FillVector3D( originVector, originVector[0] - 0.5, originVector[1] - 0.5, originVector[2] - 0.5 ); } switch(planeorientation) { case Axial: width = geometry3D->GetExtent(0); height = geometry3D->GetExtent(1); break; case Frontal: width = geometry3D->GetExtent(0); height = geometry3D->GetExtent(2); break; case Sagittal: width = geometry3D->GetExtent(1); height = geometry3D->GetExtent(2); break; default: itkExceptionMacro("unknown PlaneOrientation"); } InitializeStandardPlane( width, height, geometry3D->GetIndexToWorldTransform(), planeorientation, zPosition, frontside, rotated ); ScalarType bounds[6]= { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); Point3D origin; originVector = geometry3D->GetIndexToWorldTransform() ->TransformVector( originVector ); origin = GetOrigin() + originVector; SetOrigin(origin); } void PlaneGeometry::InitializeStandardPlane( const Geometry3D *geometry3D, bool top, PlaneOrientation planeorientation, bool frontside, bool rotated ) { ScalarType zPosition; switch(planeorientation) { case Axial: zPosition = (top ? 0.5 : geometry3D->GetExtent(2)-1+0.5); break; case Frontal: zPosition = (top ? 0.5 : geometry3D->GetExtent(1)-1+0.5); break; case Sagittal: zPosition = (top ? 0.5 : geometry3D->GetExtent(0)-1+0.5); break; default: itkExceptionMacro("unknown PlaneOrientation"); } InitializeStandardPlane( geometry3D, planeorientation, zPosition, frontside, rotated ); } void PlaneGeometry::InitializeStandardPlane( const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing ) { InitializeStandardPlane( rightVector.Get_vnl_vector(), downVector.Get_vnl_vector(), spacing ); } void PlaneGeometry::InitializeStandardPlane( const VnlVector& rightVector, const VnlVector &downVector, const Vector3D *spacing ) { ScalarType width = rightVector.magnitude(); ScalarType height = downVector.magnitude(); InitializeStandardPlane( width, height, rightVector, downVector, spacing ); } void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const Vector3D &rightVector, const Vector3D &downVector, const Vector3D *spacing ) { InitializeStandardPlane( width, height, rightVector.Get_vnl_vector(), downVector.Get_vnl_vector(), spacing ); } void PlaneGeometry::InitializeStandardPlane( mitk::ScalarType width, ScalarType height, const VnlVector &rightVector, const VnlVector &downVector, const Vector3D *spacing ) { assert(width > 0); assert(height > 0); VnlVector rightDV = rightVector; rightDV.normalize(); VnlVector downDV = downVector; downDV.normalize(); VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); if(spacing!=NULL) { rightDV *= (*spacing)[0]; downDV *= (*spacing)[1]; normal *= (*spacing)[2]; } AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightDV); matrix.GetVnlMatrix().set_column(1, downDV); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(m_IndexToWorldTransform->GetOffset()); ScalarType bounds[6] = { 0, width, 0, height, 0, 1 }; this->SetBounds( bounds ); this->SetIndexToWorldTransform( transform ); } void PlaneGeometry::InitializePlane( const Point3D &origin, const Vector3D &normal ) { VnlVector rightVectorVnl(3), downVectorVnl; if( Equal( normal[1], 0.0f ) == false ) { FillVector3D( rightVectorVnl, 1.0f, -normal[0]/normal[1], 0.0f ); rightVectorVnl.normalize(); } else { FillVector3D( rightVectorVnl, 0.0f, 1.0f, 0.0f ); } downVectorVnl = vnl_cross_3d( normal.Get_vnl_vector(), rightVectorVnl ); downVectorVnl.normalize(); InitializeStandardPlane( rightVectorVnl, downVectorVnl ); SetOrigin(origin); } void PlaneGeometry::SetMatrixByVectors( const VnlVector &rightVector, const VnlVector &downVector, ScalarType thickness ) { VnlVector normal = vnl_cross_3d(rightVector, downVector); normal.normalize(); normal *= thickness; AffineTransform3D::Pointer transform = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, rightVector); matrix.GetVnlMatrix().set_column(1, downVector); matrix.GetVnlMatrix().set_column(2, normal); transform->SetMatrix(matrix); transform->SetOffset(m_IndexToWorldTransform->GetOffset()); SetIndexToWorldTransform(transform); } Vector3D PlaneGeometry::GetNormal() const { Vector3D frontToBack; frontToBack.Set_vnl_vector( m_IndexToWorldTransform ->GetMatrix().GetVnlMatrix().get_column(2) ); return frontToBack; } VnlVector PlaneGeometry::GetNormalVnl() const { return m_IndexToWorldTransform ->GetMatrix().GetVnlMatrix().get_column(2); } ScalarType PlaneGeometry::DistanceFromPlane( const Point3D &pt3d_mm ) const { return fabs(SignedDistance( pt3d_mm )); } ScalarType PlaneGeometry::SignedDistance( const Point3D &pt3d_mm ) const { return SignedDistanceFromPlane(pt3d_mm); } bool PlaneGeometry::IsAbove( const Point3D &pt3d_mm ) const { return SignedDistanceFromPlane(pt3d_mm) > 0; } bool PlaneGeometry::IntersectionLine( const PlaneGeometry* plane, Line3D& crossline ) const { Vector3D normal = this->GetNormal(); normal.Normalize(); Vector3D planeNormal = plane->GetNormal(); planeNormal.Normalize(); Vector3D direction = itk::CrossProduct( normal, planeNormal ); if ( direction.GetSquaredNorm() < eps ) return false; crossline.SetDirection( direction ); double N1dN2 = normal * planeNormal; double determinant = 1.0 - N1dN2 * N1dN2; Vector3D origin = this->GetOrigin().GetVectorFromOrigin(); Vector3D planeOrigin = plane->GetOrigin().GetVectorFromOrigin(); double d1 = normal * origin; double d2 = planeNormal * planeOrigin; double c1 = ( d1 - d2 * N1dN2 ) / determinant; double c2 = ( d2 - d1 * N1dN2 ) / determinant; Vector3D p = normal * c1 + planeNormal * c2; crossline.GetPoint().Get_vnl_vector() = p.Get_vnl_vector(); return true; } unsigned int PlaneGeometry::IntersectWithPlane2D( const PlaneGeometry* plane, Point2D& lineFrom, Point2D &lineTo ) const { Line3D crossline; if ( this->IntersectionLine( plane, crossline ) == false ) return 0; Point2D point2; Vector2D direction2; this->Map( crossline.GetPoint(), point2 ); this->Map( crossline.GetPoint(), crossline.GetDirection(), direction2 ); return Line3D::RectangleLineIntersection( 0, 0, GetExtentInMM(0), GetExtentInMM(1), point2, direction2, lineFrom, lineTo ); } double PlaneGeometry::Angle( const PlaneGeometry *plane ) const { return angle(plane->GetMatrixColumn(2), GetMatrixColumn(2)); } double PlaneGeometry::Angle( const Line3D &line ) const { return vnl_math::pi_over_2 - angle( line.GetDirection().Get_vnl_vector(), GetMatrixColumn(2) ); } bool PlaneGeometry::IntersectionPoint( const Line3D &line, Point3D &intersectionPoint ) const { Vector3D planeNormal = this->GetNormal(); planeNormal.Normalize(); Vector3D lineDirection = line.GetDirection(); lineDirection.Normalize(); double t = planeNormal * lineDirection; if ( fabs( t ) < eps ) { return false; } Vector3D diff; diff = this->GetOrigin() - line.GetPoint(); t = ( planeNormal * diff ) / t; intersectionPoint = line.GetPoint() + lineDirection * t; return true; } bool PlaneGeometry::IntersectionPointParam( const Line3D &line, double &t ) const { Vector3D planeNormal = this->GetNormal(); Vector3D lineDirection = line.GetDirection(); t = planeNormal * lineDirection; if ( fabs( t ) < eps ) { return false; } Vector3D diff; diff = this->GetOrigin() - line.GetPoint(); t = ( planeNormal * diff ) / t; return true; } bool PlaneGeometry::IsParallel( const PlaneGeometry *plane ) const { return ( (Angle(plane) < 10.0 * mitk::sqrteps ) || ( Angle(plane) > ( vnl_math::pi - 10.0 * sqrteps ) ) ) ; } bool PlaneGeometry::IsOnPlane( const Point3D &point ) const { return Distance(point) < eps; } bool PlaneGeometry::IsOnPlane( const Line3D &line ) const { return ( (Distance( line.GetPoint() ) < eps) && (Distance( line.GetPoint2() ) < eps) ); } bool PlaneGeometry::IsOnPlane( const PlaneGeometry *plane ) const { return ( IsParallel( plane ) && (Distance( plane->GetOrigin() ) < eps) ); } Point3D PlaneGeometry::ProjectPointOntoPlane( const Point3D& pt ) const { ScalarType len = this->GetNormalVnl().two_norm(); return pt - this->GetNormal() * this->SignedDistanceFromPlane( pt ) / len; } -AffineGeometryFrame3D::Pointer +Geometry3D::Pointer PlaneGeometry::Clone() const { Self::Pointer newGeometry = new PlaneGeometry(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void PlaneGeometry::ExecuteOperation( Operation *operation ) { vtkTransform *transform = vtkTransform::New(); transform->SetMatrix( m_VtkMatrix ); switch ( operation->GetOperationType() ) { case OpORIENT: { mitk::PlaneOperation *planeOp = dynamic_cast< mitk::PlaneOperation * >( operation ); if ( planeOp == NULL ) { return; } Point3D center = planeOp->GetPoint(); Vector3D orientationVector = planeOp->GetNormal(); Vector3D defaultVector; FillVector3D( defaultVector, 0.0, 0.0, 1.0 ); Vector3D rotationAxis = itk::CrossProduct( orientationVector, defaultVector ); //vtkFloatingPointType rotationAngle = acos( orientationVector[2] / orientationVector.GetNorm() ); vtkFloatingPointType rotationAngle = atan2( (double) rotationAxis.GetNorm(), (double) (orientationVector * defaultVector) ); rotationAngle *= 180.0 / vnl_math::pi; transform->PostMultiply(); transform->Identity(); transform->Translate( center[0], center[1], center[2] ); transform->RotateWXYZ( rotationAngle, rotationAxis[0], rotationAxis[1], rotationAxis[2] ); transform->Translate( -center[0], -center[1], -center[2] ); break; } case OpRESTOREPLANEPOSITION: { RestorePlanePositionOperation *op = dynamic_cast< mitk::RestorePlanePositionOperation* >(operation); if(op == NULL) { return; } AffineTransform3D::Pointer transform2 = AffineTransform3D::New(); Matrix3D matrix; matrix.GetVnlMatrix().set_column(0, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(0)); matrix.GetVnlMatrix().set_column(1, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(1)); matrix.GetVnlMatrix().set_column(2, op->GetTransform()->GetMatrix().GetVnlMatrix().get_column(2)); transform2->SetMatrix(matrix); Vector3D offset = op->GetTransform()->GetOffset(); transform2->SetOffset(offset); this->SetIndexToWorldTransform(transform2); ScalarType bounds[6] = {0, op->GetWidth(), 0, op->GetHeight(), 0 ,1 }; this->SetBounds(bounds); TransferItkToVtkTransform(); this->Modified(); transform->Delete(); return; } default: Superclass::ExecuteOperation( operation ); transform->Delete(); return; } m_VtkMatrix->DeepCopy(transform->GetMatrix()); this->TransferVtkToItkTransform(); this->Modified(); transform->Delete(); } void PlaneGeometry::PrintSelf( std::ostream& os, itk::Indent indent ) const { Superclass::PrintSelf(os,indent); os << indent << " Normal: " << GetNormal() << std::endl; } } // namespace diff --git a/Core/Code/DataManagement/mitkPlaneGeometry.h b/Core/Code/DataManagement/mitkPlaneGeometry.h index 51b3a13829..de9533dd44 100644 --- a/Core/Code/DataManagement/mitkPlaneGeometry.h +++ b/Core/Code/DataManagement/mitkPlaneGeometry.h @@ -1,434 +1,434 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef PLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #define PLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #include #include "mitkGeometry2D.h" #include "mitkRestorePlanePositionOperation.h" #include namespace mitk { template < class TCoordRep, unsigned int NPointDimension > class Line; typedef Line Line3D; /** * \brief Describes a two-dimensional, rectangular plane * * \ingroup Geometry */ class MITK_CORE_EXPORT PlaneGeometry : public Geometry2D { public: mitkClassMacro(PlaneGeometry,Geometry2D); /** Method for creation through the object factory. */ itkNewMacro(Self); enum PlaneOrientation { #ifdef _MSC_VER Transversal, // deprecated #endif Axial = 0, Sagittal, Frontal }; #ifdef __GNUC__ __attribute__ ((deprecated)) static const PlaneOrientation Transversal = PlaneOrientation(Axial); #endif virtual void IndexToWorld(const Point2D &pt_units, Point2D &pt_mm) const; virtual void WorldToIndex(const Point2D &pt_mm, Point2D &pt_units) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## @deprecated First parameter (Point2D) is not used. If possible, please use void IndexToWorld(const mitk::Vector2D& vec_units, mitk::Vector2D& vec_mm) const. //## For further information about coordinates types, please see the Geometry documentation virtual void IndexToWorld(const mitk::Point2D &atPt2d_untis, const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; //##Documentation //## @brief Convert (continuous or discrete) index coordinates of a \em vector //## \a vec_units to world coordinates (in mm) //## For further information about coordinates types, please see the Geometry documentation virtual void IndexToWorld(const mitk::Vector2D &vec_units, mitk::Vector2D &vec_mm) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## @deprecated First parameter (Point2D) is not used. If possible, please use void WorldToIndex(const mitk::Vector2D& vec_mm, mitk::Vector2D& vec_units) const. //## For further information about coordinates types, please see the Geometry documentation virtual void WorldToIndex(const mitk::Point2D &atPt2d_mm, const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; //##Documentation //## @brief Convert world coordinates (in mm) of a \em vector //## \a vec_mm to (continuous!) index coordinates. //## For further information about coordinates types, please see the Geometry documentation virtual void WorldToIndex(const mitk::Vector2D &vec_mm, mitk::Vector2D &vec_units) const; virtual void Initialize(); /** * \brief Initialize a plane with orientation \a planeorientation * (default: axial) with respect to \a geometry3D (default: identity). * Spacing also taken from \a geometry3D. * * \warning A former version of this method created a geometry with unit * spacing. For unit spacing use * * \code * // for in-plane unit spacing: * thisgeometry->SetSizeInUnits(thisgeometry->GetExtentInMM(0), * thisgeometry->GetExtentInMM(1)); * // additionally, for unit spacing in normal direction (former version * // did not do this): * thisgeometry->SetExtentInMM(2, 1.0); * \endcode */ virtual void InitializeStandardPlane( const Geometry3D* geometry3D, PlaneOrientation planeorientation = Axial, ScalarType zPosition = 0, bool frontside=true, bool rotated=false ); /** * \brief Initialize a plane with orientation \a planeorientation * (default: axial) with respect to \a geometry3D (default: identity). * Spacing also taken from \a geometry3D. * * \param top if \a true, create plane at top, otherwise at bottom * (for PlaneOrientation Axial, for other plane locations respectively) */ virtual void InitializeStandardPlane( const Geometry3D* geometry3D, bool top, PlaneOrientation planeorientation = Axial, bool frontside=true, bool rotated=false ); /** * \brief Initialize a plane with orientation \a planeorientation * (default: axial) with respect to \a transform (default: identity) * given width and height in units. * */ virtual void InitializeStandardPlane( ScalarType width, ScalarType height, const AffineTransform3D* transform = NULL, PlaneOrientation planeorientation = Axial, ScalarType zPosition = 0, bool frontside=true, bool rotated=false ); /** * \brief Initialize plane with orientation \a planeorientation * (default: axial) given width, height and spacing. * */ virtual void InitializeStandardPlane( ScalarType width, ScalarType height, const Vector3D & spacing, PlaneOrientation planeorientation = Axial, ScalarType zPosition = 0, bool frontside = true, bool rotated = false ); /** * \brief Initialize plane by width and height in pixels, right-/down-vector * (itk) to describe orientation in world-space (vectors will be normalized) * and spacing (default: 1.0 mm in all directions). * * The vectors are normalized and multiplied by the respective spacing before * they are set in the matrix. */ virtual void InitializeStandardPlane( ScalarType width, ScalarType height, const Vector3D& rightVector, const Vector3D& downVector, const Vector3D *spacing = NULL ); /** * \brief Initialize plane by width and height in pixels, * right-/down-vector (vnl) to describe orientation in world-space (vectors * will be normalized) and spacing (default: 1.0 mm in all directions). * * The vectors are normalized and multiplied by the respective spacing * before they are set in the matrix. */ virtual void InitializeStandardPlane( ScalarType width, ScalarType height, const VnlVector& rightVector, const VnlVector& downVector, const Vector3D * spacing = NULL ); /** * \brief Initialize plane by right-/down-vector (itk) and spacing * (default: 1.0 mm in all directions). * * The length of the right-/-down-vector is used as width/height in units, * respectively. Then, the vectors are normalized and multiplied by the * respective spacing before they are set in the matrix. */ virtual void InitializeStandardPlane( const Vector3D& rightVector, const Vector3D& downVector, const Vector3D * spacing = NULL ); /** * \brief Initialize plane by right-/down-vector (vnl) and spacing * (default: 1.0 mm in all directions). * * The length of the right-/-down-vector is used as width/height in units, * respectively. Then, the vectors are normalized and multiplied by the * respective spacing before they are set in the matrix. */ virtual void InitializeStandardPlane( const VnlVector& rightVector, const VnlVector& downVector, const Vector3D * spacing = NULL ); /** * \brief Initialize plane by origin and normal (size is 1.0 mm in * all directions, direction of right-/down-vector valid but * undefined). * */ virtual void InitializePlane( const Point3D& origin, const Vector3D& normal); /** * \brief Initialize plane by right-/down-vector. * * \warning The vectors are set into the matrix as they are, * \em without normalization! */ void SetMatrixByVectors( const VnlVector& rightVector, const VnlVector& downVector, ScalarType thickness=1.0 ); /** * \brief Change \a transform so that the third column of the * transform-martix is perpendicular to the first two columns * */ static void EnsurePerpendicularNormal( AffineTransform3D* transform ); /** * \brief Normal of the plane * */ Vector3D GetNormal() const; /** * \brief Normal of the plane as VnlVector * */ VnlVector GetNormalVnl() const; virtual ScalarType SignedDistance( const Point3D& pt3d_mm ) const; virtual bool IsAbove( const Point3D& pt3d_mm ) const; /** * \brief Distance of the point from the plane * (bounding-box \em not considered) * */ ScalarType DistanceFromPlane( const Point3D& pt3d_mm ) const ; /** * \brief Signed distance of the point from the plane * (bounding-box \em not considered) * * > 0 : point is in the direction of the direction vector. */ inline ScalarType SignedDistanceFromPlane( const Point3D& pt3d_mm ) const { ScalarType len = GetNormalVnl().two_norm(); if( len == 0 ) return 0; return (pt3d_mm-GetOrigin())*GetNormal() / len; } /** * \brief Distance of the plane from another plane * (bounding-box \em not considered) * * Result is 0 if planes are not parallel. */ ScalarType DistanceFromPlane(const PlaneGeometry* plane) const { return fabs(SignedDistanceFromPlane(plane)); } /** * \brief Signed distance of the plane from another plane * (bounding-box \em not considered) * * Result is 0 if planes are not parallel. */ inline ScalarType SignedDistanceFromPlane( const PlaneGeometry *plane ) const { if(IsParallel(plane)) { return SignedDistance(plane->GetOrigin()); } return 0; } /** * \brief Calculate the intersecting line of two planes * * \return \a true planes are intersecting * \return \a false planes do not intersect */ bool IntersectionLine( const PlaneGeometry *plane, Line3D &crossline ) const; /** * \brief Calculate two points where another plane intersects the border of this plane * * \return number of intersection points (0..2). First interection point (if existing) * is returned in \a lineFrom, second in \a lineTo. */ unsigned int IntersectWithPlane2D(const PlaneGeometry *plane, Point2D &lineFrom, Point2D &lineTo ) const ; /** * \brief Calculate the angle between two planes * * \return angle in radiants */ double Angle( const PlaneGeometry *plane ) const; /** * \brief Calculate the angle between the plane and a line * * \return angle in radiants */ double Angle( const Line3D &line ) const; /** * \brief Calculate intersection point between the plane and a line * * \param intersectionPoint intersection point * \return \a true if \em unique intersection exists, i.e., if line * is \em not on or parallel to the plane */ bool IntersectionPoint( const Line3D &line, Point3D &intersectionPoint ) const; /** * \brief Calculate line parameter of intersection point between the * plane and a line * * \param t parameter of line: intersection point is * line.GetPoint()+t*line.GetDirection() * \return \a true if \em unique intersection exists, i.e., if line * is \em not on or parallel to the plane */ bool IntersectionPointParam( const Line3D &line, double &t ) const; /** * \brief Returns whether the plane is parallel to another plane * * @return true iff the normal vectors both point to the same or exactly oposit direction */ bool IsParallel( const PlaneGeometry *plane ) const; /** * \brief Returns whether the point is on the plane * (bounding-box \em not considered) */ bool IsOnPlane( const Point3D &point ) const; /** * \brief Returns whether the line is on the plane * (bounding-box \em not considered) */ bool IsOnPlane( const Line3D &line ) const; /** * \brief Returns whether the plane is on the plane * (bounding-box \em not considered) * * @return true iff the normal vector of the planes point to the same or the exactly oposit direction and * the distance of the planes is < eps * */ bool IsOnPlane( const PlaneGeometry *plane ) const; /** * \brief Returns the lot from the point to the plane */ Point3D ProjectPointOntoPlane( const Point3D &pt ) const; virtual void SetIndexToWorldTransform( AffineTransform3D *transform); virtual void SetBounds( const BoundingBox::BoundsArrayType &bounds ); - AffineGeometryFrame3D::Pointer Clone() const; + Geometry3D::Pointer Clone() const; /** Implements operation to re-orient the plane */ virtual void ExecuteOperation( Operation *operation ); protected: PlaneGeometry(); virtual ~PlaneGeometry(); virtual void PrintSelf( std::ostream &os, itk::Indent indent ) const; private: /** * \brief Compares plane with another plane: \a true if IsOnPlane * (bounding-box \em not considered) */ virtual bool operator==( const PlaneGeometry * ) const { return false; }; /** * \brief Compares plane with another plane: \a false if IsOnPlane * (bounding-box \em not considered) */ virtual bool operator!=( const PlaneGeometry * ) const { return false; }; }; } // namespace mitk #endif /* PLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C */ diff --git a/Core/Code/DataManagement/mitkProportionalTimeGeometry.cpp b/Core/Code/DataManagement/mitkProportionalTimeGeometry.cpp index d59278d8f4..754b834354 100644 --- a/Core/Code/DataManagement/mitkProportionalTimeGeometry.cpp +++ b/Core/Code/DataManagement/mitkProportionalTimeGeometry.cpp @@ -1,210 +1,209 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include mitk::ProportionalTimeGeometry::ProportionalTimeGeometry() : m_FirstTimePoint(0.0), m_StepDuration(1.0) { } mitk::ProportionalTimeGeometry::~ProportionalTimeGeometry() { } void mitk::ProportionalTimeGeometry::Initialize() { m_FirstTimePoint = 0.0; m_StepDuration = 1.0; } mitk::TimeStepType mitk::ProportionalTimeGeometry::GetNumberOfTimeSteps () const { return static_cast(m_GeometryVector.size() ); } mitk::TimePointType mitk::ProportionalTimeGeometry::GetMinimumTimePoint () const { return m_FirstTimePoint; } mitk::TimePointType mitk::ProportionalTimeGeometry::GetMaximumTimePoint () const { return m_FirstTimePoint + m_StepDuration * GetNumberOfTimeSteps(); } mitk::TimeBounds mitk::ProportionalTimeGeometry::GetTimeBounds () const { TimeBounds bounds; bounds[0] = this->GetMinimumTimePoint(); bounds[1] = this->GetMaximumTimePoint(); return bounds; } bool mitk::ProportionalTimeGeometry::IsValidTimePoint (TimePointType timePoint) const { return this->GetMinimumTimePoint() <= timePoint && timePoint < this->GetMaximumTimePoint(); } bool mitk::ProportionalTimeGeometry::IsValidTimeStep (TimeStepType timeStep) const { return 0 <= timeStep && timeStep < this->GetNumberOfTimeSteps(); } mitk::TimePointType mitk::ProportionalTimeGeometry::TimeStepToTimePoint( TimeStepType timeStep) const { if (m_FirstTimePoint <= std::numeric_limits::min() || m_FirstTimePoint >= std::numeric_limits::max() || m_StepDuration <= std::numeric_limits::min() || m_StepDuration >= std::numeric_limits::max()) { return static_cast(timeStep); } return m_FirstTimePoint + timeStep * m_StepDuration; } mitk::TimeStepType mitk::ProportionalTimeGeometry::TimePointToTimeStep( TimePointType timePoint) const { assert(timePoint >= m_FirstTimePoint); return static_cast((timePoint -m_FirstTimePoint) / m_StepDuration); } mitk::Geometry3D* mitk::ProportionalTimeGeometry::GetGeometryForTimeStep( TimeStepType timeStep) const { if (IsValidTimeStep(timeStep)) { return dynamic_cast(m_GeometryVector[timeStep].GetPointer()); } else { return NULL; } } mitk::Geometry3D* mitk::ProportionalTimeGeometry::GetGeometryForTimePoint(TimePointType timePoint) const { TimeStepType timeStep = this->TimePointToTimeStep(timePoint); return this->GetGeometryForTimeStep(timeStep); } mitk::Geometry3D::Pointer mitk::ProportionalTimeGeometry::GetGeometryCloneForTimeStep( TimeStepType timeStep) const { return m_GeometryVector[timeStep].GetPointer(); } bool mitk::ProportionalTimeGeometry::IsValid() { bool isValid = true; isValid &= m_GeometryVector.size() > 0; isValid &= m_StepDuration > 0; return isValid; } void mitk::ProportionalTimeGeometry::ClearAllGeometries() { m_GeometryVector.clear(); } void mitk::ProportionalTimeGeometry::ReserveSpaceForGeometries(TimeStepType numberOfGeometries) { m_GeometryVector.reserve(numberOfGeometries); } void mitk::ProportionalTimeGeometry::Expand(mitk::TimeStepType size) { m_GeometryVector.reserve(size); while (m_GeometryVector.size() < size) { m_GeometryVector.push_back(Geometry3D::New()); } } void mitk::ProportionalTimeGeometry::SetTimeStepGeometry(Geometry3D *geometry, TimeStepType timeStep) { assert(timeStep<=m_GeometryVector.size()); assert(timeStep >= 0); if (timeStep == m_GeometryVector.size()) m_GeometryVector.push_back(geometry); m_GeometryVector[timeStep] = geometry; } mitk::TimeGeometry::Pointer mitk::ProportionalTimeGeometry::Clone() const { ProportionalTimeGeometry::Pointer newTimeGeometry = ProportionalTimeGeometry::New(); newTimeGeometry->m_BoundingBox = m_BoundingBox->DeepCopy(); newTimeGeometry->m_FirstTimePoint = this->m_FirstTimePoint; newTimeGeometry->m_StepDuration = this->m_StepDuration; newTimeGeometry->m_GeometryVector.clear(); newTimeGeometry->Expand(this->GetNumberOfTimeSteps()); for (TimeStepType i =0; i < GetNumberOfTimeSteps(); ++i) { - AffineGeometryFrame3D::Pointer pointer = GetGeometryForTimeStep(i)->Clone(); - Geometry3D* tempGeometry = dynamic_cast (pointer.GetPointer()); - newTimeGeometry->SetTimeStepGeometry(tempGeometry,i); + Geometry3D::Pointer tempGeometry = GetGeometryForTimeStep(i)->Clone(); + newTimeGeometry->SetTimeStepGeometry(tempGeometry.GetPointer(),i); } TimeGeometry::Pointer finalPointer = dynamic_cast(newTimeGeometry.GetPointer()); return finalPointer; } void mitk::ProportionalTimeGeometry::Initialize (Geometry3D * geometry, TimeStepType timeSteps) { timeSteps = (timeSteps > 0) ? timeSteps : 1; m_FirstTimePoint = geometry->GetTimeBounds()[0]; m_StepDuration = geometry->GetTimeBounds()[1] - geometry->GetTimeBounds()[0]; this->ReserveSpaceForGeometries(timeSteps); try{ for (TimeStepType currentStep = 0; currentStep < timeSteps; ++currentStep) { mitk::TimeBounds timeBounds; if (timeSteps > 1) { timeBounds[0] = m_FirstTimePoint + currentStep * m_StepDuration; timeBounds[1] = m_FirstTimePoint + (currentStep+1) * m_StepDuration; } else { timeBounds = geometry->GetTimeBounds(); } - AffineGeometryFrame3D::Pointer clonedGeometry = geometry->Clone(); - this->SetTimeStepGeometry(dynamic_cast (clonedGeometry.GetPointer()), currentStep); + Geometry3D::Pointer clonedGeometry = geometry->Clone(); + this->SetTimeStepGeometry(clonedGeometry.GetPointer(), currentStep); GetGeometryForTimeStep(currentStep)->SetTimeBounds(timeBounds); } } catch (...) { MITK_INFO << "Cloning of geometry produced an error!"; } Update(); } void mitk::ProportionalTimeGeometry::Initialize (TimeStepType timeSteps) { mitk::Geometry3D::Pointer geometry = mitk::Geometry3D::New(); geometry->Initialize(); if ( timeSteps > 1 ) { mitk::ScalarType timeBounds[] = {0.0, 1.0}; geometry->SetTimeBounds( timeBounds ); } this->Initialize(geometry.GetPointer(), timeSteps); } diff --git a/Core/Code/DataManagement/mitkSlicedGeometry3D.cpp b/Core/Code/DataManagement/mitkSlicedGeometry3D.cpp index ae8fdd38a6..7674d65776 100644 --- a/Core/Code/DataManagement/mitkSlicedGeometry3D.cpp +++ b/Core/Code/DataManagement/mitkSlicedGeometry3D.cpp @@ -1,1026 +1,1026 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkSlicedGeometry3D.h" #include "mitkPlaneGeometry.h" #include "mitkRotationOperation.h" #include "mitkPlaneOperation.h" #include "mitkRestorePlanePositionOperation.h" #include "mitkInteractionConst.h" #include "mitkSliceNavigationController.h" const float PI = 3.14159265359; mitk::SlicedGeometry3D::SlicedGeometry3D() : m_EvenlySpaced( true ), m_Slices( 0 ), m_ReferenceGeometry( NULL ), m_SliceNavigationController( NULL ) { m_DirectionVector.Fill(0); this->InitializeSlicedGeometry( m_Slices ); } mitk::SlicedGeometry3D::SlicedGeometry3D(const SlicedGeometry3D& other) : Superclass(other), m_EvenlySpaced( other.m_EvenlySpaced ), m_Slices( other.m_Slices ), m_ReferenceGeometry( other.m_ReferenceGeometry ), m_SliceNavigationController( other.m_SliceNavigationController ) { m_DirectionVector.Fill(0); SetSpacing( other.GetSpacing() ); SetDirectionVector( other.GetDirectionVector() ); if ( m_EvenlySpaced ) { - AffineGeometryFrame3D::Pointer geometry = other.m_Geometry2Ds[0]->Clone(); + Geometry3D::Pointer geometry = other.m_Geometry2Ds[0]->Clone(); Geometry2D* geometry2D = dynamic_cast(geometry.GetPointer()); assert(geometry2D!=NULL); SetGeometry2D(geometry2D, 0); } else { unsigned int s; for ( s = 0; s < other.m_Slices; ++s ) { if ( other.m_Geometry2Ds[s].IsNull() ) { assert(other.m_EvenlySpaced); m_Geometry2Ds[s] = NULL; } else { - AffineGeometryFrame3D::Pointer geometry = other.m_Geometry2Ds[s]->Clone(); + Geometry3D::Pointer geometry = other.m_Geometry2Ds[s]->Clone(); Geometry2D* geometry2D = dynamic_cast(geometry.GetPointer()); assert(geometry2D!=NULL); SetGeometry2D(geometry2D, s); } } } } mitk::SlicedGeometry3D::~SlicedGeometry3D() { } mitk::Geometry2D * mitk::SlicedGeometry3D::GetGeometry2D( int s ) const { mitk::Geometry2D::Pointer geometry2D = NULL; if ( this->IsValidSlice(s) ) { geometry2D = m_Geometry2Ds[s]; // If (a) m_EvenlySpaced==true, (b) we don't have a Geometry2D stored // for the requested slice, and (c) the first slice (s=0) // is a PlaneGeometry instance, then we calculate the geometry of the // requested as the plane of the first slice shifted by m_Spacing[2]*s // in the direction of m_DirectionVector. if ( (m_EvenlySpaced) && (geometry2D.IsNull()) ) { PlaneGeometry *firstSlice = dynamic_cast< PlaneGeometry * > ( m_Geometry2Ds[0].GetPointer() ); if ( firstSlice != NULL ) { if ( (m_DirectionVector[0] == 0.0) && (m_DirectionVector[1] == 0.0) && (m_DirectionVector[2] == 0.0) ) { m_DirectionVector = firstSlice->GetNormal(); m_DirectionVector.Normalize(); } Vector3D direction; direction = m_DirectionVector * m_Spacing[2]; mitk::PlaneGeometry::Pointer requestedslice; requestedslice = static_cast< mitk::PlaneGeometry * >( firstSlice->Clone().GetPointer() ); requestedslice->SetOrigin( requestedslice->GetOrigin() + direction * s ); geometry2D = requestedslice; m_Geometry2Ds[s] = geometry2D; } } return geometry2D; } else { return NULL; } } const mitk::BoundingBox * mitk::SlicedGeometry3D::GetBoundingBox() const { assert(m_BoundingBox.IsNotNull()); return m_BoundingBox.GetPointer(); } bool mitk::SlicedGeometry3D::SetGeometry2D( mitk::Geometry2D *geometry2D, int s ) { if ( this->IsValidSlice(s) ) { m_Geometry2Ds[s] = geometry2D; m_Geometry2Ds[s]->SetReferenceGeometry( m_ReferenceGeometry ); return true; } return false; } void mitk::SlicedGeometry3D::InitializeSlicedGeometry( unsigned int slices ) { Superclass::Initialize(); m_Slices = slices; Geometry2D::Pointer gnull = NULL; m_Geometry2Ds.assign( m_Slices, gnull ); Vector3D spacing; spacing.Fill( 1.0 ); this->SetSpacing( spacing ); m_DirectionVector.Fill( 0 ); } void mitk::SlicedGeometry3D::InitializeEvenlySpaced( mitk::Geometry2D* geometry2D, unsigned int slices, bool flipped ) { assert( geometry2D != NULL ); this->InitializeEvenlySpaced( geometry2D, geometry2D->GetExtentInMM(2)/geometry2D->GetExtent(2), slices, flipped ); } void mitk::SlicedGeometry3D::InitializeEvenlySpaced( mitk::Geometry2D* geometry2D, mitk::ScalarType zSpacing, unsigned int slices, bool flipped ) { assert( geometry2D != NULL ); assert( geometry2D->GetExtent(0) > 0 ); assert( geometry2D->GetExtent(1) > 0 ); geometry2D->Register(); Superclass::Initialize(); m_Slices = slices; BoundingBox::BoundsArrayType bounds = geometry2D->GetBounds(); bounds[4] = 0; bounds[5] = slices; // clear and reserve Geometry2D::Pointer gnull = NULL; m_Geometry2Ds.assign( m_Slices, gnull ); Vector3D directionVector = geometry2D->GetAxisVector(2); directionVector.Normalize(); directionVector *= zSpacing; if ( flipped == false ) { // Normally we should use the following four lines to create a copy of // the transform contrained in geometry2D, because it may not be changed // by us. But we know that SetSpacing creates a new transform without // changing the old (coming from geometry2D), so we can use the fifth // line instead. We check this at (**). // // AffineTransform3D::Pointer transform = AffineTransform3D::New(); // transform->SetMatrix(geometry2D->GetIndexToWorldTransform()->GetMatrix()); // transform->SetOffset(geometry2D->GetIndexToWorldTransform()->GetOffset()); // SetIndexToWorldTransform(transform); m_IndexToWorldTransform = const_cast< AffineTransform3D * >( geometry2D->GetIndexToWorldTransform() ); } else { directionVector *= -1.0; m_IndexToWorldTransform = AffineTransform3D::New(); m_IndexToWorldTransform->SetMatrix( geometry2D->GetIndexToWorldTransform()->GetMatrix() ); AffineTransform3D::OutputVectorType scaleVector; FillVector3D(scaleVector, 1.0, 1.0, -1.0); m_IndexToWorldTransform->Scale(scaleVector, true); m_IndexToWorldTransform->SetOffset( geometry2D->GetIndexToWorldTransform()->GetOffset() ); } mitk::Vector3D spacing; FillVector3D( spacing, geometry2D->GetExtentInMM(0) / bounds[1], geometry2D->GetExtentInMM(1) / bounds[3], zSpacing ); // Ensure that spacing differs from m_Spacing to make SetSpacing change the // matrix. m_Spacing[2] = zSpacing - 1; this->SetDirectionVector( directionVector ); this->SetBounds( bounds ); this->SetGeometry2D( geometry2D, 0 ); this->SetSpacing( spacing ); this->SetEvenlySpaced(); this->SetTimeBounds( geometry2D->GetTimeBounds() ); assert(m_IndexToWorldTransform.GetPointer() != geometry2D->GetIndexToWorldTransform()); // (**) see above. this->SetFrameOfReferenceID( geometry2D->GetFrameOfReferenceID() ); this->SetImageGeometry( geometry2D->GetImageGeometry() ); geometry2D->UnRegister(); } void mitk::SlicedGeometry3D::InitializePlanes( const mitk::Geometry3D *geometry3D, mitk::PlaneGeometry::PlaneOrientation planeorientation, bool top, bool frontside, bool rotated ) { m_ReferenceGeometry = const_cast< Geometry3D * >( geometry3D ); PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane( geometry3D, top, planeorientation, frontside, rotated ); ScalarType viewSpacing = 1; unsigned int slices = 1; switch ( planeorientation ) { case PlaneGeometry::Axial: viewSpacing = geometry3D->GetSpacing()[2]; slices = (unsigned int) geometry3D->GetExtent( 2 ); break; case PlaneGeometry::Frontal: viewSpacing = geometry3D->GetSpacing()[1]; slices = (unsigned int) geometry3D->GetExtent( 1 ); break; case PlaneGeometry::Sagittal: viewSpacing = geometry3D->GetSpacing()[0]; slices = (unsigned int) geometry3D->GetExtent( 0 ); break; default: itkExceptionMacro("unknown PlaneOrientation"); } mitk::Vector3D normal = this->AdjustNormal( planeGeometry->GetNormal() ); ScalarType directedExtent = std::abs( m_ReferenceGeometry->GetExtentInMM( 0 ) * normal[0] ) + std::abs( m_ReferenceGeometry->GetExtentInMM( 1 ) * normal[1] ) + std::abs( m_ReferenceGeometry->GetExtentInMM( 2 ) * normal[2] ); if ( directedExtent >= viewSpacing ) { slices = static_cast< int >(directedExtent / viewSpacing + 0.5); } else { slices = 1; } bool flipped = (top == false); if ( frontside == false ) { flipped = !flipped; } if ( planeorientation == PlaneGeometry::Frontal ) { flipped = !flipped; } this->InitializeEvenlySpaced( planeGeometry, viewSpacing, slices, flipped ); } void mitk::SlicedGeometry3D ::ReinitializePlanes( const Point3D ¢er, const Point3D &referencePoint ) { // Need a reference frame to align the rotated planes if ( !m_ReferenceGeometry ) { return; } // Get first plane of plane stack PlaneGeometry *firstPlane = dynamic_cast< PlaneGeometry * >( m_Geometry2Ds[0].GetPointer() ); // If plane stack is empty, exit if ( firstPlane == NULL ) { return; } // Calculate the "directed" spacing when taking the plane (defined by its axes // vectors and normal) as the reference coordinate frame. // // This is done by calculating the radius of the ellipsoid defined by the // original volume spacing axes, in the direction of the respective axis of the // reference frame. mitk::Vector3D axis0 = firstPlane->GetAxisVector(0); mitk::Vector3D axis1 = firstPlane->GetAxisVector(1); mitk::Vector3D normal = firstPlane->GetNormal(); normal.Normalize(); Vector3D spacing; spacing[0] = this->CalculateSpacing( axis0 ); spacing[1] = this->CalculateSpacing( axis1 ); spacing[2] = this->CalculateSpacing( normal ); Superclass::SetSpacing( spacing ); // Now we need to calculate the number of slices in the plane's normal // direction, so that the entire volume is covered. This is done by first // calculating the dot product between the volume diagonal (the maximum // distance inside the volume) and the normal, and dividing this value by // the directed spacing calculated above. ScalarType directedExtent = std::abs( m_ReferenceGeometry->GetExtentInMM( 0 ) * normal[0] ) + std::abs( m_ReferenceGeometry->GetExtentInMM( 1 ) * normal[1] ) + std::abs( m_ReferenceGeometry->GetExtentInMM( 2 ) * normal[2] ); if ( directedExtent >= spacing[2] ) { m_Slices = static_cast< unsigned int >(directedExtent / spacing[2] + 0.5); } else { m_Slices = 1; } // The origin of our "first plane" needs to be adapted to this new extent. // To achieve this, we first calculate the current distance to the volume's // center, and then shift the origin in the direction of the normal by the // difference between this distance and half of the new extent. double centerOfRotationDistance = firstPlane->SignedDistanceFromPlane( center ); if ( centerOfRotationDistance > 0 ) { firstPlane->SetOrigin( firstPlane->GetOrigin() + normal * (centerOfRotationDistance - directedExtent / 2.0) ); m_DirectionVector = normal; } else { firstPlane->SetOrigin( firstPlane->GetOrigin() + normal * (directedExtent / 2.0 + centerOfRotationDistance) ); m_DirectionVector = -normal; } // Now we adjust this distance according with respect to the given reference // point: we need to make sure that the point is touched by one slice of the // new slice stack. double referencePointDistance = firstPlane->SignedDistanceFromPlane( referencePoint ); int referencePointSlice = static_cast< int >( referencePointDistance / spacing[2]); double alignmentValue = referencePointDistance / spacing[2] - referencePointSlice; firstPlane->SetOrigin( firstPlane->GetOrigin() + normal * alignmentValue * spacing[2] ); // Finally, we can clear the previous geometry stack and initialize it with // our re-initialized "first plane". m_Geometry2Ds.assign( m_Slices, Geometry2D::Pointer( NULL ) ); if ( m_Slices > 0 ) { m_Geometry2Ds[0] = firstPlane; } // Reinitialize SNC with new number of slices m_SliceNavigationController->GetSlice()->SetSteps( m_Slices ); this->Modified(); } double mitk::SlicedGeometry3D::CalculateSpacing( const mitk::Vector3D &d ) const { // Need the spacing of the underlying dataset / geometry if ( !m_ReferenceGeometry ) { return 1.0; } const mitk::Vector3D &spacing = m_ReferenceGeometry->GetSpacing(); return SlicedGeometry3D::CalculateSpacing( spacing, d ); } double mitk::SlicedGeometry3D::CalculateSpacing( const mitk::Vector3D spacing, const mitk::Vector3D &d ) { // The following can be derived from the ellipsoid equation // // 1 = x^2/a^2 + y^2/b^2 + z^2/c^2 // // where (a,b,c) = spacing of original volume (ellipsoid radii) // and (x,y,z) = scaled coordinates of vector d (according to ellipsoid) // double scaling = d[0]*d[0] / (spacing[0] * spacing[0]) + d[1]*d[1] / (spacing[1] * spacing[1]) + d[2]*d[2] / (spacing[2] * spacing[2]); scaling = sqrt( scaling ); return ( sqrt( d[0]*d[0] + d[1]*d[1] + d[2]*d[2] ) / scaling ); } mitk::Vector3D mitk::SlicedGeometry3D::AdjustNormal( const mitk::Vector3D &normal ) const { - Geometry3D::TransformType::Pointer inverse = Geometry3D::TransformType::New(); + TransformType::Pointer inverse = TransformType::New(); m_ReferenceGeometry->GetIndexToWorldTransform()->GetInverse( inverse ); Vector3D transformedNormal = inverse->TransformVector( normal ); transformedNormal.Normalize(); return transformedNormal; } void mitk::SlicedGeometry3D::SetImageGeometry( const bool isAnImageGeometry ) { Superclass::SetImageGeometry( isAnImageGeometry ); mitk::Geometry3D* geometry; unsigned int s; for ( s = 0; s < m_Slices; ++s ) { geometry = m_Geometry2Ds[s]; if ( geometry!=NULL ) { geometry->SetImageGeometry( isAnImageGeometry ); } } } void mitk::SlicedGeometry3D::ChangeImageGeometryConsideringOriginOffset( const bool isAnImageGeometry ) { mitk::Geometry3D* geometry; unsigned int s; for ( s = 0; s < m_Slices; ++s ) { geometry = m_Geometry2Ds[s]; if ( geometry!=NULL ) { geometry->ChangeImageGeometryConsideringOriginOffset( isAnImageGeometry ); } } Superclass::ChangeImageGeometryConsideringOriginOffset( isAnImageGeometry ); } bool mitk::SlicedGeometry3D::IsValidSlice( int s ) const { return ((s >= 0) && (s < (int)m_Slices)); } void mitk::SlicedGeometry3D::SetReferenceGeometry( Geometry3D *referenceGeometry ) { m_ReferenceGeometry = referenceGeometry; std::vector::iterator it; for ( it = m_Geometry2Ds.begin(); it != m_Geometry2Ds.end(); ++it ) { (*it)->SetReferenceGeometry( referenceGeometry ); } } void mitk::SlicedGeometry3D::SetSpacing( const mitk::Vector3D &aSpacing ) { bool hasEvenlySpacedPlaneGeometry = false; mitk::Point3D origin; mitk::Vector3D rightDV, bottomDV; BoundingBox::BoundsArrayType bounds; assert(aSpacing[0]>0 && aSpacing[1]>0 && aSpacing[2]>0); // In case of evenly-spaced data: re-initialize instances of Geometry2D, // since the spacing influences them if ((m_EvenlySpaced) && (m_Geometry2Ds.size() > 0)) { mitk::Geometry2D::ConstPointer firstGeometry = m_Geometry2Ds[0].GetPointer(); const PlaneGeometry *planeGeometry = dynamic_cast< const PlaneGeometry * >( firstGeometry.GetPointer() ); if (planeGeometry != NULL ) { this->WorldToIndex( planeGeometry->GetOrigin(), origin ); this->WorldToIndex( planeGeometry->GetAxisVector(0), rightDV ); this->WorldToIndex( planeGeometry->GetAxisVector(1), bottomDV ); bounds = planeGeometry->GetBounds(); hasEvenlySpacedPlaneGeometry = true; } } Superclass::SetSpacing(aSpacing); mitk::Geometry2D::Pointer firstGeometry; // In case of evenly-spaced data: re-initialize instances of Geometry2D, // since the spacing influences them if ( hasEvenlySpacedPlaneGeometry ) { //create planeGeometry according to new spacing this->IndexToWorld( origin, origin ); this->IndexToWorld( rightDV, rightDV ); this->IndexToWorld( bottomDV, bottomDV ); mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->SetImageGeometry( this->GetImageGeometry() ); planeGeometry->SetReferenceGeometry( m_ReferenceGeometry ); planeGeometry->InitializeStandardPlane( rightDV.Get_vnl_vector(), bottomDV.Get_vnl_vector(), &m_Spacing ); planeGeometry->SetOrigin(origin); planeGeometry->SetBounds(bounds); firstGeometry = planeGeometry; } else if ( (m_EvenlySpaced) && (m_Geometry2Ds.size() > 0) ) { firstGeometry = m_Geometry2Ds[0].GetPointer(); } //clear and reserve Geometry2D::Pointer gnull=NULL; m_Geometry2Ds.assign(m_Slices, gnull); if ( m_Slices > 0 ) { m_Geometry2Ds[0] = firstGeometry; } this->Modified(); } void mitk::SlicedGeometry3D ::SetSliceNavigationController( SliceNavigationController *snc ) { m_SliceNavigationController = snc; } mitk::SliceNavigationController * mitk::SlicedGeometry3D::GetSliceNavigationController() { return m_SliceNavigationController; } void mitk::SlicedGeometry3D::SetEvenlySpaced(bool on) { if(m_EvenlySpaced!=on) { m_EvenlySpaced=on; this->Modified(); } } void mitk::SlicedGeometry3D ::SetDirectionVector( const mitk::Vector3D& directionVector ) { Vector3D newDir = directionVector; newDir.Normalize(); if ( newDir != m_DirectionVector ) { m_DirectionVector = newDir; this->Modified(); } } void mitk::SlicedGeometry3D::SetTimeBounds( const mitk::TimeBounds& timebounds ) { Superclass::SetTimeBounds( timebounds ); unsigned int s; for ( s = 0; s < m_Slices; ++s ) { if(m_Geometry2Ds[s].IsNotNull()) { m_Geometry2Ds[s]->SetTimeBounds( timebounds ); } } m_TimeBounds = timebounds; } -mitk::AffineGeometryFrame3D::Pointer +mitk::Geometry3D::Pointer mitk::SlicedGeometry3D::Clone() const { Self::Pointer newGeometry = new SlicedGeometry3D(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } void mitk::SlicedGeometry3D::PrintSelf( std::ostream& os, itk::Indent indent ) const { Superclass::PrintSelf(os,indent); os << indent << " EvenlySpaced: " << m_EvenlySpaced << std::endl; if ( m_EvenlySpaced ) { os << indent << " DirectionVector: " << m_DirectionVector << std::endl; } os << indent << " Slices: " << m_Slices << std::endl; os << std::endl; os << indent << " GetGeometry2D(0): "; if ( this->GetGeometry2D(0) == NULL ) { os << "NULL" << std::endl; } else { this->GetGeometry2D(0)->Print(os, indent); } } void mitk::SlicedGeometry3D::ExecuteOperation(Operation* operation) { switch ( operation->GetOperationType() ) { case OpNOTHING: break; case OpROTATE: if ( m_EvenlySpaced ) { // Need a reference frame to align the rotation if ( m_ReferenceGeometry ) { // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // Save first slice Geometry2D::Pointer geometry2D = m_Geometry2Ds[0]; RotationOperation *rotOp = dynamic_cast< RotationOperation * >( operation ); // Generate a RotationOperation using the dataset center instead of // the supplied rotation center. This is necessary so that the rotated // zero-plane does not shift away. The supplied center is instead used // to adjust the slice stack afterwards. Point3D center = m_ReferenceGeometry->GetCenter(); RotationOperation centeredRotation( rotOp->GetOperationType(), center, rotOp->GetVectorOfRotation(), rotOp->GetAngleOfRotation() ); // Rotate first slice geometry2D->ExecuteOperation( ¢eredRotation ); // Clear the slice stack and adjust it according to the center of // the dataset and the supplied rotation center (see documentation of // ReinitializePlanes) this->ReinitializePlanes( center, rotOp->GetCenterOfRotation() ); geometry2D->SetSpacing(this->GetSpacing()); if ( m_SliceNavigationController ) { m_SliceNavigationController->SelectSliceByPoint( rotOp->GetCenterOfRotation() ); m_SliceNavigationController->AdjustSliceStepperRange(); } Geometry3D::ExecuteOperation( ¢eredRotation ); } else { // we also have to consider the case, that there is no reference geometry available. if ( m_Geometry2Ds.size() > 0 ) { // Reach through to all slices in my container for (std::vector::iterator iter = m_Geometry2Ds.begin(); iter != m_Geometry2Ds.end(); ++iter) { (*iter)->ExecuteOperation(operation); } // rotate overall geometry RotationOperation *rotOp = dynamic_cast< RotationOperation * >( operation ); Geometry3D::ExecuteOperation( rotOp); } } } else { // Reach through to all slices for (std::vector::iterator iter = m_Geometry2Ds.begin(); iter != m_Geometry2Ds.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpORIENT: if ( m_EvenlySpaced ) { // get operation data PlaneOperation *planeOp = dynamic_cast< PlaneOperation * >( operation ); // Get first slice Geometry2D::Pointer geometry2D = m_Geometry2Ds[0]; PlaneGeometry *planeGeometry = dynamic_cast< PlaneGeometry * >( geometry2D.GetPointer() ); // Need a PlaneGeometry, a PlaneOperation and a reference frame to // carry out the re-orientation. If not all avaialble, stop here if ( !m_ReferenceGeometry || !planeGeometry || !planeOp ) { break; } // General Behavior: // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // // 1st Step: Reorient Normal Vector of first plane // Point3D center = planeOp->GetPoint(); //m_ReferenceGeometry->GetCenter(); mitk::Vector3D currentNormal = planeGeometry->GetNormal(); mitk::Vector3D newNormal; if (planeOp->AreAxisDefined()) { // If planeOp was defined by one centerpoint and two axis vectors newNormal = CrossProduct(planeOp->GetAxisVec0(), planeOp->GetAxisVec1()); } else { // If planeOp was defined by one centerpoint and one normal vector newNormal = planeOp->GetNormal(); } // Get Rotation axis und angle currentNormal.Normalize(); newNormal.Normalize(); float rotationAngle = angle(currentNormal.Get_vnl_vector(),newNormal.Get_vnl_vector()); rotationAngle *= 180.0 / vnl_math::pi; // from rad to deg Vector3D rotationAxis = itk::CrossProduct( currentNormal, newNormal ); if (std::abs(rotationAngle-180) < mitk::eps ) { // current Normal and desired normal are not linear independent!!(e.g 1,0,0 and -1,0,0). // Rotation Axis should be ANY vector that is 90° to current Normal mitk::Vector3D helpNormal; helpNormal = currentNormal; helpNormal[0] += 1; helpNormal[1] -= 1; helpNormal[2] += 1; helpNormal.Normalize(); rotationAxis = itk::CrossProduct( helpNormal, currentNormal ); } RotationOperation centeredRotation( mitk::OpROTATE, center, rotationAxis, rotationAngle ); // Rotate first slice geometry2D->ExecuteOperation( ¢eredRotation ); // Reinitialize planes and select slice, if my rotations are all done. if (!planeOp->AreAxisDefined()) { // Clear the slice stack and adjust it according to the center of // rotation and plane position (see documentation of ReinitializePlanes) this->ReinitializePlanes( center, planeOp->GetPoint() ); if ( m_SliceNavigationController ) { m_SliceNavigationController->SelectSliceByPoint( planeOp->GetPoint() ); m_SliceNavigationController->AdjustSliceStepperRange(); } } // Also apply rotation on the slicedGeometry - Geometry3D (Bounding geometry) Geometry3D::ExecuteOperation( ¢eredRotation ); // // 2nd step. If axis vectors were defined, rotate the plane around its normal to fit these // if (planeOp->AreAxisDefined()) { mitk::Vector3D vecAxixNew = planeOp->GetAxisVec0(); vecAxixNew.Normalize(); mitk::Vector3D VecAxisCurr = geometry2D->GetAxisVector(0); VecAxisCurr.Normalize(); float rotationAngle = angle(VecAxisCurr.Get_vnl_vector(),vecAxixNew.Get_vnl_vector()); rotationAngle = rotationAngle * 180 / PI; // Rad to Deg // we rotate around the normal of the plane, but we do not know, if we need to rotate clockwise // or anti-clockwise. So we rotate around the crossproduct of old and new Axisvector. // Since both axis vectors lie in the plane, the crossproduct is the planes normal or the negative planes normal rotationAxis = itk::CrossProduct( VecAxisCurr, vecAxixNew ); if (std::abs(rotationAngle-180) < mitk::eps ) { // current axisVec and desired axisVec are not linear independent!!(e.g 1,0,0 and -1,0,0). // Rotation Axis can be just plane Normal. (have to rotate by 180°) rotationAxis = newNormal; } // Perfom Rotation mitk::RotationOperation op(mitk::OpROTATE, center, rotationAxis, rotationAngle); geometry2D->ExecuteOperation( &op ); // Apply changes on first slice to whole slice stack this->ReinitializePlanes( center, planeOp->GetPoint() ); if ( m_SliceNavigationController ) { m_SliceNavigationController->SelectSliceByPoint( planeOp->GetPoint() ); m_SliceNavigationController->AdjustSliceStepperRange(); } // Also apply rotation on the slicedGeometry - Geometry3D (Bounding geometry) Geometry3D::ExecuteOperation( &op ); } } else { // Reach through to all slices for (std::vector::iterator iter = m_Geometry2Ds.begin(); iter != m_Geometry2Ds.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; case OpRESTOREPLANEPOSITION: if ( m_EvenlySpaced ) { // Save first slice Geometry2D::Pointer geometry2D = m_Geometry2Ds[0]; PlaneGeometry* planeGeometry = dynamic_cast< PlaneGeometry * >( geometry2D.GetPointer() ); RestorePlanePositionOperation *restorePlaneOp = dynamic_cast< RestorePlanePositionOperation* >( operation ); // Need a PlaneGeometry, a PlaneOperation and a reference frame to // carry out the re-orientation if ( m_ReferenceGeometry && planeGeometry && restorePlaneOp ) { // Clear all generated geometries and then rotate only the first slice. // The other slices will be re-generated on demand // Rotate first slice geometry2D->ExecuteOperation( restorePlaneOp ); m_DirectionVector = restorePlaneOp->GetDirectionVector(); double centerOfRotationDistance = planeGeometry->SignedDistanceFromPlane( m_ReferenceGeometry->GetCenter() ); if ( centerOfRotationDistance > 0 ) { m_DirectionVector = m_DirectionVector; } else { m_DirectionVector = -m_DirectionVector; } Vector3D spacing = restorePlaneOp->GetSpacing(); Superclass::SetSpacing( spacing ); // /*Now we need to calculate the number of slices in the plane's normal // direction, so that the entire volume is covered. This is done by first // calculating the dot product between the volume diagonal (the maximum // distance inside the volume) and the normal, and dividing this value by // the directed spacing calculated above.*/ ScalarType directedExtent = std::abs( m_ReferenceGeometry->GetExtentInMM( 0 ) * m_DirectionVector[0] ) + std::abs( m_ReferenceGeometry->GetExtentInMM( 1 ) * m_DirectionVector[1] ) + std::abs( m_ReferenceGeometry->GetExtentInMM( 2 ) * m_DirectionVector[2] ); if ( directedExtent >= spacing[2] ) { m_Slices = static_cast< unsigned int >(directedExtent / spacing[2] + 0.5); } else { m_Slices = 1; } m_Geometry2Ds.assign( m_Slices, Geometry2D::Pointer( NULL ) ); if ( m_Slices > 0 ) { m_Geometry2Ds[0] = geometry2D; } m_SliceNavigationController->GetSlice()->SetSteps( m_Slices ); this->Modified(); //End Reinitialization if ( m_SliceNavigationController ) { m_SliceNavigationController->GetSlice()->SetPos( restorePlaneOp->GetPos() ); m_SliceNavigationController->AdjustSliceStepperRange(); } Geometry3D::ExecuteOperation(restorePlaneOp); } } else { // Reach through to all slices for (std::vector::iterator iter = m_Geometry2Ds.begin(); iter != m_Geometry2Ds.end(); ++iter) { (*iter)->ExecuteOperation(operation); } } break; } this->Modified(); } diff --git a/Core/Code/DataManagement/mitkSlicedGeometry3D.h b/Core/Code/DataManagement/mitkSlicedGeometry3D.h index 4db57bb247..e831c6eb60 100644 --- a/Core/Code/DataManagement/mitkSlicedGeometry3D.h +++ b/Core/Code/DataManagement/mitkSlicedGeometry3D.h @@ -1,324 +1,324 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITKSLICEDGEOMETRY3D_H_HEADER_INCLUDED_C1EBD0AD #define MITKSLICEDGEOMETRY3D_H_HEADER_INCLUDED_C1EBD0AD #include "mitkGeometry3D.h" #include "mitkPlaneGeometry.h" namespace mitk { class SliceNavigationController; class NavigationController; /** \brief Describes the geometry of a data object consisting of slices. * * A Geometry2D can be requested for each slice. In the case of * \em evenly-spaced, \em plane geometries (m_EvenlySpaced==true), * only the 2D-geometry of the first slice has to be set (to an instance of * PlaneGeometry). The 2D geometries of the other slices are calculated * by shifting the first slice in the direction m_DirectionVector by * m_Spacing.z * sliceNumber. The m_Spacing member (which is only * relevant in the case m_EvenlySpaced==true) descibes the size of a voxel * (in mm), i.e., m_Spacing.x is the voxel width in the x-direction of the * plane. It is derived from the reference geometry of this SlicedGeometry3D, * which usually would be the global geometry describing how datasets are to * be resliced. * * By default, slices are oriented in the direction of one of the main axes * (x, y, z). However, by means of rotation, it is possible to realign the * slices in any possible direction. In case of an inclined plane, the spacing * is derived as a product of the (regular) geometry spacing and the direction * vector of the plane. * * SlicedGeometry3D and the associated Geometry2Ds have to be initialized in * the method GenerateOutputInformation() of BaseProcess (or CopyInformation / * UpdateOutputInformation of BaseData, if possible, e.g., by analyzing pic * tags in Image) subclasses. See also * * \sa itk::ProcessObject::GenerateOutputInformation(), * \sa itk::DataObject::CopyInformation() and * \a itk::DataObject::UpdateOutputInformation(). * * Rule: everything is in mm (or ms for temporal information) if not * stated otherwise. * * \warning The hull (i.e., transform, bounding-box and * time-bounds) is only guaranteed to be up-to-date after calling * UpdateInformation(). * * \ingroup Geometry */ class MITK_CORE_EXPORT SlicedGeometry3D : public mitk::Geometry3D { public: mitkClassMacro(SlicedGeometry3D, Geometry3D); /** Method for creation through the object factory. */ itkNewMacro(Self); /** * \brief Returns the Geometry2D of the slice (\a s). * * If (a) m_EvenlySpaced==true, (b) we don't have a Geometry2D stored * for the requested slice, and (c) the first slice (s=0) * is a PlaneGeometry instance, then we calculate the geometry of the * requested as the plane of the first slice shifted by m_Spacing[3]*s * in the direction of m_DirectionVector. * * \warning The Geometry2Ds are not necessarily up-to-date and not even * initialized. * * The Geometry2Ds have to be initialized in the method * GenerateOutputInformation() of BaseProcess (or CopyInformation / * UpdateOutputInformation of BaseData, if possible, e.g., by analyzing * pic tags in Image) subclasses. See also * * \sa itk::ProcessObject::GenerateOutputInformation(), * \sa itk::DataObject::CopyInformation() and * \sa itk::DataObject::UpdateOutputInformation(). */ virtual mitk::Geometry2D* GetGeometry2D( int s ) const; /** * \brief Set Geometry2D of slice \a s. */ virtual bool SetGeometry2D( mitk::Geometry2D *geometry2D, int s ); //##Documentation //## @brief When switching from an Image Geometry to a normal Geometry (and the other way around), you have to change the origin as well (See Geometry Documentation)! This function will change the "isImageGeometry" bool flag and changes the origin respectively. virtual void ChangeImageGeometryConsideringOriginOffset( const bool isAnImageGeometry ); virtual void SetTimeBounds( const mitk::TimeBounds& timebounds ); virtual const mitk::BoundingBox* GetBoundingBox() const; /** * \brief Get the number of slices */ itkGetConstMacro( Slices, unsigned int ); /** * \brief Check whether a slice exists */ virtual bool IsValidSlice( int s = 0 ) const; virtual void SetReferenceGeometry( Geometry3D *referenceGeometry ); /** * \brief Set the spacing (m_Spacing), in direction of the plane normal. * * INTERNAL METHOD. */ virtual void SetSpacing( const mitk::Vector3D &aSpacing ); /** * \brief Set the SliceNavigationController corresponding to this sliced * geometry. * * The SNC needs to be informed when the number of slices in the geometry * changes, which can occur whenthe slices are re-oriented by rotation. */ virtual void SetSliceNavigationController( mitk::SliceNavigationController *snc ); mitk::SliceNavigationController *GetSliceNavigationController(); /** * \brief Set/Get whether the SlicedGeometry3D is evenly-spaced * (m_EvenlySpaced) * * If (a) m_EvenlySpaced==true, (b) we don't have a Geometry2D stored for * the requested slice, and (c) the first slice (s=0) is a PlaneGeometry * instance, then we calculate the geometry of the requested as the plane * of the first slice shifted by m_Spacing.z * s in the direction of * m_DirectionVector. * * \sa GetGeometry2D */ itkGetConstMacro(EvenlySpaced, bool); virtual void SetEvenlySpaced(bool on = true); /** * \brief Set/Get the vector between slices for the evenly-spaced case * (m_EvenlySpaced==true). * * If the direction-vector is (0,0,0) (the default) and the first * 2D geometry is a PlaneGeometry, then the direction-vector will be * calculated from the plane normal. * * \sa m_DirectionVector */ virtual void SetDirectionVector(const mitk::Vector3D& directionVector); itkGetConstMacro(DirectionVector, const mitk::Vector3D&); - virtual AffineGeometryFrame3D::Pointer Clone() const; + virtual Geometry3D::Pointer Clone() const; static const std::string SLICES; const static std::string DIRECTION_VECTOR; const static std::string EVENLY_SPACED; /** * \brief Tell this instance how many Geometry2Ds it shall manage. Bounding * box and the Geometry2Ds must be set additionally by calling the respective * methods! * * \warning Bounding box and the 2D-geometries must be set additionally: use * SetBounds(), SetGeometry(). */ virtual void InitializeSlicedGeometry( unsigned int slices ); /** * \brief Completely initialize this instance as evenly-spaced with slices * parallel to the provided Geometry2D that is used as the first slice and * for spacing calculation. * * Initializes the bounding box according to the width/height of the * Geometry2D and \a slices. The spacing is calculated from the Geometry2D. */ virtual void InitializeEvenlySpaced( mitk::Geometry2D *geometry2D, unsigned int slices, bool flipped=false ); /** * \brief Completely initialize this instance as evenly-spaced with slices * parallel to the provided Geometry2D that is used as the first slice and * for spacing calculation (except z-spacing). * * Initializes the bounding box according to the width/height of the * Geometry2D and \a slices. The x-/y-spacing is calculated from the * Geometry2D. */ virtual void InitializeEvenlySpaced( mitk::Geometry2D *geometry2D, mitk::ScalarType zSpacing, unsigned int slices, bool flipped=false ); /** * \brief Completely initialize this instance as evenly-spaced plane slices * parallel to a side of the provided Geometry3D and using its spacing * information. * * Initializes the bounding box according to the width/height of the * Geometry3D and the number of slices according to * Geometry3D::GetExtent(2). * * \param planeorientation side parallel to which the slices will be oriented * \param top if \a true, create plane at top, otherwise at bottom * (for PlaneOrientation Axial, for other plane locations respectively) * \param frontside defines the side of the plane (the definition of * front/back is somewhat arbitrary) * * \param rotate rotates the plane by 180 degree around its normal (the * definition of rotated vs not rotated is somewhat arbitrary) */ virtual void InitializePlanes( const mitk::Geometry3D *geometry3D, mitk::PlaneGeometry::PlaneOrientation planeorientation, bool top=true, bool frontside=true, bool rotated=false ); virtual void SetImageGeometry(const bool isAnImageGeometry); virtual void ExecuteOperation(Operation* operation); static double CalculateSpacing( const mitk::Vector3D spacing, const mitk::Vector3D &d ); protected: SlicedGeometry3D(); SlicedGeometry3D(const SlicedGeometry3D& other); virtual ~SlicedGeometry3D(); /** * Reinitialize plane stack after rotation. More precisely, the first plane * of the stack needs to spatially aligned, in two respects: * * 1. Re-alignment with respect to the dataset center; this is necessary * since the distance from the first plane to the center could otherwise * continuously decrease or increase. * 2. Re-alignment with respect to a given reference point; the reference * point is a location which the user wants to be exactly touched by one * plane of the plane stack. The first plane is minimally shifted to * ensure this touching. Usually, the reference point would be the * point around which the geometry is rotated. */ virtual void ReinitializePlanes( const Point3D ¢er, const Point3D &referencePoint ); ScalarType GetLargestExtent( const Geometry3D *geometry ); void PrintSelf(std::ostream& os, itk::Indent indent) const; /** Calculate "directed spacing", i.e. the spacing in directions * non-orthogonal to the coordinate axes. This is done via the * ellipsoid equation. */ double CalculateSpacing( const mitk::Vector3D &direction ) const; /** The extent of the slice stack, i.e. the number of slices, depends on the * plane normal. For rotated geometries, the geometry's transform needs to * be accounted in this calculation. */ mitk::Vector3D AdjustNormal( const mitk::Vector3D &normal ) const; /** * Container for the 2D-geometries contained within this SliceGeometry3D. */ mutable std::vector m_Geometry2Ds; /** * If (a) m_EvenlySpaced==true, (b) we don't have a Geometry2D stored * for the requested slice, and (c) the first slice (s=0) * is a PlaneGeometry instance, then we calculate the geometry of the * requested as the plane of the first slice shifted by m_Spacing.z*s * in the direction of m_DirectionVector. * * \sa GetGeometry2D */ bool m_EvenlySpaced; /** * Vector between slices for the evenly-spaced case (m_EvenlySpaced==true). * If the direction-vector is (0,0,0) (the default) and the first * 2D geometry is a PlaneGeometry, then the direction-vector will be * calculated from the plane normal. */ mutable mitk::Vector3D m_DirectionVector; /** Number of slices this SliceGeometry3D is descibing. */ unsigned int m_Slices; /** Underlying Geometry3D for this SlicedGeometry */ mitk::Geometry3D *m_ReferenceGeometry; /** SNC correcsponding to this geometry; used to reflect changes in the * number of slices due to rotation. */ //mitk::NavigationController *m_NavigationController; mitk::SliceNavigationController *m_SliceNavigationController; }; } // namespace mitk #endif /* MITKSLICEDGEOMETRY3D_H_HEADER_INCLUDED_C1EBD0AD */ diff --git a/Core/Code/DataManagement/mitkThinPlateSplineCurvedGeometry.cpp b/Core/Code/DataManagement/mitkThinPlateSplineCurvedGeometry.cpp index 2bdb79f18c..5cd3725755 100644 --- a/Core/Code/DataManagement/mitkThinPlateSplineCurvedGeometry.cpp +++ b/Core/Code/DataManagement/mitkThinPlateSplineCurvedGeometry.cpp @@ -1,102 +1,102 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkThinPlateSplineCurvedGeometry.h" #include #include mitk::ThinPlateSplineCurvedGeometry::ThinPlateSplineCurvedGeometry() { m_InterpolatingAbstractTransform = m_ThinPlateSplineTransform = vtkThinPlateSplineTransform::New(); m_VtkTargetLandmarks = vtkPoints::New(); m_VtkProjectedLandmarks = vtkPoints::New(); m_ThinPlateSplineTransform->SetInverseIterations(5000); } mitk::ThinPlateSplineCurvedGeometry::ThinPlateSplineCurvedGeometry(const ThinPlateSplineCurvedGeometry& other ) : Superclass(other) { this->SetSigma(other.GetSigma()); } mitk::ThinPlateSplineCurvedGeometry::~ThinPlateSplineCurvedGeometry() { // don't need to delete m_ThinPlateSplineTransform, because it is // the same as m_InterpolatingAbstractTransform, which will be deleted // by the superclass. if(m_VtkTargetLandmarks!=NULL) m_VtkTargetLandmarks->Delete(); if(m_VtkProjectedLandmarks!=NULL) m_VtkProjectedLandmarks->Delete(); } bool mitk::ThinPlateSplineCurvedGeometry::IsValid() const { return m_TargetLandmarks.IsNotNull() && (m_TargetLandmarks->Size() >= 3) && m_LandmarkProjector.IsNotNull(); } void mitk::ThinPlateSplineCurvedGeometry::SetSigma(float sigma) { m_ThinPlateSplineTransform->SetSigma(sigma); } float mitk::ThinPlateSplineCurvedGeometry::GetSigma() const { return m_ThinPlateSplineTransform->GetSigma(); } void mitk::ThinPlateSplineCurvedGeometry::ComputeGeometry() { Superclass::ComputeGeometry(); const mitk::PointSet::DataType::PointsContainer *finalTargetLandmarks, *projectedTargetLandmarks; finalTargetLandmarks = m_LandmarkProjector->GetFinalTargetLandmarks(); projectedTargetLandmarks = m_LandmarkProjector->GetProjectedLandmarks(); mitk::PointSet::DataType::PointsContainer::ConstIterator targetIt, projectedIt; targetIt = finalTargetLandmarks->Begin(); projectedIt = projectedTargetLandmarks->Begin(); //initialize Thin-Plate-Spline m_VtkTargetLandmarks->Reset(); m_VtkProjectedLandmarks->Reset(); vtkIdType id; int size=finalTargetLandmarks->Size(); for(id=0; id < size; ++id, ++targetIt, ++projectedIt) { const mitk::PointSet::PointType& target = targetIt->Value(); m_VtkTargetLandmarks->InsertPoint(id, target[0], target[1], target[2]); const mitk::PointSet::PointType& projected = projectedIt->Value(); m_VtkProjectedLandmarks->InsertPoint(id, projected[0], projected[1], projected[2]); } m_VtkTargetLandmarks->Modified(); m_VtkProjectedLandmarks->Modified(); m_ThinPlateSplineTransform->SetSourceLandmarks(m_VtkProjectedLandmarks); m_ThinPlateSplineTransform->SetTargetLandmarks(m_VtkTargetLandmarks); } -mitk::AffineGeometryFrame3D::Pointer mitk::ThinPlateSplineCurvedGeometry::Clone() const +mitk::Geometry3D::Pointer mitk::ThinPlateSplineCurvedGeometry::Clone() const { - mitk::AffineGeometryFrame3D::Pointer newGeometry = new Self(*this); - newGeometry->UnRegister(); - return newGeometry.GetPointer(); + mitk::Geometry3D::Pointer newGeometry = new Self(*this); + newGeometry->UnRegister(); + return newGeometry.GetPointer(); } diff --git a/Core/Code/DataManagement/mitkThinPlateSplineCurvedGeometry.h b/Core/Code/DataManagement/mitkThinPlateSplineCurvedGeometry.h index d899fcd87f..156a998986 100644 --- a/Core/Code/DataManagement/mitkThinPlateSplineCurvedGeometry.h +++ b/Core/Code/DataManagement/mitkThinPlateSplineCurvedGeometry.h @@ -1,68 +1,68 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITKTHINPLATESPLINECURVEDGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #define MITKTHINPLATESPLINECURVEDGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #include "mitkLandmarkProjectorBasedCurvedGeometry.h" class vtkPoints; class vtkThinPlateSplineTransform; namespace mitk { //##Documentation //## @brief Thin-plate-spline-based landmark-based curved geometry //## //## @ingroup Geometry class MITK_CORE_EXPORT ThinPlateSplineCurvedGeometry : public LandmarkProjectorBasedCurvedGeometry { public: mitkClassMacro(ThinPlateSplineCurvedGeometry, LandmarkProjectorBasedCurvedGeometry); itkNewMacro(Self); virtual void ComputeGeometry(); - virtual AffineGeometryFrame3D::Pointer Clone() const; + virtual Geometry3D::Pointer Clone() const; vtkThinPlateSplineTransform* GetThinPlateSplineTransform() const { return m_ThinPlateSplineTransform; } virtual void SetSigma(float sigma); virtual float GetSigma() const; virtual bool IsValid() const; protected: ThinPlateSplineCurvedGeometry(); ThinPlateSplineCurvedGeometry(const ThinPlateSplineCurvedGeometry& other ); virtual ~ThinPlateSplineCurvedGeometry(); vtkThinPlateSplineTransform* m_ThinPlateSplineTransform; vtkPoints* m_VtkTargetLandmarks; vtkPoints* m_VtkProjectedLandmarks; }; } // namespace mitk #endif /* MITKTHINPLATESPLINECURVEDGEOMETRY_H_HEADER_INCLUDED_C1C68A2C */ diff --git a/Core/Code/Rendering/mitkGeometry2DDataMapper2D.cpp b/Core/Code/Rendering/mitkGeometry2DDataMapper2D.cpp index dbf0bd9e86..ed45b48922 100644 --- a/Core/Code/Rendering/mitkGeometry2DDataMapper2D.cpp +++ b/Core/Code/Rendering/mitkGeometry2DDataMapper2D.cpp @@ -1,665 +1,664 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkGL.h" #include "mitkGeometry2DDataMapper2D.h" #include "mitkBaseRenderer.h" #include "mitkPlaneGeometry.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "mitkSmartPointerProperty.h" #include "mitkPlaneOrientationProperty.h" #include "mitkGeometry2DDataToSurfaceFilter.h" #include "mitkSurfaceGLMapper2D.h" #include "mitkLine.h" #include "mitkNodePredicateDataType.h" #include "mitkResliceMethodProperty.h" mitk::Geometry2DDataMapper2D::Geometry2DDataMapper2D() : m_SurfaceMapper( NULL ), m_DataStorage(NULL), m_ParentNode(NULL), m_OtherGeometry2Ds(), m_RenderOrientationArrows( false ), m_ArrowOrientationPositive( true ) { } mitk::Geometry2DDataMapper2D::~Geometry2DDataMapper2D() { } const mitk::Geometry2DData* mitk::Geometry2DDataMapper2D::GetInput(void) { return static_cast ( GetDataNode()->GetData() ); } void mitk::Geometry2DDataMapper2D::GenerateDataForRenderer(mitk::BaseRenderer* /* renderer */) { // collect all Geometry2DDatas accessible from the DataStorage m_OtherGeometry2Ds.clear(); if (m_DataStorage.IsNull()) return; mitk::NodePredicateDataType::Pointer p = mitk::NodePredicateDataType::New("Geometry2DData"); mitk::DataStorage::SetOfObjects::ConstPointer all = m_DataStorage->GetDerivations(m_ParentNode, p, false); for (mitk::DataStorage::SetOfObjects::ConstIterator it = all->Begin(); it != all->End(); ++it) { if(it->Value().IsNull()) continue; BaseData* data = it->Value()->GetData(); if (data == NULL) continue; Geometry2DData* geometry2dData = dynamic_cast(data); if(geometry2dData == NULL) continue; PlaneGeometry* planegeometry = dynamic_cast(geometry2dData->GetGeometry2D()); if (planegeometry != NULL) m_OtherGeometry2Ds.push_back(it->Value()); } } void mitk::Geometry2DDataMapper2D::Paint(BaseRenderer *renderer) { bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if(!visible) return; Geometry2DData::Pointer input = const_cast< Geometry2DData * >(this->GetInput()); // intersecting with ourself? if ( input.IsNull() || (this->GetInput()->GetGeometry2D() == renderer->GetCurrentWorldGeometry2D()) ) { return; // do nothing! } const PlaneGeometry *inputPlaneGeometry = dynamic_cast< const PlaneGeometry * >( input->GetGeometry2D() ); const PlaneGeometry *worldPlaneGeometry = dynamic_cast< const PlaneGeometry* >( renderer->GetCurrentWorldGeometry2D() ); if ( worldPlaneGeometry && inputPlaneGeometry && inputPlaneGeometry->GetReferenceGeometry() ) { DisplayGeometry *displayGeometry = renderer->GetDisplayGeometry(); assert( displayGeometry ); const Geometry3D *referenceGeometry = inputPlaneGeometry->GetReferenceGeometry(); // calculate intersection of the plane data with the border of the // world geometry rectangle Point2D lineFrom, lineTo; - typedef Geometry3D::TransformType TransformType; - const TransformType *transform = dynamic_cast< const TransformType * >( + const Geometry3D::TransformType *transform = dynamic_cast< const Geometry3D::TransformType * >( referenceGeometry->GetIndexToWorldTransform() ); - TransformType::Pointer inverseTransform = TransformType::New(); + Geometry3D::TransformType::Pointer inverseTransform = Geometry3D::TransformType::New(); transform->GetInverse( inverseTransform ); Line3D crossLine, otherCrossLine; // Calculate the intersection line of the input plane with the world plane if ( worldPlaneGeometry->IntersectionLine( inputPlaneGeometry, crossLine ) ) { BoundingBox::PointType boundingBoxMin, boundingBoxMax; boundingBoxMin = referenceGeometry->GetBoundingBox()->GetMinimum(); boundingBoxMax = referenceGeometry->GetBoundingBox()->GetMaximum(); if(referenceGeometry->GetImageGeometry()) { for(unsigned int i = 0; i < 3; ++i) { boundingBoxMin[i]-=0.5; boundingBoxMax[i]-=0.5; } } crossLine.Transform( *inverseTransform ); Point3D point1, point2; // Then, clip this line with the (transformed) bounding box of the // reference geometry. if ( crossLine.BoxLineIntersection( boundingBoxMin[0], boundingBoxMin[1], boundingBoxMin[2], boundingBoxMax[0], boundingBoxMax[1], boundingBoxMax[2], crossLine.GetPoint(), crossLine.GetDirection(), point1, point2 ) == 2 ) { // Transform the resulting line start and end points into display // coordinates. worldPlaneGeometry->Map( transform->TransformPoint( point1 ), lineFrom ); worldPlaneGeometry->Map( transform->TransformPoint( point2 ), lineTo ); Line< ScalarType, 2 > mainLine, otherLine; Line< ScalarType, 2 > primaryHelperLine, secondaryHelperLine; mainLine.SetPoints( lineFrom, lineTo ); primaryHelperLine.SetPoints( lineFrom, lineTo ); secondaryHelperLine.SetPoints( lineFrom, lineTo ); displayGeometry->WorldToDisplay( lineFrom, lineFrom ); displayGeometry->WorldToDisplay( lineTo, lineTo ); ScalarType lengthInDisplayUnits = (lineTo - lineFrom).GetNorm(); Vector2D mainLineDirectionOrthogonal; mainLineDirectionOrthogonal[0] = -mainLine.GetDirection()[1]; mainLineDirectionOrthogonal[1] = mainLine.GetDirection()[0]; // lineParams stores the individual segments of the line, which are // separated by a gap each (to mark the intersection with another // displayed line) std::vector< ScalarType > mainLineParams; std::vector< ScalarType > primaryHelperLineParams; std::vector< ScalarType > secondaryHelperLineParams; mainLineParams.reserve( m_OtherGeometry2Ds.size() + 2 ); mainLineParams.push_back( 0.0 ); mainLineParams.push_back( 1.0 ); primaryHelperLineParams.reserve( m_OtherGeometry2Ds.size() + 2 ); primaryHelperLineParams.push_back( 0.0 ); primaryHelperLineParams.push_back( 1.0 ); secondaryHelperLineParams.reserve( m_OtherGeometry2Ds.size() + 2 ); secondaryHelperLineParams.push_back( 0.0 ); secondaryHelperLineParams.push_back( 1.0 ); // Now iterate through all other lines displayed in this window and // calculate the positions of intersection with the line to be // rendered; these positions will be stored in lineParams to form a // gap afterwards. NodesVectorType::iterator otherPlanesIt = m_OtherGeometry2Ds.begin(); NodesVectorType::iterator otherPlanesEnd = m_OtherGeometry2Ds.end(); //int mainLineThickSlicesMode = 0; int mainLineThickSlicesNum = 1; DataNode* dataNodeOfInputPlaneGeometry = NULL; // Now we have to find the DataNode that contains the inputPlaneGeometry // in order to determine the state of the thick-slice rendering while ( otherPlanesIt != otherPlanesEnd ) { PlaneGeometry *otherPlane = static_cast< PlaneGeometry * >( static_cast< Geometry2DData * >( (*otherPlanesIt)->GetData() )->GetGeometry2D() ); // if we have found the correct node if ( (otherPlane == inputPlaneGeometry) && worldPlaneGeometry->IntersectionLine( otherPlane, otherCrossLine ) ) { dataNodeOfInputPlaneGeometry = (*otherPlanesIt); // if( dataNodeOfInputPlaneGeometry ) // { // mainLineThickSlicesMode = this->DetermineThickSliceMode(dataNodeOfInputPlaneGeometry, mainLineThickSlicesNum); // } break; } otherPlanesIt++; } // if we did not find a dataNode for the inputPlaneGeometry there is nothing we can do from here if ( dataNodeOfInputPlaneGeometry == NULL ) return; // Determine if we should draw the area covered by the thick slicing, default is false. // This will also show the area of slices that do not have thick slice mode enabled bool showAreaOfThickSlicing = false; dataNodeOfInputPlaneGeometry->GetBoolProperty( "reslice.thickslices.showarea", showAreaOfThickSlicing ); // get the normal of the inputPlaneGeometry Vector3D normal = inputPlaneGeometry->GetNormal(); // determine the pixelSpacing in that direction double thickSliceDistance = SlicedGeometry3D::CalculateSpacing( referenceGeometry->GetSpacing(), normal ); // As the inputPlaneGeometry cuts through the center of the slice in the middle // we have to add 0.5 pixel in order to compensate. thickSliceDistance *= mainLineThickSlicesNum+0.5; // not the nicest place to do it, but we have the width of the visible bloc in MM here // so we store it in this fancy property dataNodeOfInputPlaneGeometry->SetFloatProperty( "reslice.thickslices.sizeinmm", thickSliceDistance*2 ); if ( showAreaOfThickSlicing ) { // vectorToHelperLine defines how to reach the helperLine from the mainLine Vector2D vectorToHelperLine; vectorToHelperLine = mainLineDirectionOrthogonal; vectorToHelperLine.Normalize(); // got the right direction, so we multiply the width vectorToHelperLine *= thickSliceDistance; // and create the corresponding points primaryHelperLine.SetPoints( primaryHelperLine.GetPoint1() - vectorToHelperLine, primaryHelperLine.GetPoint2() - vectorToHelperLine ); secondaryHelperLine.SetPoints( secondaryHelperLine.GetPoint1() + vectorToHelperLine, secondaryHelperLine.GetPoint2() + vectorToHelperLine ); } //int otherLineThickSlicesMode = 0; int otherLineThickSlicesNum = 1; // by default, there is no gap for the helper lines ScalarType gapSize = 0.0; otherPlanesIt = m_OtherGeometry2Ds.begin(); while ( otherPlanesIt != otherPlanesEnd ) { PlaneGeometry *otherPlane = static_cast< PlaneGeometry * >( static_cast< Geometry2DData * >( (*otherPlanesIt)->GetData() )->GetGeometry2D() ); // Just as with the original line, calculate the intersection with // the world geometry... if ( (otherPlane != inputPlaneGeometry) && worldPlaneGeometry->IntersectionLine( otherPlane, otherCrossLine ) ) { //otherLineThickSlicesMode = this->DetermineThickSliceMode((*otherPlanesIt), otherLineThickSlicesNum); Vector3D normal = otherPlane->GetNormal(); double otherLineThickSliceDistance = SlicedGeometry3D::CalculateSpacing( referenceGeometry->GetSpacing(), normal ); otherLineThickSliceDistance *= (otherLineThickSlicesNum+0.5)*2; Point2D otherLineFrom, otherLineTo; // ... and clip the resulting line segment with the reference // geometry bounding box. otherCrossLine.Transform( *inverseTransform ); if ( otherCrossLine.BoxLineIntersection( boundingBoxMin[0], boundingBoxMin[1], boundingBoxMin[2], boundingBoxMax[0], boundingBoxMax[1], boundingBoxMax[2], otherCrossLine.GetPoint(), otherCrossLine.GetDirection(), point1, point2 ) == 2 ) { worldPlaneGeometry->Map( transform->TransformPoint( point1 ), otherLineFrom ); worldPlaneGeometry->Map( transform->TransformPoint( point2 ), otherLineTo ); otherLine.SetPoints( otherLineFrom, otherLineTo ); // then we have to determine the gap position of the main line // by finding the position at which the two lines cross this->DetermineParametricCrossPositions( mainLine, otherLine, mainLineParams ); // if the other line is also in thick slice mode, we have to determine the // gapsize considering the width of that other line and the spacing in its direction if ( showAreaOfThickSlicing ) { Vector2D otherLineDirection = otherLine.GetDirection(); otherLineDirection.Normalize(); mainLineDirectionOrthogonal.Normalize(); // determine the gapsize gapSize = fabs( otherLineThickSliceDistance / ( otherLineDirection*mainLineDirectionOrthogonal ) ); gapSize = gapSize / displayGeometry->GetScaleFactorMMPerDisplayUnit(); // determine the gap positions for the helper lines as well this->DetermineParametricCrossPositions( primaryHelperLine, otherLine, primaryHelperLineParams ); this->DetermineParametricCrossPositions( secondaryHelperLine, otherLine, secondaryHelperLineParams ); } } } ++otherPlanesIt; } // If we have to draw the helperlines, the mainline will be drawn as a dashed line // with a fixed gapsize of 10 pixels this->DrawLine(renderer, lengthInDisplayUnits, mainLine, mainLineParams, inputPlaneGeometry, showAreaOfThickSlicing, 10.0 ); // If drawn, the helperlines are drawn as a solid line. The gapsize depends on the // width of the crossed line. if ( showAreaOfThickSlicing ) { this->DrawLine(renderer, lengthInDisplayUnits, primaryHelperLine, primaryHelperLineParams, inputPlaneGeometry, false, gapSize ); this->DrawLine(renderer, lengthInDisplayUnits, secondaryHelperLine, secondaryHelperLineParams, inputPlaneGeometry, false, gapSize ); } } } } else { Geometry2DDataToSurfaceFilter::Pointer surfaceCreator; SmartPointerProperty::Pointer surfacecreatorprop; surfacecreatorprop = dynamic_cast< SmartPointerProperty * >( GetDataNode()->GetProperty( "surfacegeometry", renderer)); if( (surfacecreatorprop.IsNull()) || (surfacecreatorprop->GetSmartPointer().IsNull()) || ((surfaceCreator = dynamic_cast< Geometry2DDataToSurfaceFilter * >( surfacecreatorprop->GetSmartPointer().GetPointer())).IsNull()) ) { surfaceCreator = Geometry2DDataToSurfaceFilter::New(); surfacecreatorprop = SmartPointerProperty::New(surfaceCreator); surfaceCreator->PlaceByGeometryOn(); GetDataNode()->SetProperty( "surfacegeometry", surfacecreatorprop ); } surfaceCreator->SetInput( input ); // Clip the Geometry2D with the reference geometry bounds (if available) if ( input->GetGeometry2D()->HasReferenceGeometry() ) { surfaceCreator->SetBoundingBox( input->GetGeometry2D()->GetReferenceGeometry()->GetBoundingBox() ); } int res; bool usegeometryparametricbounds = true; if ( GetDataNode()->GetIntProperty("xresolution", res, renderer)) { surfaceCreator->SetXResolution(res); usegeometryparametricbounds=false; } if (GetDataNode()->GetIntProperty("yresolution", res, renderer)) { surfaceCreator->SetYResolution(res); usegeometryparametricbounds=false; } surfaceCreator->SetUseGeometryParametricBounds(usegeometryparametricbounds); // Calculate the surface of the Geometry2D surfaceCreator->Update(); if (m_SurfaceMapper.IsNull()) { m_SurfaceMapper=SurfaceGLMapper2D::New(); } m_SurfaceMapper->SetSurface(surfaceCreator->GetOutput()); m_SurfaceMapper->SetDataNode(GetDataNode()); m_SurfaceMapper->Paint(renderer); } } void mitk::Geometry2DDataMapper2D::DrawOrientationArrow( mitk::Point2D &outerPoint, mitk::Point2D &innerPoint, const mitk::PlaneGeometry *planeGeometry, const mitk::PlaneGeometry *rendererPlaneGeometry, const mitk::DisplayGeometry *displayGeometry, bool positiveOrientation ) { // Draw arrows to indicate plane orientation // Vector along line Vector2D v1 = innerPoint - outerPoint; v1.Normalize(); v1 *= 7.0; // Orthogonal vector Vector2D v2; v2[0] = v1[1]; v2[1] = -v1[0]; // Calculate triangle tip for one side and project it back into world // coordinates to determine whether it is above or below the plane Point2D worldPoint2D; Point3D worldPoint; displayGeometry->DisplayToWorld( outerPoint + v1 + v2, worldPoint2D ); rendererPlaneGeometry->Map( worldPoint2D, worldPoint ); // Initialize remaining triangle coordinates accordingly // (above/below state is XOR'ed with orientation flag) Point2D p1 = outerPoint + v1 * 2.0; Point2D p2 = outerPoint + v1 + ((positiveOrientation ^ planeGeometry->IsAbove( worldPoint )) ? v2 : -v2); // Draw the arrow (triangle) glBegin( GL_TRIANGLES ); glVertex2f( outerPoint[0], outerPoint[1] ); glVertex2f( p1[0], p1[1] ); glVertex2f( p2[0], p2[1] ); glEnd(); } void mitk::Geometry2DDataMapper2D::ApplyAllProperties( BaseRenderer *renderer ) { Superclass::ApplyColorAndOpacityProperties(renderer); PlaneOrientationProperty* decorationProperty; this->GetDataNode()->GetProperty( decorationProperty, "decoration", renderer ); if ( decorationProperty != NULL ) { if ( decorationProperty->GetPlaneDecoration() == PlaneOrientationProperty::PLANE_DECORATION_POSITIVE_ORIENTATION ) { m_RenderOrientationArrows = true; m_ArrowOrientationPositive = true; } else if ( decorationProperty->GetPlaneDecoration() == PlaneOrientationProperty::PLANE_DECORATION_NEGATIVE_ORIENTATION ) { m_RenderOrientationArrows = true; m_ArrowOrientationPositive = false; } else { m_RenderOrientationArrows = false; } } } void mitk::Geometry2DDataMapper2D::SetDatastorageAndGeometryBaseNode( mitk::DataStorage::Pointer ds, mitk::DataNode::Pointer parent ) { if (ds.IsNotNull()) { m_DataStorage = ds; } if (parent.IsNotNull()) { m_ParentNode = parent; } } void mitk::Geometry2DDataMapper2D::DrawLine( BaseRenderer* renderer, ScalarType lengthInDisplayUnits, Line &line, std::vector &gapPositions, const PlaneGeometry* inputPlaneGeometry, bool drawDashed, ScalarType gapSizeInPixel ) { DisplayGeometry *displayGeometry = renderer->GetDisplayGeometry(); const PlaneGeometry *worldPlaneGeometry = dynamic_cast< const PlaneGeometry* >( renderer->GetCurrentWorldGeometry2D() ); // Apply color and opacity read from the PropertyList. this->ApplyAllProperties( renderer ); ScalarType gapSizeInParamUnits = 1.0 / lengthInDisplayUnits * gapSizeInPixel; std::sort( gapPositions.begin(), gapPositions.end() ); Point2D p1, p2; ScalarType p1Param, p2Param; p1Param = gapPositions[0]; p1 = line.GetPoint( p1Param ); displayGeometry->WorldToDisplay( p1, p1 ); //Workaround to show the crosshair always on top of a 2D render window //The image is usually located at depth = 0 or negative depth values, and thus, //the crosshair with depth = 1 is always on top. float depthPosition = 1.0f; if ( drawDashed ) { glEnable(GL_LINE_STIPPLE); glLineStipple(1, 0xF0F0); } glEnable(GL_DEPTH_TEST); // Iterate over all line segments and display each, with a gap // in between. unsigned int i, preLastLineParam = gapPositions.size() - 1; for ( i = 1; i < preLastLineParam; ++i ) { p2Param = gapPositions[i] - gapSizeInParamUnits * 0.5; p2 = line.GetPoint( p2Param ); if ( p2Param > p1Param ) { // Convert intersection points (until now mm) to display // coordinates (units). displayGeometry->WorldToDisplay( p2, p2 ); // draw glBegin (GL_LINES); glVertex3f(p1[0],p1[1], depthPosition); glVertex3f(p2[0],p2[1], depthPosition); glEnd (); if ( (i == 1) && (m_RenderOrientationArrows) ) { // Draw orientation arrow for first line segment this->DrawOrientationArrow( p1, p2, inputPlaneGeometry, worldPlaneGeometry, displayGeometry, m_ArrowOrientationPositive ); } } p1Param = p2Param + gapSizeInParamUnits; p1 = line.GetPoint( p1Param ); displayGeometry->WorldToDisplay( p1, p1 ); } // Draw last line segment p2Param = gapPositions[i]; p2 = line.GetPoint( p2Param ); displayGeometry->WorldToDisplay( p2, p2 ); glBegin( GL_LINES ); glVertex3f( p1[0], p1[1], depthPosition); glVertex3f( p2[0], p2[1], depthPosition); glEnd(); if ( drawDashed ) { glDisable(GL_LINE_STIPPLE); } // Draw orientation arrows if ( m_RenderOrientationArrows ) { this->DrawOrientationArrow( p2, p1, inputPlaneGeometry, worldPlaneGeometry, displayGeometry, m_ArrowOrientationPositive ); if ( preLastLineParam < 2 ) { // If we only have one line segment, draw other arrow, too this->DrawOrientationArrow( p1, p2, inputPlaneGeometry, worldPlaneGeometry, displayGeometry, m_ArrowOrientationPositive ); } } } int mitk::Geometry2DDataMapper2D::DetermineThickSliceMode( DataNode * dn, int &thickSlicesNum ) { int thickSlicesMode = 0; // determine the state and the extend of the thick-slice mode mitk::ResliceMethodProperty *resliceMethodEnumProperty=0; if( dn->GetProperty( resliceMethodEnumProperty, "reslice.thickslices" ) && resliceMethodEnumProperty ) thickSlicesMode = resliceMethodEnumProperty->GetValueAsId(); IntProperty *intProperty=0; if( dn->GetProperty( intProperty, "reslice.thickslices.num" ) && intProperty ) { thickSlicesNum = intProperty->GetValue(); if(thickSlicesNum < 1) thickSlicesNum=0; if(thickSlicesNum > 10) thickSlicesNum=10; } if ( thickSlicesMode == 0 ) thickSlicesNum = 0; return thickSlicesMode; } void mitk::Geometry2DDataMapper2D::DetermineParametricCrossPositions( Line< mitk::ScalarType, 2 > &mainLine, Line< mitk::ScalarType, 2 > &otherLine, std::vector< mitk::ScalarType > &crossPositions ) { Vector2D direction, dOrth; // By means of the dot product, calculate the gap position as // parametric value in the range [0, 1] direction = otherLine.GetDirection(); dOrth[0] = -direction[1]; dOrth[1] = direction[0]; ScalarType gapPosition = ( otherLine.GetPoint1() - mainLine.GetPoint1() ) * dOrth; ScalarType norm = mainLine.GetDirection() * dOrth; if ( fabs( norm ) > eps ) { gapPosition /= norm; if ( (gapPosition > 0.0) && (gapPosition < 1.0) ) { crossPositions.push_back(gapPosition); } } } diff --git a/Modules/MitkExt/Algorithms/mitkPlanesPerpendicularToLinesFilter.h b/Modules/MitkExt/Algorithms/mitkPlanesPerpendicularToLinesFilter.h index 2ea32b719a..cc4f3261ea 100644 --- a/Modules/MitkExt/Algorithms/mitkPlanesPerpendicularToLinesFilter.h +++ b/Modules/MitkExt/Algorithms/mitkPlanesPerpendicularToLinesFilter.h @@ -1,144 +1,144 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITKPLANESPERPENDICULARTOLINES_H_HEADER_INCLUDED_C10B22CD #define MITKPLANESPERPENDICULARTOLINES_H_HEADER_INCLUDED_C10B22CD #include "mitkGeometryDataSource.h" #include "MitkExtExports.h" #include "mitkMesh.h" #include "mitkGeometryData.h" #include "mitkPlaneGeometry.h" #include "mitkSlicedGeometry3D.h" namespace mitk { //##Documentation //## @brief Create Planes perpendicular to lines contained in a Mesh. The planes data is generated as one SlicedGeometry3D data. //## To create the planes as input a //## mitk::mesh (for example a pointSet) and as geometry hint a geometry (for example from the original image) must be given. //## //## mitk::Mesh::Pointer mesh = mitk::Mesh::New(); //## mesh->SetMesh(pointSet->GetPointSet()); //## mitk::Image* currentImage = dynamic_cast (myDataStorage->GetNamedNode(IMAGE)->GetData()); //## const mitk::Geometry3D* imagegeometry = currentImage->GetUpdatedGeometry(); //## mitk::PlanesPerpendicularToLinesFilter::Pointer perpendicularPlanes = mitk::PlanesPerpendicularToLinesFilter::New(); //## perpendicularPlanes->SetInput(mesh); //## perpendicularPlanes->SetUseAllPoints(true); //## perpendicularPlanes->SetFrameGeometry(imagegeometry); //## perpendicularPlanes->Update(); //## //## To get one single plane out of these use SlicedGeometry3D->GetGeometry2D(int slicenumber). //## @ingroup Process class MitkExt_EXPORT PlanesPerpendicularToLinesFilter : public GeometryDataSource { public: mitkClassMacro(PlanesPerpendicularToLinesFilter, GeometryDataSource); itkNewMacro(Self); virtual void GenerateOutputInformation(); virtual void GenerateData(); const mitk::Mesh *GetInput(void); //## @brief Set the input mesh that is used to create the planes. virtual void SetInput(const mitk::Mesh *image); //##Documentation //## @brief Set plane to be used as an example of the planes to move //## along the lines in the input mesh. //## //## The size and spacing are copied from the plane. The in-plane //## orientation (right-vector) of the created planes are set as //## parallel as possible to the orientation (right-vector) of the //## the plane set using this method. //## @note The PlaneGeometry is cloned, @em not linked/referenced. virtual void SetPlane(const mitk::PlaneGeometry* aPlane); //##Documentation //## @brief Set if all points in the mesh should be interpreted as //## one long line. //## //## Cells are not used in this mode, but all points in the order //## of their indices form the line. //## Default is @a false. itkGetConstMacro(UseAllPoints, bool); //##Documentation //## @brief Set if all points of the mesh shall be used (true) or the cells (false) //## Default is @a false. itkSetMacro(UseAllPoints, bool); itkBooleanMacro(UseAllPoints); //##Documentation //## @brief Set an explicit frame of the created sliced geometry //## //## Set an explicit framegeometry for the created sliced geometry. This framegeometry is //## used as geometry for all created planes. //## Uses the IndexToWorldTransform and bounding box of the //## provided geometry. //## \sa CalculateFrameGeometry virtual void SetFrameGeometry(const mitk::Geometry3D* frameGeometry); protected: PlanesPerpendicularToLinesFilter(); virtual ~PlanesPerpendicularToLinesFilter(); //## @brief Creates the plane at point curr //## //## Creates the plane at point curr. To create this plane, the last point must //## must be renowned. //## \sa SetPlane void CreatePlane(const Point3D& curr); //## @brief Plane to be used as an example of the planes to move //## along the lines in the input mesh. //## //## The size and spacing are copied from the m_Plane. The in-plane //## orientation (right-vector) of the created planes are set as //## parallel as possible to the orientation (right-vector) of m_Plane. //## \sa SetPlane mitk::PlaneGeometry::Pointer m_Plane; bool m_UseAllPoints; //##Documentation //## @brief SlicedGeometry3D containing the created planes //## SlicedGeometry3D::Pointer m_CreatedGeometries; mitk::Geometry3D::Pointer m_FrameGeometry; private: std::deque planes; Point3D last; VnlVector normal; VnlVector right, down; VnlVector targetRight; Vector3D targetSpacing; ScalarType halfWidthInMM, halfHeightInMM; - mitk::AffineGeometryFrame3D::BoundsArrayType bounds; + mitk::Geometry3D::BoundsArrayType bounds; Point3D origin; }; } // namespace mitk #endif /* MITKPLANESPERPENDICULARTOLINES_H_HEADER_INCLUDED_C10B22CD */ diff --git a/Modules/MitkExt/DataManagement/mitkExternAbstractTransformGeometry.cpp b/Modules/MitkExt/DataManagement/mitkExternAbstractTransformGeometry.cpp index 8bc3c2c7a3..a04f7481eb 100644 --- a/Modules/MitkExt/DataManagement/mitkExternAbstractTransformGeometry.cpp +++ b/Modules/MitkExt/DataManagement/mitkExternAbstractTransformGeometry.cpp @@ -1,61 +1,61 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkExternAbstractTransformGeometry.h" #include mitk::ExternAbstractTransformGeometry::ExternAbstractTransformGeometry() { } mitk::ExternAbstractTransformGeometry::ExternAbstractTransformGeometry(const ExternAbstractTransformGeometry& other) : Superclass(other) { } mitk::ExternAbstractTransformGeometry::~ExternAbstractTransformGeometry() { } void mitk::ExternAbstractTransformGeometry::SetVtkAbstractTransform(vtkAbstractTransform* aVtkAbstractTransform) { Superclass::SetVtkAbstractTransform(aVtkAbstractTransform); } void mitk::ExternAbstractTransformGeometry::SetPlane(const mitk::PlaneGeometry* aPlane) { Superclass::SetPlane(aPlane); } void mitk::ExternAbstractTransformGeometry::SetParametricBounds(const BoundingBox::BoundsArrayType& bounds) { Superclass::SetParametricBounds(bounds); //@warning affine-transforms and bounding-box should be set by specific sub-classes! SetBounds(bounds); if(m_Plane.IsNotNull()) { m_Plane->SetSizeInUnits(bounds[1]-bounds[0], bounds[3]-bounds[2]); m_Plane->SetBounds(bounds); } } -mitk::AffineGeometryFrame3D::Pointer mitk::ExternAbstractTransformGeometry::Clone() const +mitk::Geometry3D::Pointer mitk::ExternAbstractTransformGeometry::Clone() const { Self::Pointer newGeometry = new ExternAbstractTransformGeometry(*this); newGeometry->UnRegister(); return newGeometry.GetPointer(); } diff --git a/Modules/MitkExt/DataManagement/mitkExternAbstractTransformGeometry.h b/Modules/MitkExt/DataManagement/mitkExternAbstractTransformGeometry.h index d56305ad8a..2252d2f113 100644 --- a/Modules/MitkExt/DataManagement/mitkExternAbstractTransformGeometry.h +++ b/Modules/MitkExt/DataManagement/mitkExternAbstractTransformGeometry.h @@ -1,70 +1,70 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef MITKEXTERNABSTRACTTRANSFORMPLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #define MITKEXTERNABSTRACTTRANSFORMPLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C #include "mitkCommon.h" #include "MitkExtExports.h" #include "mitkAbstractTransformGeometry.h" namespace mitk { //##Documentation //## @brief Identical with AbstractTransformGeometry, except that //## it can be externally configured. //## //## In contrast to its superclass (AbstractTransformGeometry), this class //## provides write access to the vtkAbstractTransform and m_Plane. //## @note The PlaneGeometry is cloned, @em not linked/referenced. //## @note The bounds of the PlaneGeometry are used as the parametric bounds. //## @sa AbstractTransformGeometry //## @ingroup Geometry class MitkExt_EXPORT ExternAbstractTransformGeometry : public AbstractTransformGeometry { public: mitkClassMacro(ExternAbstractTransformGeometry, AbstractTransformGeometry); itkNewMacro(Self); //##Documentation //## @brief Set the vtkAbstractTransform (stored in m_VtkAbstractTransform) virtual void SetVtkAbstractTransform(vtkAbstractTransform* aVtkAbstractTransform); //##Documentation //## @brief Set the rectangular area that is used for transformation by //## m_VtkAbstractTransform and therewith defines the 2D manifold described by //## ExternAbstractTransformGeometry //## //## @note The bounds of the PlaneGeometry are used as the parametric bounds. //## @note The PlaneGeometry is cloned, @em not linked/referenced. virtual void SetPlane(const mitk::PlaneGeometry* aPlane); virtual void SetParametricBounds(const BoundingBox::BoundsArrayType& bounds); - virtual AffineGeometryFrame3D::Pointer Clone() const; + virtual Geometry3D::Pointer Clone() const; protected: ExternAbstractTransformGeometry(); ExternAbstractTransformGeometry(const ExternAbstractTransformGeometry& other); virtual ~ExternAbstractTransformGeometry(); }; } // namespace mitk #endif /* MITKEXTERNABSTRACTTRANSFORMPLANEGEOMETRY_H_HEADER_INCLUDED_C1C68A2C */ diff --git a/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.cpp b/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.cpp index ad02bfdd38..a9818d8cac 100644 --- a/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.cpp +++ b/Modules/PlanarFigure/DataManagement/mitkPlanarFigure.cpp @@ -1,709 +1,709 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarFigure.h" #include "mitkGeometry2D.h" #include "mitkProperties.h" #include #include "algorithm" mitk::PlanarFigure::PlanarFigure() : m_SelectedControlPoint( -1 ), m_PreviewControlPointVisible( false ), m_FigurePlaced( false ), m_Geometry2D( NULL ), m_PolyLineUpToDate(false), m_HelperLinesUpToDate(false), m_FeaturesUpToDate(false), m_FeaturesMTime( 0 ) { m_HelperPolyLinesToBePainted = BoolContainerType::New(); m_DisplaySize.first = 0.0; m_DisplaySize.second = 0; this->SetProperty( "closed", mitk::BoolProperty::New( false ) ); // Currently only single-time-step geometries are supported this->InitializeTimeGeometry( 1 ); } mitk::PlanarFigure::~PlanarFigure() { } void mitk::PlanarFigure::SetGeometry2D( mitk::Geometry2D *geometry ) { this->SetGeometry( geometry ); m_Geometry2D = dynamic_cast(GetGeometry(0));//geometry; } const mitk::Geometry2D *mitk::PlanarFigure::GetGeometry2D() const { return m_Geometry2D; } bool mitk::PlanarFigure::IsClosed() const { mitk::BoolProperty* closed = dynamic_cast< mitk::BoolProperty* >( this->GetProperty( "closed" ).GetPointer() ); if ( closed != NULL ) { return closed->GetValue(); } return false; } void mitk::PlanarFigure::PlaceFigure( const mitk::Point2D& point ) { for ( unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i ) { m_ControlPoints.push_back( this->ApplyControlPointConstraints( i, point ) ); } m_FigurePlaced = true; m_SelectedControlPoint = 1; } bool mitk::PlanarFigure::AddControlPoint( const mitk::Point2D& point, int position ) { // if we already have the maximum number of control points, do nothing if ( m_NumberOfControlPoints < this->GetMaximumNumberOfControlPoints() ) { // if position has not been defined or position would be the last control point, just append the new one // we also append a new point if we click onto the line between the first two control-points if the second control-point is selected // -> special case for PlanarCross if ( position == -1 || position > (int)m_NumberOfControlPoints-1 || (position == 1 && m_SelectedControlPoint == 2) ) { if ( m_ControlPoints.size() > this->GetMaximumNumberOfControlPoints()-1 ) { // get rid of deprecated control points in the list. This is necessary // as ::ResetNumberOfControlPoints() only sets the member, does not resize the list! m_ControlPoints.resize( this->GetNumberOfControlPoints() ); } m_ControlPoints.push_back( this->ApplyControlPointConstraints( m_NumberOfControlPoints, point ) ); m_SelectedControlPoint = m_NumberOfControlPoints; } else { // insert the point at the given position and set it as selected point ControlPointListType::iterator iter = m_ControlPoints.begin() + position; m_ControlPoints.insert( iter, this->ApplyControlPointConstraints( position, point ) ); for( unsigned int i = 0; i < m_ControlPoints.size(); ++i ) { if( point == m_ControlPoints.at(i) ) { m_SelectedControlPoint = i; } } } // polylines & helperpolylines need to be repainted m_PolyLineUpToDate = false; m_HelperLinesUpToDate = false; m_FeaturesUpToDate = false; // one control point more ++m_NumberOfControlPoints; return true; } else { return false; } } bool mitk::PlanarFigure::SetControlPoint( unsigned int index, const Point2D& point, bool createIfDoesNotExist ) { bool controlPointSetCorrectly = false; if (createIfDoesNotExist) { if ( m_NumberOfControlPoints <= index ) { m_ControlPoints.push_back( this->ApplyControlPointConstraints( index, point ) ); m_NumberOfControlPoints++; } else { m_ControlPoints.at( index ) = this->ApplyControlPointConstraints( index, point ); } controlPointSetCorrectly = true; } else if ( index < m_NumberOfControlPoints ) { m_ControlPoints.at( index ) = this->ApplyControlPointConstraints( index, point ); controlPointSetCorrectly = true; } else { return false; } if ( controlPointSetCorrectly ) { m_PolyLineUpToDate = false; m_HelperLinesUpToDate = false; m_FeaturesUpToDate = false; } return controlPointSetCorrectly; } bool mitk::PlanarFigure::SetCurrentControlPoint( const Point2D& point ) { if ( (m_SelectedControlPoint < 0) || (m_SelectedControlPoint >= (int)m_NumberOfControlPoints) ) { return false; } return this->SetControlPoint(m_SelectedControlPoint, point, false); } unsigned int mitk::PlanarFigure::GetNumberOfControlPoints() const { return m_NumberOfControlPoints; } bool mitk::PlanarFigure::SelectControlPoint( unsigned int index ) { if ( index < this->GetNumberOfControlPoints() ) { m_SelectedControlPoint = index; return true; } else { return false; } } bool mitk::PlanarFigure::DeselectControlPoint() { bool wasSelected = ( m_SelectedControlPoint != -1); m_SelectedControlPoint = -1; return wasSelected; } void mitk::PlanarFigure::SetPreviewControlPoint( const Point2D& point ) { m_PreviewControlPoint = point; m_PreviewControlPointVisible = true; } void mitk::PlanarFigure::ResetPreviewContolPoint() { m_PreviewControlPointVisible = false; } mitk::Point2D mitk::PlanarFigure::GetPreviewControlPoint() { return m_PreviewControlPoint; } bool mitk::PlanarFigure::IsPreviewControlPointVisible() { return m_PreviewControlPointVisible; } mitk::Point2D mitk::PlanarFigure::GetControlPoint( unsigned int index ) const { if ( index < m_NumberOfControlPoints ) { return m_ControlPoints.at( index ); } itkExceptionMacro( << "GetControlPoint(): Invalid index!" ); } mitk::Point3D mitk::PlanarFigure::GetWorldControlPoint( unsigned int index ) const { Point3D point3D; if ( (m_Geometry2D != NULL) && (index < m_NumberOfControlPoints) ) { m_Geometry2D->Map( m_ControlPoints.at( index ), point3D ); return point3D; } itkExceptionMacro( << "GetWorldControlPoint(): Invalid index!" ); } const mitk::PlanarFigure::PolyLineType mitk::PlanarFigure::GetPolyLine(unsigned int index) { mitk::PlanarFigure::PolyLineType polyLine; if ( index > m_PolyLines.size() || !m_PolyLineUpToDate ) { this->GeneratePolyLine(); m_PolyLineUpToDate = true; } return m_PolyLines.at( index );; } const mitk::PlanarFigure::PolyLineType mitk::PlanarFigure::GetPolyLine(unsigned int index) const { return m_PolyLines.at( index ); } void mitk::PlanarFigure::ClearPolyLines() { for ( std::vector::size_type i=0; iGenerateHelperPolyLine(mmPerDisplayUnit, displayHeight); m_HelperLinesUpToDate = true; // store these parameters to be able to check next time if somebody zoomed in or out m_DisplaySize.first = mmPerDisplayUnit; m_DisplaySize.second = displayHeight; } helperPolyLine = m_HelperPolyLines.at(index); } return helperPolyLine; } void mitk::PlanarFigure::ClearHelperPolyLines() { for ( std::vector::size_type i=0; iGeneratePolyLine(); } this->EvaluateFeaturesInternal(); m_FeaturesUpToDate = true; } } void mitk::PlanarFigure::UpdateOutputInformation() { // Bounds are NOT calculated here, since the Geometry2D defines a fixed // frame (= bounds) for the planar figure. Superclass::UpdateOutputInformation(); this->GetTimeGeometry()->Update(); } void mitk::PlanarFigure::SetRequestedRegionToLargestPossibleRegion() { } bool mitk::PlanarFigure::RequestedRegionIsOutsideOfTheBufferedRegion() { return false; } bool mitk::PlanarFigure::VerifyRequestedRegion() { return true; } void mitk::PlanarFigure::SetRequestedRegion( itk::DataObject * /*data*/ ) { } void mitk::PlanarFigure::ResetNumberOfControlPoints( int numberOfControlPoints ) { // DO NOT resize the list here, will cause crash!! m_NumberOfControlPoints = numberOfControlPoints; } mitk::Point2D mitk::PlanarFigure::ApplyControlPointConstraints( unsigned int /*index*/, const Point2D& point ) { if ( m_Geometry2D == NULL ) { return point; } Point2D indexPoint; m_Geometry2D->WorldToIndex( point, indexPoint ); BoundingBox::BoundsArrayType bounds = m_Geometry2D->GetBounds(); if ( indexPoint[0] < bounds[0] ) { indexPoint[0] = bounds[0]; } if ( indexPoint[0] > bounds[1] ) { indexPoint[0] = bounds[1]; } if ( indexPoint[1] < bounds[2] ) { indexPoint[1] = bounds[2]; } if ( indexPoint[1] > bounds[3] ) { indexPoint[1] = bounds[3]; } Point2D constrainedPoint; m_Geometry2D->IndexToWorld( indexPoint, constrainedPoint ); return constrainedPoint; } unsigned int mitk::PlanarFigure::AddFeature( const char *featureName, const char *unitName ) { unsigned int index = m_Features.size(); Feature newFeature( featureName, unitName ); m_Features.push_back( newFeature ); return index; } void mitk::PlanarFigure::SetFeatureName( unsigned int index, const char *featureName ) { if ( index < m_Features.size() ) { m_Features[index].Name = featureName; } } void mitk::PlanarFigure::SetFeatureUnit( unsigned int index, const char *unitName ) { if ( index < m_Features.size() ) { m_Features[index].Unit = unitName; } } void mitk::PlanarFigure::SetQuantity( unsigned int index, double quantity ) { if ( index < m_Features.size() ) { m_Features[index].Quantity = quantity; } } void mitk::PlanarFigure::ActivateFeature( unsigned int index ) { if ( index < m_Features.size() ) { m_Features[index].Active = true; } } void mitk::PlanarFigure::DeactivateFeature( unsigned int index ) { if ( index < m_Features.size() ) { m_Features[index].Active = false; } } void mitk::PlanarFigure::InitializeTimeGeometry( unsigned int timeSteps ) { mitk::Geometry2D::Pointer geometry2D = mitk::Geometry2D::New(); geometry2D->Initialize(); if ( timeSteps > 1 ) { mitk::ScalarType timeBounds[] = {0.0, 1.0}; geometry2D->SetTimeBounds( timeBounds ); } // The geometry is propagated automatically to all time steps, // if EvenlyTimed is true... ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(geometry2D, timeSteps); SetTimeGeometry(timeGeometry); } void mitk::PlanarFigure::PrintSelf( std::ostream& os, itk::Indent indent) const { Superclass::PrintSelf( os, indent ); os << indent << this->GetNameOfClass() << ":\n"; if (this->IsClosed()) os << indent << "This figure is closed\n"; else os << indent << "This figure is not closed\n"; os << indent << "Minimum number of control points: " << this->GetMinimumNumberOfControlPoints() << std::endl; os << indent << "Maximum number of control points: " << this->GetMaximumNumberOfControlPoints() << std::endl; os << indent << "Current number of control points: " << this->GetNumberOfControlPoints() << std::endl; os << indent << "Control points:" << std::endl; for ( unsigned int i = 0; i < this->GetNumberOfControlPoints(); ++i ) { //os << indent.GetNextIndent() << i << ": " << m_ControlPoints->ElementAt( i ) << std::endl; os << indent.GetNextIndent() << i << ": " << m_ControlPoints.at( i ) << std::endl; } os << indent << "Geometry:\n"; this->GetGeometry2D()->Print(os, indent.GetNextIndent()); } unsigned short mitk::PlanarFigure::GetPolyLinesSize() { if ( !m_PolyLineUpToDate ) { this->GeneratePolyLine(); m_PolyLineUpToDate = true; } return m_PolyLines.size(); } unsigned short mitk::PlanarFigure::GetHelperPolyLinesSize() { return m_HelperPolyLines.size(); } bool mitk::PlanarFigure::IsHelperToBePainted(unsigned int index) { return m_HelperPolyLinesToBePainted->GetElement( index ); } bool mitk::PlanarFigure::ResetOnPointSelect() { return false; } void mitk::PlanarFigure::RemoveControlPoint( unsigned int index ) { if ( index > m_ControlPoints.size() ) return; if ( (m_ControlPoints.size() -1) < this->GetMinimumNumberOfControlPoints() ) return; ControlPointListType::iterator iter; iter = m_ControlPoints.begin() + index; m_ControlPoints.erase( iter ); m_PolyLineUpToDate = false; m_HelperLinesUpToDate = false; m_FeaturesUpToDate = false; --m_NumberOfControlPoints; } void mitk::PlanarFigure::RemoveLastControlPoint() { RemoveControlPoint( m_ControlPoints.size()-1 ); } void mitk::PlanarFigure::DeepCopy(Self::Pointer oldFigure) { //DeepCopy only same types of planar figures //Notice to get typeid polymorph you have to use the *operator if(typeid(*oldFigure) != typeid(*this)) { itkExceptionMacro( << "DeepCopy(): Inconsistent type of source (" << typeid(*oldFigure).name() << ") and destination figure (" << typeid(*this).name() << ")!" ); return; } m_ControlPoints.clear(); this->ClearPolyLines(); this->ClearHelperPolyLines(); // clone base data members SetPropertyList(oldFigure->GetPropertyList()->Clone()); /// deep copy members m_FigurePlaced = oldFigure->m_FigurePlaced; m_SelectedControlPoint = oldFigure->m_SelectedControlPoint; m_FeaturesMTime = oldFigure->m_FeaturesMTime; m_Features = oldFigure->m_Features; m_NumberOfControlPoints = oldFigure->m_NumberOfControlPoints; //copy geometry 2D of planar figure - AffineGeometryFrame3D::Pointer affineGeometry = oldFigure->m_Geometry2D->Clone(); - SetGeometry2D((mitk::Geometry2D*)affineGeometry.GetPointer()); + Geometry3D::Pointer affineGeometry = oldFigure->m_Geometry2D->Clone(); + SetGeometry2D(dynamic_cast(affineGeometry.GetPointer())); for(unsigned long index=0; index < oldFigure->GetNumberOfControlPoints(); index++) { m_ControlPoints.push_back( oldFigure->GetControlPoint( index )); } //After setting the control points we can generate the polylines this->GeneratePolyLine(); } void mitk::PlanarFigure::SetNumberOfPolyLines( unsigned int numberOfPolyLines ) { m_PolyLines.resize(numberOfPolyLines); } void mitk::PlanarFigure::SetNumberOfHelperPolyLines( unsigned int numberOfHerlperPolyLines ) { m_HelperPolyLines.resize(numberOfHerlperPolyLines); } void mitk::PlanarFigure::AppendPointToPolyLine( unsigned int index, PolyLineElement element ) { if ( index < m_PolyLines.size() ) { m_PolyLines.at( index ).push_back( element ); m_PolyLineUpToDate = false; } else { MITK_ERROR << "Tried to add point to PolyLine " << index+1 << ", although only " << m_PolyLines.size() << " exists"; } } void mitk::PlanarFigure::AppendPointToHelperPolyLine( unsigned int index, PolyLineElement element ) { if ( index < m_HelperPolyLines.size() ) { m_HelperPolyLines.at( index ).push_back( element ); m_HelperLinesUpToDate = false; } else { MITK_ERROR << "Tried to add point to HelperPolyLine " << index+1 << ", although only " << m_HelperPolyLines.size() << " exists"; } } diff --git a/Modules/PlanarFigure/IO/mitkPlanarFigureReader.cpp b/Modules/PlanarFigure/IO/mitkPlanarFigureReader.cpp index 92c80e669c..ea24f058c5 100644 --- a/Modules/PlanarFigure/IO/mitkPlanarFigureReader.cpp +++ b/Modules/PlanarFigure/IO/mitkPlanarFigureReader.cpp @@ -1,435 +1,435 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarFigureReader.h" #include "mitkPlanarAngle.h" #include "mitkPlanarCircle.h" #include "mitkPlanarLine.h" #include "mitkPlanarArrow.h" #include "mitkPlanarCross.h" #include "mitkPlanarFourPointAngle.h" #include "mitkPlanarPolygon.h" #include "mitkPlanarSubdivisionPolygon.h" #include "mitkPlanarRectangle.h" #include "mitkPlaneGeometry.h" #include "mitkPlanarEllipse.h" #include "mitkBasePropertySerializer.h" #include #include mitk::PlanarFigureReader::PlanarFigureReader() : PlanarFigureSource(), FileReader(), m_FileName(""), m_FilePrefix(""), m_FilePattern(""), m_Success(false) { this->SetNumberOfRequiredOutputs(1); this->SetNumberOfOutputs(1); this->SetNthOutput(0, this->MakeOutput(0)); m_CanReadFromMemory = true; //this->Modified(); //this->GetOutput()->Modified(); //this->GetOutput()->ReleaseData(); } mitk::PlanarFigureReader::~PlanarFigureReader() {} mitk::PlanarFigureSource::DataObjectPointer mitk::PlanarFigureReader::MakeOutput ( unsigned int ) { return static_cast(PlanarCircle::New().GetPointer()); // just as a stand in for the pipeline update mechanism. This will be overwritten in GenerateData() } void mitk::PlanarFigureReader::GenerateData() { m_Success = false; this->SetNumberOfOutputs(0); // reset all outputs, we add new ones depending on the file content TiXmlDocument document; if(m_ReadFromMemory) { if(m_MemoryBuffer == NULL || m_MemorySize == 0) { //check itkWarningMacro( << "Sorry, memory buffer has not been set!" ); return; } if(m_MemoryBuffer[ m_MemorySize - 1 ] == '\0') { document.Parse(m_MemoryBuffer); } else { char * tmpArray = new char[(int)m_MemorySize+1]; tmpArray[m_MemorySize] = '\0'; memcpy(tmpArray,m_MemoryBuffer,m_MemorySize); document.Parse(m_MemoryBuffer); delete [] tmpArray; } } else { if (m_FileName.empty()) { itkWarningMacro( << "Sorry, filename has not been set!" ); return; } if (this->CanReadFile( m_FileName.c_str()) == false) { itkWarningMacro( << "Sorry, can't read file " << m_FileName << "!" ); return; } if (!document.LoadFile(m_FileName)) { MITK_ERROR << "Could not open/read/parse " << m_FileName << ". TinyXML reports: '" << document.ErrorDesc() << "'. " << "The error occurred in row " << document.ErrorRow() << ", column " << document.ErrorCol() << "."; return; } } int fileVersion = 1; TiXmlElement* versionObject = document.FirstChildElement("Version"); if (versionObject != NULL) { if ( versionObject->QueryIntAttribute( "FileVersion", &fileVersion ) != TIXML_SUCCESS ) { MITK_WARN << m_FileName << " does not contain version information! Trying version 1 format." << std::endl; } } else { MITK_WARN << m_FileName << " does not contain version information! Trying version 1 format." << std::endl; } if (fileVersion != 1) // add file version selection and version specific file parsing here, if newer file versions are created { MITK_WARN << "File version > 1 is not supported by this reader."; return; } /* file version 1 reader code */ for( TiXmlElement* pfElement = document.FirstChildElement("PlanarFigure"); pfElement != NULL; pfElement = pfElement->NextSiblingElement("PlanarFigure") ) { if (pfElement == NULL) continue; std::string type = pfElement->Attribute("type"); mitk::PlanarFigure::Pointer planarFigure = NULL; if (type == "PlanarAngle") { planarFigure = mitk::PlanarAngle::New(); } else if (type == "PlanarCircle") { planarFigure = mitk::PlanarCircle::New(); } else if (type == "PlanarEllipse") { planarFigure = mitk::PlanarEllipse::New(); } else if (type == "PlanarCross") { planarFigure = mitk::PlanarCross::New(); } else if (type == "PlanarFourPointAngle") { planarFigure = mitk::PlanarFourPointAngle::New(); } else if (type == "PlanarLine") { planarFigure = mitk::PlanarLine::New(); } else if (type == "PlanarPolygon") { planarFigure = mitk::PlanarPolygon::New(); } else if (type == "PlanarSubdivisionPolygon") { planarFigure = mitk::PlanarSubdivisionPolygon::New(); } else if (type == "PlanarRectangle") { planarFigure = mitk::PlanarRectangle::New(); } else if (type == "PlanarArrow") { planarFigure = mitk::PlanarArrow::New(); } else { // unknown type MITK_WARN << "encountered unknown planar figure type '" << type << "'. Skipping this element."; continue; } // Read properties of the planar figure for( TiXmlElement* propertyElement = pfElement->FirstChildElement("property"); propertyElement != NULL; propertyElement = propertyElement->NextSiblingElement("property") ) { const char* keya = propertyElement->Attribute("key"); std::string key( keya ? keya : ""); const char* typea = propertyElement->Attribute("type"); std::string type( typea ? typea : ""); // hand propertyElement to specific reader std::stringstream propertyDeserializerClassName; propertyDeserializerClassName << type << "Serializer"; std::list readers = itk::ObjectFactoryBase::CreateAllInstance(propertyDeserializerClassName.str().c_str()); if (readers.size() < 1) { MITK_ERROR << "No property reader found for " << type; } if (readers.size() > 1) { MITK_WARN << "Multiple property readers found for " << type << ". Using arbitrary first one."; } for ( std::list::iterator iter = readers.begin(); iter != readers.end(); ++iter ) { if (BasePropertySerializer* reader = dynamic_cast( iter->GetPointer() ) ) { BaseProperty::Pointer property = reader->Deserialize( propertyElement->FirstChildElement() ); if (property.IsNotNull()) { planarFigure->GetPropertyList()->ReplaceProperty(key, property); } else { MITK_ERROR << "There were errors while loading property '" << key << "' of type " << type << ". Your data may be corrupted"; } break; } } } // Read geometry of containing plane TiXmlElement* geoElement = pfElement->FirstChildElement("Geometry"); if (geoElement != NULL) { try { // Create plane geometry mitk::PlaneGeometry::Pointer planeGeo = mitk::PlaneGeometry::New(); // Extract and set plane transform parameters DoubleList transformList = this->GetDoubleAttributeListFromXMLNode( geoElement->FirstChildElement( "transformParam" ), "param", 12 ); - typedef mitk::AffineGeometryFrame3D::TransformType TransformType; + typedef mitk::Geometry3D::TransformType TransformType; TransformType::ParametersType parameters; parameters.SetSize( 12 ); unsigned int i; DoubleList::iterator it; for ( it = transformList.begin(), i = 0; it != transformList.end(); ++it, ++i ) { parameters.SetElement( i, *it ); } - typedef mitk::AffineGeometryFrame3D::TransformType TransformType; + typedef mitk::Geometry3D::TransformType TransformType; TransformType::Pointer affineGeometry = TransformType::New(); affineGeometry->SetParameters( parameters ); planeGeo->SetIndexToWorldTransform( affineGeometry ); // Extract and set plane bounds DoubleList boundsList = this->GetDoubleAttributeListFromXMLNode( geoElement->FirstChildElement( "boundsParam" ), "bound", 6 ); typedef mitk::Geometry3D::BoundsArrayType BoundsArrayType; BoundsArrayType bounds; for ( it = boundsList.begin(), i = 0; it != boundsList.end(); ++it, ++i ) { bounds[i] = *it; } planeGeo->SetBounds( bounds ); // Extract and set spacing and origin Vector3D spacing = this->GetVectorFromXMLNode(geoElement->FirstChildElement("Spacing")); planeGeo->SetSpacing( spacing ); Point3D origin = this->GetPointFromXMLNode(geoElement->FirstChildElement("Origin")); planeGeo->SetOrigin( origin ); planarFigure->SetGeometry2D(planeGeo); } catch (...) { } } TiXmlElement* cpElement = pfElement->FirstChildElement("ControlPoints"); bool first = true; if (cpElement != NULL) for( TiXmlElement* vertElement = cpElement->FirstChildElement("Vertex"); vertElement != NULL; vertElement = vertElement->NextSiblingElement("Vertex")) { if (vertElement == NULL) continue; int id = 0; mitk::Point2D::ValueType x = 0.0; mitk::Point2D::ValueType y = 0.0; if (vertElement->QueryIntAttribute("id", &id) == TIXML_WRONG_TYPE) return; // TODO: can we do a better error handling? if (vertElement->QueryFloatAttribute("x", &x) == TIXML_WRONG_TYPE) return; // TODO: can we do a better error handling? if (vertElement->QueryFloatAttribute("y", &y) == TIXML_WRONG_TYPE) return; // TODO: can we do a better error handling? Point2D p; p.SetElement(0, x); p.SetElement(1, y); if (first == true) // needed to set m_FigurePlaced to true { planarFigure->PlaceFigure(p); first = false; } planarFigure->SetControlPoint(id, p, true); } // Calculate feature quantities of this PlanarFigure planarFigure->EvaluateFeatures(); // Make sure that no control point is currently selected planarFigure->DeselectControlPoint(); // \TODO: what about m_FigurePlaced and m_SelectedControlPoint ?? this->SetNthOutput( this->GetNumberOfOutputs(), planarFigure ); // add planarFigure as new output of this filter } m_Success = true; } mitk::Point3D mitk::PlanarFigureReader::GetPointFromXMLNode(TiXmlElement* e) { if (e == NULL) throw std::invalid_argument("node invalid"); // TODO: can we do a better error handling? mitk::Point3D point; mitk::ScalarType p(-1.0); if (e->QueryFloatAttribute("x", &p) == TIXML_WRONG_TYPE) throw std::invalid_argument("node malformatted"); // TODO: can we do a better error handling? point.SetElement(0, p); if (e->QueryFloatAttribute("y", &p) == TIXML_WRONG_TYPE) throw std::invalid_argument("node malformatted"); // TODO: can we do a better error handling? point.SetElement(1, p); if (e->QueryFloatAttribute("z", &p) == TIXML_WRONG_TYPE) throw std::invalid_argument("node malformatted"); // TODO: can we do a better error handling? point.SetElement(2, p); return point; } mitk::Vector3D mitk::PlanarFigureReader::GetVectorFromXMLNode(TiXmlElement* e) { if (e == NULL) throw std::invalid_argument("node invalid"); // TODO: can we do a better error handling? mitk::Vector3D vector; mitk::ScalarType p(-1.0); if (e->QueryFloatAttribute("x", &p) == TIXML_WRONG_TYPE) throw std::invalid_argument("node malformatted"); // TODO: can we do a better error handling? vector.SetElement(0, p); if (e->QueryFloatAttribute("y", &p) == TIXML_WRONG_TYPE) throw std::invalid_argument("node malformatted"); // TODO: can we do a better error handling? vector.SetElement(1, p); if (e->QueryFloatAttribute("z", &p) == TIXML_WRONG_TYPE) throw std::invalid_argument("node malformatted"); // TODO: can we do a better error handling? vector.SetElement(2, p); return vector; } mitk::PlanarFigureReader::DoubleList mitk::PlanarFigureReader::GetDoubleAttributeListFromXMLNode(TiXmlElement* e, const char *attributeNameBase, unsigned int count) { DoubleList list; if (e == NULL) throw std::invalid_argument("node invalid"); // TODO: can we do a better error handling? for ( unsigned int i = 0; i < count; ++i ) { mitk::ScalarType p(-1.0); std::stringstream attributeName; attributeName << attributeNameBase << i; if (e->QueryFloatAttribute( attributeName.str().c_str(), &p ) == TIXML_WRONG_TYPE) throw std::invalid_argument("node malformatted"); // TODO: can we do a better error handling? list.push_back( p ); } return list; } void mitk::PlanarFigureReader::GenerateOutputInformation() { } int mitk::PlanarFigureReader::CanReadFile ( const char *name ) { if (std::string(name).empty()) return false; return (itksys::SystemTools::LowerCase(itksys::SystemTools::GetFilenameLastExtension(name)) == ".pf"); //assume, we can read all .pf files //TiXmlDocument document(name); //if (document.LoadFile() == false) // return false; //return (document.FirstChildElement("PlanarFigure") != NULL); } bool mitk::PlanarFigureReader::CanReadFile(const std::string filename, const std::string, const std::string) { if (filename.empty()) return false; return (itksys::SystemTools::LowerCase(itksys::SystemTools::GetFilenameLastExtension(filename)) == ".pf"); //assume, we can read all .pf files //TiXmlDocument document(filename); //if (document.LoadFile() == false) // return false; //return (document.FirstChildElement("PlanarFigure") != NULL); } void mitk::PlanarFigureReader::ResizeOutputs( const unsigned int& num ) { unsigned int prevNum = this->GetNumberOfOutputs(); this->SetNumberOfOutputs( num ); for ( unsigned int i = prevNum; i < num; ++i ) { this->SetNthOutput( i, this->MakeOutput( i ).GetPointer() ); } } diff --git a/Modules/PlanarFigure/IO/mitkPlanarFigureWriter.cpp b/Modules/PlanarFigure/IO/mitkPlanarFigureWriter.cpp index 6d84fcbccd..edad48b8b3 100644 --- a/Modules/PlanarFigure/IO/mitkPlanarFigureWriter.cpp +++ b/Modules/PlanarFigure/IO/mitkPlanarFigureWriter.cpp @@ -1,303 +1,303 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkPlanarFigureWriter.h" #include "mitkBasePropertySerializer.h" #include mitk::PlanarFigureWriter::PlanarFigureWriter() : m_FileName(""), m_FilePrefix(""), m_FilePattern(""), m_Extension(".pf"), m_MimeType("application/MITK.PlanarFigure"), m_Success(false) { this->SetNumberOfRequiredInputs( 1 ); this->SetNumberOfOutputs( 0 ); //this->SetNthOutput( 0, mitk::PlanarFigure::New().GetPointer() ); m_CanWriteToMemory = true; } mitk::PlanarFigureWriter::~PlanarFigureWriter() {} void mitk::PlanarFigureWriter::GenerateData() { m_Success = false; if (!m_WriteToMemory && m_FileName.empty()) { MITK_ERROR << "Could not write planar figures. File name is invalid"; throw std::invalid_argument("file name is empty"); } TiXmlDocument document; TiXmlDeclaration* decl = new TiXmlDeclaration( "1.0", "", "" ); // TODO what to write here? encoding? etc.... document.LinkEndChild( decl ); TiXmlElement* version = new TiXmlElement("Version"); version->SetAttribute("Writer", __FILE__ ); version->SetAttribute("CVSRevision", "$Revision: 17055 $" ); version->SetAttribute("FileVersion", 1 ); document.LinkEndChild(version); /* create xml element for each input */ for ( unsigned int i = 0 ; i < this->GetNumberOfInputs(); ++i ) { // Create root element for this PlanarFigure InputType::Pointer pf = this->GetInput( i ); if (pf.IsNull()) continue; TiXmlElement* pfElement = new TiXmlElement("PlanarFigure"); pfElement->SetAttribute("type", pf->GetNameOfClass()); document.LinkEndChild(pfElement); if ( pf->GetNumberOfControlPoints() == 0 ) continue; //PlanarFigure::VertexContainerType* vertices = pf->GetControlPoints(); //if (vertices == NULL) // continue; // Serialize property list of PlanarFigure mitk::PropertyList::Pointer propertyList = pf->GetPropertyList(); mitk::PropertyList::PropertyMap::const_iterator it; for ( it = propertyList->GetMap()->begin(); it != propertyList->GetMap()->end(); ++it ) { // Create seralizer for this property const mitk::BaseProperty* prop = it->second; std::string serializerName = std::string( prop->GetNameOfClass() ) + "Serializer"; std::list< itk::LightObject::Pointer > allSerializers = itk::ObjectFactoryBase::CreateAllInstance( serializerName.c_str() ); if ( allSerializers.size() != 1 ) { // No or too many serializer(s) found, skip this property continue; } mitk::BasePropertySerializer* serializer = dynamic_cast< mitk::BasePropertySerializer* >( allSerializers.begin()->GetPointer() ); if ( serializer == NULL ) { // Serializer not valid; skip this property } TiXmlElement* keyElement = new TiXmlElement( "property" ); keyElement->SetAttribute( "key", it->first ); keyElement->SetAttribute( "type", prop->GetNameOfClass() ); serializer->SetProperty( prop ); TiXmlElement* valueElement = NULL; try { valueElement = serializer->Serialize(); } catch (...) { } if ( valueElement == NULL ) { // Serialization failed; skip this property continue; } // Add value to property element keyElement->LinkEndChild( valueElement ); // Append serialized property to property list pfElement->LinkEndChild( keyElement ); } // Serialize control points of PlanarFigure TiXmlElement* controlPointsElement = new TiXmlElement("ControlPoints"); pfElement->LinkEndChild(controlPointsElement); for (unsigned int i = 0; i < pf->GetNumberOfControlPoints(); i++) { TiXmlElement* vElement = new TiXmlElement("Vertex"); vElement->SetAttribute("id", i); vElement->SetDoubleAttribute("x", pf->GetControlPoint(i)[0]); vElement->SetDoubleAttribute("y", pf->GetControlPoint(i)[1]); controlPointsElement->LinkEndChild(vElement); } TiXmlElement* geoElement = new TiXmlElement("Geometry"); const PlaneGeometry* planeGeo = dynamic_cast(pf->GetGeometry2D()); if (planeGeo != NULL) { // Write parameters of IndexToWorldTransform of the PlaneGeometry - typedef mitk::AffineGeometryFrame3D::TransformType TransformType; + typedef mitk::Geometry3D::TransformType TransformType; const TransformType* affineGeometry = planeGeo->GetIndexToWorldTransform(); const TransformType::ParametersType& parameters = affineGeometry->GetParameters(); TiXmlElement* vElement = new TiXmlElement( "transformParam" ); for ( unsigned int i = 0; i < affineGeometry->GetNumberOfParameters(); ++i ) { std::stringstream paramName; paramName << "param" << i; vElement->SetDoubleAttribute( paramName.str().c_str(), parameters.GetElement( i ) ); } geoElement->LinkEndChild( vElement ); // Write bounds of the PlaneGeometry typedef mitk::Geometry3D::BoundsArrayType BoundsArrayType; const BoundsArrayType& bounds = planeGeo->GetBounds(); vElement = new TiXmlElement( "boundsParam" ); for ( unsigned int i = 0; i < 6; ++i ) { std::stringstream boundName; boundName << "bound" << i; vElement->SetDoubleAttribute( boundName.str().c_str(), bounds.GetElement( i ) ); } geoElement->LinkEndChild( vElement ); // Write spacing and origin of the PlaneGeometry Vector3D spacing = planeGeo->GetSpacing(); Point3D origin = planeGeo->GetOrigin(); geoElement->LinkEndChild(this->CreateXMLVectorElement("Spacing", spacing)); geoElement->LinkEndChild(this->CreateXMLVectorElement("Origin", origin)); pfElement->LinkEndChild(geoElement); } } if(m_WriteToMemory) { // Declare a printer TiXmlPrinter printer; // attach it to the document you want to convert in to a std::string document.Accept(&printer); // Create memory buffer and print tinyxmldocument there... m_MemoryBufferSize = printer.Size() + 1; m_MemoryBuffer = new char[m_MemoryBufferSize]; strcpy(m_MemoryBuffer,printer.CStr()); } else { if (document.SaveFile( m_FileName) == false) { MITK_ERROR << "Could not write planar figures to " << m_FileName << "\nTinyXML reports '" << document.ErrorDesc() << "'"; throw std::ios_base::failure("Error during writing of planar figure xml file."); } } m_Success = true; } void mitk::PlanarFigureWriter::ReleaseMemory() { if(m_MemoryBuffer != NULL) { delete [] m_MemoryBuffer; } } TiXmlElement* mitk::PlanarFigureWriter::CreateXMLVectorElement(const char* name, itk::FixedArray v) { TiXmlElement* vElement = new TiXmlElement(name); vElement->SetDoubleAttribute("x", v.GetElement(0)); vElement->SetDoubleAttribute("y", v.GetElement(1)); vElement->SetDoubleAttribute("z", v.GetElement(2)); return vElement; } void mitk::PlanarFigureWriter::ResizeInputs( const unsigned int& num ) { //unsigned int prevNum = this->GetNumberOfInputs(); this->SetNumberOfInputs( num ); //for ( unsigned int i = prevNum; i < num; ++i ) //{ // this->SetNthInput( i, mitk::PlanarFigure::New().GetPointer() ); //} } void mitk::PlanarFigureWriter::SetInput( InputType* PlanarFigure ) { this->ProcessObject::SetNthInput( 0, PlanarFigure ); } void mitk::PlanarFigureWriter::SetInput( const unsigned int& id, InputType* PlanarFigure ) { if ( id >= this->GetNumberOfInputs() ) this->ResizeInputs( id + 1 ); this->ProcessObject::SetNthInput( id, PlanarFigure ); } mitk::PlanarFigure* mitk::PlanarFigureWriter::GetInput() { if ( this->GetNumberOfInputs() < 1 ) return NULL; else return dynamic_cast ( this->GetInput( 0 ) ); } mitk::PlanarFigure* mitk::PlanarFigureWriter::GetInput( const unsigned int& num ) { return dynamic_cast ( this->ProcessObject::GetInput( num ) ); } bool mitk::PlanarFigureWriter::CanWriteDataType( DataNode* input ) { if ( input == NULL ) return false; mitk::BaseData* data = input->GetData(); if ( data == NULL) return false; mitk::PlanarFigure::Pointer PlanarFigure = dynamic_cast( data ); if( PlanarFigure.IsNull() ) return false; // add code for special subclasses here return true; } void mitk::PlanarFigureWriter::SetInput( DataNode* input ) { if (this->CanWriteDataType(input)) this->ProcessObject::SetNthInput( 0, dynamic_cast( input->GetData() ) ); } std::string mitk::PlanarFigureWriter::GetWritenMIMEType() { return m_MimeType; } std::vector mitk::PlanarFigureWriter::GetPossibleFileExtensions() { std::vector possibleFileExtensions; possibleFileExtensions.push_back(m_Extension); return possibleFileExtensions; } std::string mitk::PlanarFigureWriter::GetFileExtension() { return m_Extension; } diff --git a/Modules/PlanarFigure/Testing/mitkPlanarFigureIOTest.cpp b/Modules/PlanarFigure/Testing/mitkPlanarFigureIOTest.cpp index f49d3b2e90..898266f001 100644 --- a/Modules/PlanarFigure/Testing/mitkPlanarFigureIOTest.cpp +++ b/Modules/PlanarFigure/Testing/mitkPlanarFigureIOTest.cpp @@ -1,594 +1,594 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkTestingMacros.h" #include "mitkPlanarAngle.h" #include "mitkPlanarCircle.h" #include "mitkPlanarCross.h" #include "mitkPlanarFourPointAngle.h" #include "mitkPlanarLine.h" #include "mitkPlanarPolygon.h" #include "mitkPlanarSubdivisionPolygon.h" #include "mitkPlanarRectangle.h" #include "mitkPlanarFigureWriter.h" #include "mitkPlanarFigureReader.h" #include "mitkPlaneGeometry.h" #include /** \brief Helper class for testing PlanarFigure reader and writer classes. */ class PlanarFigureIOTestClass { public: typedef std::list< mitk::PlanarFigure::Pointer > PlanarFigureList; typedef std::vector< mitk::PlanarFigureWriter::Pointer > PlanarFigureToMemoryWriterList; static PlanarFigureList CreatePlanarFigures() { PlanarFigureList planarFigures; // Create PlaneGeometry on which to place the PlanarFigures mitk::PlaneGeometry::Pointer planeGeometry = mitk::PlaneGeometry::New(); planeGeometry->InitializeStandardPlane( 100.0, 100.0 ); // Create a few sample points for PlanarFigure placement mitk::Point2D p0; p0[0] = 20.0; p0[1] = 20.0; mitk::Point2D p1; p1[0] = 80.0; p1[1] = 80.0; mitk::Point2D p2; p2[0] = 90.0; p2[1] = 10.0; mitk::Point2D p3; p3[0] = 10.0; p3[1] = 90.0; // Create PlanarAngle mitk::PlanarAngle::Pointer planarAngle = mitk::PlanarAngle::New(); planarAngle->SetGeometry2D( planeGeometry ); planarAngle->PlaceFigure( p0 ); planarAngle->SetCurrentControlPoint( p1 ); planarAngle->AddControlPoint( p2 ); planarFigures.push_back( planarAngle.GetPointer() ); // Create PlanarCircle mitk::PlanarCircle::Pointer planarCircle = mitk::PlanarCircle::New(); planarCircle->SetGeometry2D( planeGeometry ); planarCircle->PlaceFigure( p0 ); planarCircle->SetCurrentControlPoint( p1 ); planarFigures.push_back( planarCircle.GetPointer() ); // Create PlanarCross mitk::PlanarCross::Pointer planarCross = mitk::PlanarCross::New(); planarCross->SetSingleLineMode( false ); planarCross->SetGeometry2D( planeGeometry ); planarCross->PlaceFigure( p0 ); planarCross->SetCurrentControlPoint( p1 ); planarCross->AddControlPoint( p2 ); planarCross->AddControlPoint( p3 ); planarFigures.push_back( planarCross.GetPointer() ); // Create PlanarFourPointAngle mitk::PlanarFourPointAngle::Pointer planarFourPointAngle = mitk::PlanarFourPointAngle::New(); planarFourPointAngle->SetGeometry2D( planeGeometry ); planarFourPointAngle->PlaceFigure( p0 ); planarFourPointAngle->SetCurrentControlPoint( p1 ); planarFourPointAngle->AddControlPoint( p2 ); planarFourPointAngle->AddControlPoint( p3 ); planarFigures.push_back( planarFourPointAngle.GetPointer() ); // Create PlanarLine mitk::PlanarLine::Pointer planarLine = mitk::PlanarLine::New(); planarLine->SetGeometry2D( planeGeometry ); planarLine->PlaceFigure( p0 ); planarLine->SetCurrentControlPoint( p1 ); planarFigures.push_back( planarLine.GetPointer() ); // Create PlanarPolygon mitk::PlanarPolygon::Pointer planarPolygon = mitk::PlanarPolygon::New(); planarPolygon->SetClosed( false ); planarPolygon->SetGeometry2D( planeGeometry ); planarPolygon->PlaceFigure( p0 ); planarPolygon->SetCurrentControlPoint( p1 ); planarPolygon->AddControlPoint( p2 ); planarPolygon->AddControlPoint( p3 ); planarFigures.push_back( planarPolygon.GetPointer() ); // Create PlanarSubdivisionPolygon mitk::PlanarSubdivisionPolygon::Pointer planarSubdivisionPolygon = mitk::PlanarSubdivisionPolygon::New(); planarSubdivisionPolygon->SetClosed( false ); planarSubdivisionPolygon->SetGeometry2D( planeGeometry ); planarSubdivisionPolygon->PlaceFigure( p0 ); planarSubdivisionPolygon->SetCurrentControlPoint( p1 ); planarSubdivisionPolygon->AddControlPoint( p2 ); planarSubdivisionPolygon->AddControlPoint( p3 ); planarFigures.push_back( planarSubdivisionPolygon.GetPointer() ); // Create PlanarRectangle mitk::PlanarRectangle::Pointer planarRectangle = mitk::PlanarRectangle::New(); planarRectangle->SetGeometry2D( planeGeometry ); planarRectangle->PlaceFigure( p0 ); planarRectangle->SetCurrentControlPoint( p1 ); planarFigures.push_back( planarRectangle.GetPointer() ); //create preciseGeometry which is using float coordinates mitk::PlaneGeometry::Pointer preciseGeometry = mitk::PlaneGeometry::New(); mitk::Vector3D right; right[0] = 0.0; right[1] = 1.23456; right[2] = 0.0; mitk::Vector3D down; down[0] = 1.23456; down[1] = 0.0; down[2] = 0.0; mitk::Vector3D spacing; spacing[0] = 0.0123456; spacing[1] = 0.0123456; spacing[2] = 1.123456; preciseGeometry->InitializeStandardPlane( right, down, &spacing ); //convert points into the precise coordinates mitk::Point2D p0precise; p0precise[0] = p0[0] * spacing[0]; p0precise[1] = p0[1] * spacing[1]; mitk::Point2D p1precise; p1precise[0] = p1[0] * spacing[0]; p1precise[1] = p1[1] * spacing[1]; mitk::Point2D p2precise; p2precise[0] = p2[0] * spacing[0]; p2precise[1] = p2[1] * spacing[1]; mitk::Point2D p3precise; p3precise[0] = p3[0] * spacing[0]; p3precise[1] = p3[1] * spacing[1]; //Now all PlanarFigures are create using the precise Geometry // Create PlanarCross mitk::PlanarCross::Pointer nochncross = mitk::PlanarCross::New(); nochncross->SetSingleLineMode( false ); nochncross->SetGeometry2D( preciseGeometry ); nochncross->PlaceFigure( p0precise ); nochncross->SetCurrentControlPoint( p1precise ); nochncross->AddControlPoint( p2precise ); nochncross->AddControlPoint( p3precise ); planarFigures.push_back( nochncross.GetPointer() ); // Create PlanarAngle mitk::PlanarAngle::Pointer planarAnglePrecise = mitk::PlanarAngle::New(); planarAnglePrecise->SetGeometry2D( preciseGeometry ); planarAnglePrecise->PlaceFigure( p0precise ); planarAnglePrecise->SetCurrentControlPoint( p1precise ); planarAnglePrecise->AddControlPoint( p2precise ); planarFigures.push_back( planarAnglePrecise.GetPointer() ); // Create PlanarCircle mitk::PlanarCircle::Pointer planarCirclePrecise = mitk::PlanarCircle::New(); planarCirclePrecise->SetGeometry2D( preciseGeometry ); planarCirclePrecise->PlaceFigure( p0precise ); planarCirclePrecise->SetCurrentControlPoint( p1precise ); planarFigures.push_back( planarCirclePrecise.GetPointer() ); // Create PlanarFourPointAngle mitk::PlanarFourPointAngle::Pointer planarFourPointAnglePrecise = mitk::PlanarFourPointAngle::New(); planarFourPointAnglePrecise->SetGeometry2D( preciseGeometry ); planarFourPointAnglePrecise->PlaceFigure( p0precise ); planarFourPointAnglePrecise->SetCurrentControlPoint( p1precise ); planarFourPointAnglePrecise->AddControlPoint( p2precise ); planarFourPointAnglePrecise->AddControlPoint( p3precise ); planarFigures.push_back( planarFourPointAnglePrecise.GetPointer() ); // Create PlanarLine mitk::PlanarLine::Pointer planarLinePrecise = mitk::PlanarLine::New(); planarLinePrecise->SetGeometry2D( preciseGeometry ); planarLinePrecise->PlaceFigure( p0precise ); planarLinePrecise->SetCurrentControlPoint( p1precise ); planarFigures.push_back( planarLinePrecise.GetPointer() ); // Create PlanarPolygon mitk::PlanarPolygon::Pointer planarPolygonPrecise = mitk::PlanarPolygon::New(); planarPolygonPrecise->SetClosed( false ); planarPolygonPrecise->SetGeometry2D( preciseGeometry ); planarPolygonPrecise->PlaceFigure( p0precise ); planarPolygonPrecise->SetCurrentControlPoint( p1precise ); planarPolygonPrecise->AddControlPoint( p2precise ); planarPolygonPrecise->AddControlPoint( p3precise ); planarFigures.push_back( planarPolygonPrecise.GetPointer() ); // Create PlanarSubdivisionPolygon mitk::PlanarSubdivisionPolygon::Pointer planarSubdivisionPolygonPrecise = mitk::PlanarSubdivisionPolygon::New(); planarSubdivisionPolygonPrecise->SetClosed( false ); planarSubdivisionPolygonPrecise->SetGeometry2D( preciseGeometry ); planarSubdivisionPolygonPrecise->PlaceFigure( p0precise ); planarSubdivisionPolygonPrecise->SetCurrentControlPoint( p1precise ); planarSubdivisionPolygonPrecise->AddControlPoint( p2precise ); planarSubdivisionPolygonPrecise->AddControlPoint( p3precise ); planarFigures.push_back( planarSubdivisionPolygonPrecise.GetPointer() ); // Create PlanarRectangle mitk::PlanarRectangle::Pointer planarRectanglePrecise = mitk::PlanarRectangle::New(); planarRectanglePrecise->SetGeometry2D( preciseGeometry ); planarRectanglePrecise->PlaceFigure( p0precise ); planarRectanglePrecise->SetCurrentControlPoint( p1precise ); planarFigures.push_back( planarRectanglePrecise.GetPointer() ); return planarFigures; } static PlanarFigureList CreateDeepCopiedPlanarFigures(PlanarFigureList original) { PlanarFigureList copiedPlanarFigures; PlanarFigureList::iterator it1; for ( it1 = original.begin(); it1 != original.end(); ++it1 ) { mitk::PlanarFigure::Pointer copiedFigure; if(strcmp((*it1)->GetNameOfClass(), "PlanarAngle") == 0) { copiedFigure = mitk::PlanarAngle::New(); } if(strcmp((*it1)->GetNameOfClass(), "PlanarCircle") == 0) { copiedFigure = mitk::PlanarCircle::New(); } if(strcmp((*it1)->GetNameOfClass(), "PlanarLine") == 0) { copiedFigure = mitk::PlanarLine::New(); } if(strcmp((*it1)->GetNameOfClass(), "PlanarPolygon") == 0) { copiedFigure = mitk::PlanarPolygon::New(); } if(strcmp((*it1)->GetNameOfClass(), "PlanarSubdivisionPolygon") == 0) { copiedFigure = mitk::PlanarSubdivisionPolygon::New(); } if(strcmp((*it1)->GetNameOfClass(), "PlanarCross") == 0) { copiedFigure = mitk::PlanarCross::New(); } if(strcmp((*it1)->GetNameOfClass(), "PlanarRectangle") == 0) { copiedFigure = mitk::PlanarRectangle::New(); } if(strcmp((*it1)->GetNameOfClass(), "PlanarFourPointAngle") == 0) { copiedFigure = mitk::PlanarFourPointAngle::New(); } copiedFigure->DeepCopy((*it1)); copiedPlanarFigures.push_back(copiedFigure.GetPointer()); } return copiedPlanarFigures; } static void VerifyPlanarFigures( PlanarFigureList &planarFigures1, PlanarFigureList &planarFigures2 ) { PlanarFigureList::iterator it1, it2; for ( it1 = planarFigures1.begin(); it1 != planarFigures1.end(); ++it1 ) { bool planarFigureFound = false; for ( it2 = planarFigures2.begin(); it2 != planarFigures2.end(); ++it2 ) { // Compare PlanarFigures (returns false if different types) if ( ComparePlanarFigures( *it1, *it2 ) ) { planarFigureFound = true; } } // Test if (at least) on PlanarFigure of the first type was found in the second list MITK_TEST_CONDITION_REQUIRED( planarFigureFound, "Testing if " << (*it1)->GetNameOfClass() << " has a counterpart" ); } } static bool ComparePlanarFigures( mitk::PlanarFigure* figure1, mitk::PlanarFigure* figure2 ) { // Test if PlanarFigures are of same type; otherwise return if ( strcmp( figure1->GetNameOfClass(), figure2->GetNameOfClass() ) != 0 ) { return false; } // Test for equal number of control points if(figure1->GetNumberOfControlPoints() != figure2->GetNumberOfControlPoints()) { return false; } // Test if all control points are equal for ( unsigned int i = 0; i < figure1->GetNumberOfControlPoints(); ++i ) { mitk::Point2D point1 = figure1->GetControlPoint( i ); mitk::Point2D point2 = figure2->GetControlPoint( i ); if(point1.EuclideanDistanceTo( point2 ) >= mitk::eps) { return false; } } // Test for equal number of properties typedef mitk::PropertyList::PropertyMap PropertyMap; const PropertyMap* properties1 = figure1->GetPropertyList()->GetMap(); const PropertyMap* properties2 = figure2->GetPropertyList()->GetMap(); if(properties1->size() != properties2->size()) { return false; } MITK_INFO << "List 1:"; for (PropertyMap::const_iterator i1 = properties1->begin(); i1 != properties1->end(); ++i1) { std::cout << i1->first << std::endl; } MITK_INFO << "List 2:"; for (PropertyMap::const_iterator i2 = properties2->begin(); i2 != properties2->end(); ++i2) { std::cout << i2->first << std::endl; } MITK_INFO << "-------"; // Test if all properties are equal if(!std::equal( properties1->begin(), properties1->end(), properties2->begin(), PropertyMapEntryCompare() )) { return false; } // Test if Geometry is equal const mitk::PlaneGeometry* planeGeometry1 = dynamic_cast(figure1->GetGeometry2D()); const mitk::PlaneGeometry* planeGeometry2 = dynamic_cast(figure2->GetGeometry2D()); // Test Geometry transform parameters - typedef mitk::AffineGeometryFrame3D::TransformType TransformType; + typedef mitk::Geometry3D::TransformType TransformType; const TransformType* affineGeometry1 = planeGeometry1->GetIndexToWorldTransform(); const TransformType::ParametersType& parameters1 = affineGeometry1->GetParameters(); const TransformType::ParametersType& parameters2 = planeGeometry2->GetIndexToWorldTransform()->GetParameters(); for ( unsigned int i = 0; i < affineGeometry1->GetNumberOfParameters(); ++i ) { if ( fabs(parameters1.GetElement( i ) - parameters2.GetElement( i )) >= mitk::eps ) { return false; } } // Test Geometry bounds typedef mitk::Geometry3D::BoundsArrayType BoundsArrayType; const BoundsArrayType& bounds1 = planeGeometry1->GetBounds(); const BoundsArrayType& bounds2 = planeGeometry2->GetBounds(); for ( unsigned int i = 0; i < 6; ++i ) { if ( fabs(bounds1.GetElement( i ) - bounds2.GetElement( i )) >= mitk::eps ) { return false; }; } // Test Geometry spacing and origin mitk::Vector3D spacing1 = planeGeometry1->GetSpacing(); mitk::Vector3D spacing2 = planeGeometry2->GetSpacing(); if((spacing1 - spacing2).GetNorm() >= mitk::eps) { return false; } mitk::Point3D origin1 = planeGeometry1->GetOrigin(); mitk::Point3D origin2 = planeGeometry2->GetOrigin(); if(origin1.EuclideanDistanceTo( origin2 ) >= mitk::eps) { return false; } return true; } static void SerializePlanarFigures( PlanarFigureList &planarFigures, std::string& fileName ) { //std::string sceneFileName = Poco::Path::temp() + /*Poco::Path::separator() +*/ "scene.zip"; std::cout << "File name: " << fileName << std::endl; mitk::PlanarFigureWriter::Pointer writer = mitk::PlanarFigureWriter::New(); writer->SetFileName( fileName.c_str() ); unsigned int i; PlanarFigureList::iterator it; for ( it = planarFigures.begin(), i = 0; it != planarFigures.end(); ++it, ++i ) { writer->SetInput( i, *it ); } writer->Update(); MITK_TEST_CONDITION_REQUIRED( writer->GetSuccess(), "Testing if writing was successful"); } static PlanarFigureList DeserializePlanarFigures( std::string& fileName) { // Read in the planar figures mitk::PlanarFigureReader::Pointer reader = mitk::PlanarFigureReader::New(); reader->SetFileName( fileName.c_str() ); reader->Update(); MITK_TEST_CONDITION_REQUIRED( reader->GetSuccess(), "Testing if reading was successful"); // Store them in the list and return it PlanarFigureList planarFigures; for ( unsigned int i = 0; i < reader->GetNumberOfOutputs(); ++i ) { mitk::PlanarFigure* figure = reader->GetOutput( i ); planarFigures.push_back( figure ); } return planarFigures; } static PlanarFigureToMemoryWriterList SerializePlanarFiguresToMemoryBuffers( PlanarFigureList &planarFigures ) { PlanarFigureToMemoryWriterList pfMemoryWriters; unsigned int i; PlanarFigureList::iterator it; bool success = true; for ( it = planarFigures.begin(), i = 0; it != planarFigures.end(); ++it, ++i ) { mitk::PlanarFigureWriter::Pointer writer = mitk::PlanarFigureWriter::New(); writer->SetWriteToMemory( true ); writer->SetInput( *it ); writer->Update(); pfMemoryWriters.push_back(writer); if(!writer->GetSuccess()) success = false; } MITK_TEST_CONDITION_REQUIRED(success, "Testing if writing to memory buffers was successful"); return pfMemoryWriters; } static PlanarFigureList DeserializePlanarFiguresFromMemoryBuffers( PlanarFigureToMemoryWriterList pfMemoryWriters) { // Store them in the list and return it PlanarFigureList planarFigures; bool success = true; for ( unsigned int i = 0; i < pfMemoryWriters.size(); ++i ) { // Read in the planar figures mitk::PlanarFigureReader::Pointer reader = mitk::PlanarFigureReader::New(); reader->SetReadFromMemory( true ); reader->SetMemoryBuffer(pfMemoryWriters[i]->GetMemoryPointer(), pfMemoryWriters[i]->GetMemorySize()); reader->Update(); mitk::PlanarFigure* figure = reader->GetOutput( 0 ); planarFigures.push_back( figure ); if(!reader->GetSuccess()) success = false; } MITK_TEST_CONDITION_REQUIRED(success, "Testing if reading was successful"); return planarFigures; } private: class PropertyMapEntryCompare { public: bool operator()( const mitk::PropertyList::PropertyMap::value_type &entry1, const mitk::PropertyList::PropertyMap::value_type &entry2 ) { MITK_INFO << "Comparing " << entry1.first << "(" << entry1.second->GetValueAsString() << ") and " << entry2.first << "(" << entry2.second->GetValueAsString() << ")"; // Compare property objects contained in the map entries (see mitk::PropertyList) return *(entry1.second) == *(entry2.second); } }; }; // end test helper class /** \brief Test for PlanarFigure reader and writer classes. * * The test works as follows: * * First, a number of PlanarFigure objects of different types are created and placed with * various control points. These objects are the serialized to file, read again from file, and * the retrieved objects are compared with their control points, properties, and geometry * information to the original PlanarFigure objects. */ int mitkPlanarFigureIOTest(int /* argc */, char* /*argv*/[]) { MITK_TEST_BEGIN("PlanarFigureIO"); // Create a number of PlanarFigure objects PlanarFigureIOTestClass::PlanarFigureList originalPlanarFigures = PlanarFigureIOTestClass::CreatePlanarFigures(); // Create a number of "deep-copied" planar figures to test the DeepCopy function PlanarFigureIOTestClass::PlanarFigureList copiedPlanarFigures = PlanarFigureIOTestClass::CreateDeepCopiedPlanarFigures(originalPlanarFigures); PlanarFigureIOTestClass::VerifyPlanarFigures(originalPlanarFigures, copiedPlanarFigures ); // Write PlanarFigure objects into temp file // tmpname static unsigned long count = 0; unsigned long n = count++; std::ostringstream name; for (int i = 0; i < 6; ++i) { name << char('a' + (n % 26)); n /= 26; } std::string myname; myname.append(name.str()); std::string fileName = itksys::SystemTools::GetCurrentWorkingDirectory() + myname + ".pf"; PlanarFigureIOTestClass::SerializePlanarFigures( originalPlanarFigures, fileName ); // Write PlanarFigure objects to memory buffers PlanarFigureIOTestClass::PlanarFigureToMemoryWriterList writersWithMemoryBuffers = PlanarFigureIOTestClass::SerializePlanarFiguresToMemoryBuffers( originalPlanarFigures ); // Read PlanarFigure objects from temp file PlanarFigureIOTestClass::PlanarFigureList retrievedPlanarFigures = PlanarFigureIOTestClass::DeserializePlanarFigures( fileName ); // Read PlanarFigure objects from memory buffers PlanarFigureIOTestClass::PlanarFigureList retrievedPlanarFiguresFromMemory = PlanarFigureIOTestClass::DeserializePlanarFiguresFromMemoryBuffers( writersWithMemoryBuffers ); PlanarFigureIOTestClass::PlanarFigureToMemoryWriterList::iterator it = writersWithMemoryBuffers.begin(); while(it != writersWithMemoryBuffers.end()) { (*it)->ReleaseMemory(); ++it; } // Test if original and retrieved PlanarFigure objects are the same PlanarFigureIOTestClass::VerifyPlanarFigures( originalPlanarFigures, retrievedPlanarFigures ); // Test if original and memory retrieved PlanarFigure objects are the same PlanarFigureIOTestClass::VerifyPlanarFigures( originalPlanarFigures, retrievedPlanarFiguresFromMemory ); //empty the originalPlanarFigures originalPlanarFigures.empty(); // Test if deep-copied and retrieved PlanarFigure objects are the same PlanarFigureIOTestClass::VerifyPlanarFigures( copiedPlanarFigures, retrievedPlanarFigures ); MITK_TEST_END() } diff --git a/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.cpp b/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.cpp index 337463345f..e9b634877c 100644 --- a/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.cpp +++ b/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.cpp @@ -1,104 +1,104 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkDiffSliceOperation.h" #include mitk::DiffSliceOperation::DiffSliceOperation():Operation(1) { m_TimeStep = 0; m_Slice = NULL; m_Image = NULL; m_WorldGeometry = NULL; m_SliceGeometry = NULL; m_ImageIsValid = false; } mitk::DiffSliceOperation::DiffSliceOperation(mitk::Image* imageVolume, vtkImageData* slice, - AffineGeometryFrame3D* sliceGeometry, + Geometry3D* sliceGeometry, unsigned int timestep, - AffineGeometryFrame3D* currentWorldGeometry):Operation(1) + Geometry3D* currentWorldGeometry):Operation(1) { m_WorldGeometry = currentWorldGeometry->Clone(); /* Quick fix for bug 12338. Guard object - fix this when clone method of PlaneGeometry is cloning the reference geometry (see bug 13392)*/ m_GuardReferenceGeometry = mitk::Geometry3D::New(); m_GuardReferenceGeometry = dynamic_cast(m_WorldGeometry.GetPointer())->GetReferenceGeometry(); /*---------------------------------------------------------------------------------------------------*/ m_SliceGeometry = sliceGeometry->Clone(); m_TimeStep = timestep; /*m_zlibSliceContainer = CompressedImageContainer::New(); m_zlibSliceContainer->SetImage( slice );*/ m_Slice = vtkSmartPointer::New(); m_Slice->DeepCopy(slice); m_Image = imageVolume; if ( m_Image) { /*add an observer to listen to the delete event of the image, this is necessary because the operation is then invalid*/ itk::SimpleMemberCommand< DiffSliceOperation >::Pointer command = itk::SimpleMemberCommand< DiffSliceOperation >::New(); command->SetCallbackFunction( this, &DiffSliceOperation::OnImageDeleted ); //get the id of the observer, used to remove it later on m_DeleteObserverTag = imageVolume->AddObserver( itk::DeleteEvent(), command ); m_ImageIsValid = true; } else m_ImageIsValid = false; } mitk::DiffSliceOperation::~DiffSliceOperation() { m_Slice = NULL; m_WorldGeometry = NULL; //m_zlibSliceContainer = NULL; if (m_ImageIsValid) { //if the image is still there, we have to remove the observer from it m_Image->RemoveObserver( m_DeleteObserverTag ); } m_Image = NULL; } vtkImageData* mitk::DiffSliceOperation::GetSlice() { //Image::ConstPointer image = m_zlibSliceContainer->GetImage().GetPointer(); return m_Slice; } bool mitk::DiffSliceOperation::IsValid() { return m_ImageIsValid && (m_Slice.GetPointer() != NULL) && (m_WorldGeometry.IsNotNull());//TODO improve } void mitk::DiffSliceOperation::OnImageDeleted() { //if our imageVolume is removed e.g. from the datastorage the operation is no lnger valid m_ImageIsValid = false; } \ No newline at end of file diff --git a/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.h b/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.h index 4490eb8b58..1093c1e4aa 100644 --- a/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.h +++ b/Modules/Segmentation/Algorithms/mitkDiffSliceOperation.h @@ -1,119 +1,119 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkDiffSliceOperation_h_Included #define mitkDiffSliceOperation_h_Included #include "SegmentationExports.h" #include "mitkCommon.h" #include //#include "mitkCompressedImageContainer.h" #include #include #include namespace mitk { /** \brief An Operation for applying an edited slice to the volume. \sa DiffSliceOperationApplier The information for the operation is specified by properties: imageVolume the volume where the slice was extracted from. slice the slice to be applied. timestep the timestep in an 4D image. currentWorldGeometry specifies the axis where the slice has to be applied in the volume. This Operation can be used to realize undo-redo functionality for e.g. segmentation purposes. */ class Segmentation_EXPORT DiffSliceOperation : public Operation { public: mitkClassMacro(DiffSliceOperation, OperationActor); //itkNewMacro(DiffSliceOperation); //mitkNewMacro4Param(DiffSliceOperation,mitk::Image,mitk::Image,unsigned int, mitk::Geometry2D); /** \brief Creates an empty instance. Note that it is not valid yet. The properties of the object have to be set. */ DiffSliceOperation(); /** \brief */ - DiffSliceOperation( mitk::Image* imageVolume, vtkImageData* slice, AffineGeometryFrame3D* sliceGeometry, unsigned int timestep, AffineGeometryFrame3D* currentWorldGeometry); + DiffSliceOperation( mitk::Image* imageVolume, vtkImageData* slice, Geometry3D* sliceGeometry, unsigned int timestep, Geometry3D* currentWorldGeometry); /** \brief Check if it is a valid operation.*/ bool IsValid(); /** \brief Set the image volume.*/ void SetImage(mitk::Image* image){ this->m_Image = image;} /** \brief Get th image volume.*/ mitk::Image* GetImage(){return this->m_Image;} /** \brief Set thee slice to be applied.*/ void SetImage(vtkImageData* slice){ this->m_Slice = slice;} /** \brief Get the slice that is applied in the operation.*/ vtkImageData* GetSlice(); /** \brief Get timeStep.*/ void SetTimeStep(unsigned int timestep){this->m_TimeStep = timestep;} /** \brief Set timeStep*/ unsigned int GetTimeStep(){return this->m_TimeStep;} /** \brief Set the axis where the slice has to be applied in the volume.*/ - void SetSliceGeometry(AffineGeometryFrame3D* sliceGeometry){this->m_SliceGeometry = sliceGeometry;} + void SetSliceGeometry(Geometry3D* sliceGeometry){this->m_SliceGeometry = sliceGeometry;} /** \brief Get the axis where the slice has to be applied in the volume.*/ - AffineGeometryFrame3D* GetSliceGeometry(){return this->m_SliceGeometry;} + Geometry3D* GetSliceGeometry(){return this->m_SliceGeometry;} /** \brief Set the axis where the slice has to be applied in the volume.*/ - void SetCurrentWorldGeometry(AffineGeometryFrame3D* worldGeometry){this->m_WorldGeometry = worldGeometry;} + void SetCurrentWorldGeometry(Geometry3D* worldGeometry){this->m_WorldGeometry = worldGeometry;} /** \brief Get the axis where the slice has to be applied in the volume.*/ - AffineGeometryFrame3D* GetWorldGeometry(){return this->m_WorldGeometry;} + Geometry3D* GetWorldGeometry(){return this->m_WorldGeometry;} protected: virtual ~DiffSliceOperation(); /** \brief Callback for image observer.*/ void OnImageDeleted(); //CompressedImageContainer::Pointer m_zlibSliceContainer; mitk::Image* m_Image; vtkSmartPointer m_Slice; - AffineGeometryFrame3D::Pointer m_SliceGeometry; + Geometry3D::Pointer m_SliceGeometry; unsigned int m_TimeStep; - AffineGeometryFrame3D::Pointer m_WorldGeometry; + Geometry3D::Pointer m_WorldGeometry; bool m_ImageIsValid; unsigned long m_DeleteObserverTag; mitk::Geometry3D::Pointer m_GuardReferenceGeometry; }; } #endif \ No newline at end of file diff --git a/Modules/Segmentation/Algorithms/mitkShowSegmentationAsSmoothedSurface.cpp b/Modules/Segmentation/Algorithms/mitkShowSegmentationAsSmoothedSurface.cpp index 73f2b769a1..0ebcede0e4 100644 --- a/Modules/Segmentation/Algorithms/mitkShowSegmentationAsSmoothedSurface.cpp +++ b/Modules/Segmentation/Algorithms/mitkShowSegmentationAsSmoothedSurface.cpp @@ -1,532 +1,532 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkShowSegmentationAsSmoothedSurface.h" #include "mitkImageToItk.h" #include "itkIntelligentBinaryClosingFilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace mitk; using namespace std; ShowSegmentationAsSmoothedSurface::ShowSegmentationAsSmoothedSurface() { } ShowSegmentationAsSmoothedSurface::~ShowSegmentationAsSmoothedSurface() { } void ShowSegmentationAsSmoothedSurface::Initialize(const NonBlockingAlgorithm *other) { Superclass::Initialize(other); bool syncVisibility = false; if (other != NULL) other->GetParameter("Sync visibility", syncVisibility); SetParameter("Sync visibility", syncVisibility); SetParameter("Wireframe", false); // The Smoothing value is used as variance for a Gauß filter. // A reasonable default value equals the image spacing in mm. SetParameter("Smoothing", 1.0f); // Valid range for decimation value is [0, 1). High values // increase decimation, especially when very close to 1. // A value of 0 disables decimation. SetParameter("Decimation", 0.5f); // Valid range for closing value is [0, 1]. Higher values // increase closing. A value of 0 disables closing. SetParameter("Closing", 0.0f); } bool ShowSegmentationAsSmoothedSurface::ReadyToRun() { try { mitk::Image::Pointer image; GetPointerParameter("Input", image); return image.IsNotNull() && GetGroupNode(); } catch (const invalid_argument &) { return false; } } bool ShowSegmentationAsSmoothedSurface::ThreadedUpdateFunction() { Image::Pointer image; GetPointerParameter("Input", image); float smoothing; GetParameter("Smoothing", smoothing); float decimation; GetParameter("Decimation", decimation); float closing; GetParameter("Closing", closing); int timeNr = 0; GetParameter("TimeNr", timeNr); if (image->GetDimension() == 4) MITK_INFO << "CREATING SMOOTHED POLYGON MODEL (t = " << timeNr << ')'; else MITK_INFO << "CREATING SMOOTHED POLYGON MODEL"; MITK_INFO << " Smoothing = " << smoothing; MITK_INFO << " Decimation = " << decimation; MITK_INFO << " Closing = " << closing; Geometry3D::Pointer geometry = dynamic_cast(image->GetGeometry()->Clone().GetPointer()); // Make ITK image out of MITK image typedef itk::Image CharImageType; typedef itk::Image ShortImageType; typedef itk::Image FloatImageType; if (image->GetDimension() == 4) { ImageTimeSelector::Pointer imageTimeSelector = ImageTimeSelector::New(); imageTimeSelector->SetInput(image); imageTimeSelector->SetTimeNr(timeNr); imageTimeSelector->UpdateLargestPossibleRegion(); image = imageTimeSelector->GetOutput(); } ImageToItk::Pointer imageToItkFilter = ImageToItk::New(); try { imageToItkFilter->SetInput(image); } catch (const itk::ExceptionObject &e) { // Most probably the input image type is wrong. Binary images are expected to be // >unsigned< char images. MITK_ERROR << e.GetDescription() << endl; return false; } imageToItkFilter->Update(); CharImageType::Pointer itkImage = imageToItkFilter->GetOutput(); // Get bounding box and relabel MITK_INFO << "Extracting VOI..."; int imageLabel = 1; bool roiFound = false; CharImageType::IndexType minIndex; minIndex.Fill(numeric_limits::max()); CharImageType::IndexType maxIndex; maxIndex.Fill(numeric_limits::min()); itk::ImageRegionIteratorWithIndex iter(itkImage, itkImage->GetLargestPossibleRegion()); for (iter.GoToBegin(); !iter.IsAtEnd(); ++iter) { if (iter.Get() == imageLabel) { roiFound = true; iter.Set(1); CharImageType::IndexType currentIndex = iter.GetIndex(); for (unsigned int dim = 0; dim < 3; ++dim) { minIndex[dim] = min(currentIndex[dim], minIndex[dim]); maxIndex[dim] = max(currentIndex[dim], maxIndex[dim]); } } else { iter.Set(0); } } if (!roiFound) { ProgressBar::GetInstance()->Progress(8); MITK_ERROR << "Didn't found segmentation labeled with " << imageLabel << "!" << endl; return false; } ProgressBar::GetInstance()->Progress(1); // Extract and pad bounding box typedef itk::RegionOfInterestImageFilter ROIFilterType; ROIFilterType::Pointer roiFilter = ROIFilterType::New(); CharImageType::RegionType region; CharImageType::SizeType size; for (unsigned int dim = 0; dim < 3; ++dim) { size[dim] = maxIndex[dim] - minIndex[dim] + 1; } region.SetIndex(minIndex); region.SetSize(size); roiFilter->SetInput(itkImage); roiFilter->SetRegionOfInterest(region); roiFilter->ReleaseDataFlagOn(); roiFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::ConstantPadImageFilter PadFilterType; PadFilterType::Pointer padFilter = PadFilterType::New(); const PadFilterType::SizeValueType pad[3] = { 10, 10, 10 }; padFilter->SetInput(roiFilter->GetOutput()); padFilter->SetConstant(0); padFilter->SetPadLowerBound(pad); padFilter->SetPadUpperBound(pad); padFilter->ReleaseDataFlagOn(); padFilter->ReleaseDataBeforeUpdateFlagOn(); padFilter->Update(); CharImageType::Pointer roiImage = padFilter->GetOutput(); roiImage->DisconnectPipeline(); roiFilter = 0; padFilter = 0; // Correct origin of real geometry (changed by cropping and padding) - typedef AffineGeometryFrame3D::TransformType TransformType; + typedef Geometry3D::TransformType TransformType; TransformType::Pointer transform = TransformType::New(); TransformType::OutputVectorType translation; for (unsigned int dim = 0; dim < 3; ++dim) translation[dim] = (int)minIndex[dim] - (int)pad[dim]; transform->SetIdentity(); transform->Translate(translation); geometry->Compose(transform, true); ProgressBar::GetInstance()->Progress(1); // Median MITK_INFO << "Median..."; typedef itk::BinaryMedianImageFilter MedianFilterType; MedianFilterType::Pointer medianFilter = MedianFilterType::New(); CharImageType::SizeType radius = { 0 }; medianFilter->SetRadius(radius); medianFilter->SetBackgroundValue(0); medianFilter->SetForegroundValue(1); medianFilter->SetInput(roiImage); medianFilter->ReleaseDataFlagOn(); medianFilter->ReleaseDataBeforeUpdateFlagOn(); medianFilter->Update(); ProgressBar::GetInstance()->Progress(1); // Intelligent closing MITK_INFO << "Intelligent closing..."; unsigned int surfaceRatio = (unsigned int)((1.0f - closing) * 100.0f); typedef itk::IntelligentBinaryClosingFilter ClosingFilterType; ClosingFilterType::Pointer closingFilter = ClosingFilterType::New(); closingFilter->SetInput(medianFilter->GetOutput()); closingFilter->ReleaseDataFlagOn(); closingFilter->ReleaseDataBeforeUpdateFlagOn(); closingFilter->SetSurfaceRatio(surfaceRatio); closingFilter->Update(); ShortImageType::Pointer closedImage = closingFilter->GetOutput(); closedImage->DisconnectPipeline(); roiImage = 0; medianFilter = 0; closingFilter = 0; ProgressBar::GetInstance()->Progress(1); // Gaussian blur MITK_INFO << "Gauss..."; typedef itk::BinaryThresholdImageFilter BinaryThresholdToFloatFilterType; BinaryThresholdToFloatFilterType::Pointer binThresToFloatFilter = BinaryThresholdToFloatFilterType::New(); binThresToFloatFilter->SetInput(closedImage); binThresToFloatFilter->SetLowerThreshold(1); binThresToFloatFilter->SetUpperThreshold(1); binThresToFloatFilter->SetInsideValue(100); binThresToFloatFilter->SetOutsideValue(0); binThresToFloatFilter->ReleaseDataFlagOn(); binThresToFloatFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::DiscreteGaussianImageFilter GaussianFilterType; // From the following line on, IntelliSense (VS 2008) is broken. Any idea how to fix it? GaussianFilterType::Pointer gaussFilter = GaussianFilterType::New(); gaussFilter->SetInput(binThresToFloatFilter->GetOutput()); gaussFilter->SetUseImageSpacing(true); gaussFilter->SetVariance(smoothing); gaussFilter->ReleaseDataFlagOn(); gaussFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::BinaryThresholdImageFilter BinaryThresholdFromFloatFilterType; BinaryThresholdFromFloatFilterType::Pointer binThresFromFloatFilter = BinaryThresholdFromFloatFilterType::New(); binThresFromFloatFilter->SetInput(gaussFilter->GetOutput()); binThresFromFloatFilter->SetLowerThreshold(50); binThresFromFloatFilter->SetUpperThreshold(255); binThresFromFloatFilter->SetInsideValue(1); binThresFromFloatFilter->SetOutsideValue(0); binThresFromFloatFilter->ReleaseDataFlagOn(); binThresFromFloatFilter->ReleaseDataBeforeUpdateFlagOn(); binThresFromFloatFilter->Update(); CharImageType::Pointer blurredImage = binThresFromFloatFilter->GetOutput(); blurredImage->DisconnectPipeline(); closedImage = 0; binThresToFloatFilter = 0; gaussFilter = 0; ProgressBar::GetInstance()->Progress(1); // Fill holes MITK_INFO << "Filling cavities..."; typedef itk::ConnectedThresholdImageFilter ConnectedThresholdFilterType; ConnectedThresholdFilterType::Pointer connectedThresFilter = ConnectedThresholdFilterType::New(); CharImageType::IndexType corner; corner[0] = 0; corner[1] = 0; corner[2] = 0; connectedThresFilter->SetInput(blurredImage); connectedThresFilter->SetSeed(corner); connectedThresFilter->SetLower(0); connectedThresFilter->SetUpper(0); connectedThresFilter->SetReplaceValue(2); connectedThresFilter->ReleaseDataFlagOn(); connectedThresFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::BinaryThresholdImageFilter BinaryThresholdFilterType; BinaryThresholdFilterType::Pointer binThresFilter = BinaryThresholdFilterType::New(); binThresFilter->SetInput(connectedThresFilter->GetOutput()); binThresFilter->SetLowerThreshold(0); binThresFilter->SetUpperThreshold(0); binThresFilter->SetInsideValue(50); binThresFilter->SetOutsideValue(0); binThresFilter->ReleaseDataFlagOn(); binThresFilter->ReleaseDataBeforeUpdateFlagOn(); typedef itk::AddImageFilter AddFilterType; AddFilterType::Pointer addFilter = AddFilterType::New(); addFilter->SetInput1(blurredImage); addFilter->SetInput2(binThresFilter->GetOutput()); addFilter->ReleaseDataFlagOn(); addFilter->ReleaseDataBeforeUpdateFlagOn(); addFilter->Update(); ProgressBar::GetInstance()->Progress(1); // Surface extraction MITK_INFO << "Surface extraction..."; Image::Pointer filteredImage = Image::New(); CastToMitkImage(addFilter->GetOutput(), filteredImage); filteredImage->SetGeometry(geometry); ImageToSurfaceFilter::Pointer imageToSurfaceFilter = ImageToSurfaceFilter::New(); imageToSurfaceFilter->SetInput(filteredImage); imageToSurfaceFilter->SetThreshold(50); imageToSurfaceFilter->SmoothOn(); imageToSurfaceFilter->SetDecimate(ImageToSurfaceFilter::NoDecimation); m_Surface = imageToSurfaceFilter->GetOutput(); ProgressBar::GetInstance()->Progress(1); // Mesh decimation if (decimation > 0.0f && decimation < 1.0f) { MITK_INFO << "Quadric mesh decimation..."; vtkQuadricDecimation *quadricDecimation = vtkQuadricDecimation::New(); quadricDecimation->SetInput(m_Surface->GetVtkPolyData()); quadricDecimation->SetTargetReduction(decimation); quadricDecimation->AttributeErrorMetricOn(); quadricDecimation->GlobalWarningDisplayOff(); quadricDecimation->Update(); vtkCleanPolyData* cleaner = vtkCleanPolyData::New(); cleaner->SetInput(quadricDecimation->GetOutput()); cleaner->PieceInvariantOn(); cleaner->ConvertLinesToPointsOn(); cleaner->ConvertStripsToPolysOn(); cleaner->PointMergingOn(); cleaner->Update(); m_Surface->SetVtkPolyData(cleaner->GetOutput()); } ProgressBar::GetInstance()->Progress(1); // Compute Normals vtkPolyDataNormals* computeNormals = vtkPolyDataNormals::New(); computeNormals->SetInput(m_Surface->GetVtkPolyData()); computeNormals->SetFeatureAngle(360.0f); computeNormals->FlipNormalsOff(); computeNormals->Update(); m_Surface->SetVtkPolyData(computeNormals->GetOutput()); return true; } void ShowSegmentationAsSmoothedSurface::ThreadedUpdateSuccessful() { DataNode::Pointer node = LookForPointerTargetBelowGroupNode("Surface representation"); bool addToTree = node.IsNull(); if (addToTree) { node = DataNode::New(); bool wireframe = false; GetParameter("Wireframe", wireframe); if (wireframe) { VtkRepresentationProperty *representation = dynamic_cast( node->GetProperty("material.representation")); if (representation != NULL) representation->SetRepresentationToWireframe(); } node->SetProperty("opacity", FloatProperty::New(1.0)); node->SetProperty("line width", IntProperty::New(1)); node->SetProperty("scalar visibility", BoolProperty::New(false)); UIDGenerator uidGenerator("Surface_"); node->SetProperty("FILENAME", StringProperty::New(uidGenerator.GetUID() + ".vtk")); std::string groupNodeName = "surface"; DataNode *groupNode = GetGroupNode(); if (groupNode != NULL) groupNode->GetName(groupNodeName); node->SetProperty("name", StringProperty::New(groupNodeName)); } node->SetData(m_Surface); if (addToTree) { DataNode* groupNode = GetGroupNode(); if (groupNode != NULL) { groupNode->SetProperty("Surface representation", SmartPointerProperty::New(node)); BaseProperty *colorProperty = groupNode->GetProperty("color"); if (colorProperty != NULL) node->ReplaceProperty("color", colorProperty); else node->SetProperty("color", ColorProperty::New(1.0f, 0.0f, 0.0f)); bool showResult = true; GetParameter("Show result", showResult); bool syncVisibility = false; GetParameter("Sync visibility", syncVisibility); Image::Pointer image; GetPointerParameter("Input", image); BaseProperty *organTypeProperty = image->GetProperty("organ type"); if (organTypeProperty != NULL) m_Surface->SetProperty("organ type", organTypeProperty); BaseProperty *visibleProperty = groupNode->GetProperty("visible"); if (visibleProperty != NULL && syncVisibility) node->ReplaceProperty("visible", visibleProperty); else node->SetProperty("visible", BoolProperty::New(showResult)); } InsertBelowGroupNode(node); } Superclass::ThreadedUpdateSuccessful(); } diff --git a/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkPointBasedRegistrationView.cpp b/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkPointBasedRegistrationView.cpp index 697c66ac8b..b5567a422a 100644 --- a/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkPointBasedRegistrationView.cpp +++ b/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkPointBasedRegistrationView.cpp @@ -1,1359 +1,1359 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "QmitkPointBasedRegistrationView.h" #include "ui_QmitkPointBasedRegistrationViewControls.h" #include "QmitkPointListWidget.h" #include #include #include #include #include #include "QmitkCommonFunctionality.h" #include "qradiobutton.h" #include "qapplication.h" #include #include #include #include #include "qmessagebox.h" #include "mitkLandmarkWarping.h" #include #include #include "mitkOperationEvent.h" #include "mitkUndoController.h" #include #include #include "mitkNodePredicateDataType.h" #include "mitkNodePredicateProperty.h" #include "mitkNodePredicateAnd.h" #include "mitkNodePredicateNot.h" #include #include #include "mitkDataNodeObject.h" #include "berryIWorkbenchWindow.h" #include "berryISelectionService.h" const std::string QmitkPointBasedRegistrationView::VIEW_ID = "org.mitk.views.pointbasedregistration"; using namespace berry; struct SelListenerPointBasedRegistration : ISelectionListener { berryObjectMacro(SelListenerPointBasedRegistration); SelListenerPointBasedRegistration(QmitkPointBasedRegistrationView* view) { m_View = view; } void DoSelectionChanged(ISelection::ConstPointer selection) { // if(!m_View->IsVisible()) // return; // save current selection in member variable m_View->m_CurrentSelection = selection.Cast(); // do something with the selected items if(m_View->m_CurrentSelection) { if (m_View->m_CurrentSelection->Size() != 2) { if (m_View->m_FixedNode.IsNull() || m_View->m_MovingNode.IsNull()) { m_View->m_Controls.m_StatusLabel->show(); m_View->m_Controls.TextLabelFixed->hide(); m_View->m_Controls.m_FixedLabel->hide(); m_View->m_Controls.line2->hide(); m_View->m_Controls.m_FixedPointListWidget->hide(); m_View->m_Controls.TextLabelMoving->hide(); m_View->m_Controls.m_MovingLabel->hide(); m_View->m_Controls.line1->hide(); m_View->m_Controls.m_MovingPointListWidget->hide(); m_View->m_Controls.m_OpacityLabel->hide(); m_View->m_Controls.m_OpacitySlider->hide(); m_View->m_Controls.label->hide(); m_View->m_Controls.label_2->hide(); m_View->m_Controls.m_SwitchImages->hide(); m_View->m_Controls.m_ShowRedGreenValues->setEnabled(false); } } else { m_View->m_Controls.m_StatusLabel->hide(); bool foundFixedImage = false; mitk::DataNode::Pointer fixedNode; // iterate selection for (IStructuredSelection::iterator i = m_View->m_CurrentSelection->Begin(); i != m_View->m_CurrentSelection->End(); ++i) { // extract datatree node if (mitk::DataNodeObject::Pointer nodeObj = i->Cast()) { mitk::TNodePredicateDataType::Pointer isBaseData(mitk::TNodePredicateDataType::New()); mitk::TNodePredicateDataType::Pointer isPointSet(mitk::TNodePredicateDataType::New()); mitk::NodePredicateNot::Pointer notPointSet = mitk::NodePredicateNot::New(isPointSet); mitk::TNodePredicateDataType::Pointer isGeometry2DData(mitk::TNodePredicateDataType::New()); mitk::NodePredicateNot::Pointer notGeometry2DData = mitk::NodePredicateNot::New(isGeometry2DData); mitk::NodePredicateAnd::Pointer notPointSetAndNotGeometry2DData = mitk::NodePredicateAnd::New( notPointSet, notGeometry2DData ); mitk::NodePredicateAnd::Pointer predicate = mitk::NodePredicateAnd::New( isBaseData, notPointSetAndNotGeometry2DData ); mitk::DataStorage::SetOfObjects::ConstPointer setOfObjects = m_View->GetDataStorage()->GetSubset(predicate); mitk::DataNode::Pointer node = nodeObj->GetDataNode(); // only look at interesting types for (mitk::DataStorage::SetOfObjects::ConstIterator nodeIt = setOfObjects->Begin() ; nodeIt != setOfObjects->End(); ++nodeIt) // for each node { if(nodeIt->Value().GetPointer() == node.GetPointer()) { // was - compare() // use contain to allow other Image types to be selected, i.e. a diffusion image if (QString( node->GetData()->GetNameOfClass() ).contains("Image") ) { // verify that the node selected by name is really an image or derived class mitk::Image* _image = dynamic_cast(node->GetData()); if (_image != NULL) { if( _image->GetDimension() == 4) { m_View->m_Controls.m_StatusLabel->show(); QMessageBox::information( NULL, "PointBasedRegistration", "Only 2D or 3D images can be processed.", QMessageBox::Ok ); return; } if (foundFixedImage == false) { fixedNode = node; foundFixedImage = true; } else { m_View->SetImagesVisible(selection); m_View->FixedSelected(fixedNode); m_View->MovingSelected(node); m_View->m_Controls.m_StatusLabel->hide(); m_View->m_Controls.TextLabelFixed->show(); m_View->m_Controls.m_FixedLabel->show(); m_View->m_Controls.line2->show(); m_View->m_Controls.m_FixedPointListWidget->show(); m_View->m_Controls.TextLabelMoving->show(); m_View->m_Controls.m_MovingLabel->show(); m_View->m_Controls.line1->show(); m_View->m_Controls.m_MovingPointListWidget->show(); m_View->m_Controls.m_OpacityLabel->show(); m_View->m_Controls.m_OpacitySlider->show(); m_View->m_Controls.label->show(); m_View->m_Controls.label_2->show(); m_View->m_Controls.m_SwitchImages->show(); m_View->m_Controls.m_ShowRedGreenValues->setEnabled(true); } } } else { m_View->m_Controls.m_StatusLabel->show(); return; } } } } } if (m_View->m_FixedNode.IsNull() || m_View->m_MovingNode.IsNull()) { m_View->m_Controls.m_StatusLabel->show(); } } } else if (m_View->m_FixedNode.IsNull() || m_View->m_MovingNode.IsNull()) { m_View->m_Controls.m_StatusLabel->show(); } } void SelectionChanged(IWorkbenchPart::Pointer part, ISelection::ConstPointer selection) { // check, if selection comes from datamanager if (part) { QString partname(part->GetPartName().c_str()); if(partname.compare("Datamanager")==0) { // apply selection DoSelectionChanged(selection); } } } QmitkPointBasedRegistrationView* m_View; }; QmitkPointBasedRegistrationView::QmitkPointBasedRegistrationView(QObject * /*parent*/, const char * /*name*/) : QmitkFunctionality(), m_SelListener(0), m_MultiWidget(NULL), m_FixedLandmarks(NULL), m_MovingLandmarks(NULL), m_MovingNode(NULL), m_FixedNode(NULL), m_ShowRedGreen(false), m_Opacity(0.5), m_OriginalOpacity(1.0), m_Transformation(0), m_HideFixedImage(false), m_HideMovingImage(false), m_OldFixedLabel(""), m_OldMovingLabel(""), m_Deactivated (false), m_CurrentFixedLandmarksObserverID(0), m_CurrentMovingLandmarksObserverID(0) { m_FixedLandmarksChangedCommand = itk::SimpleMemberCommand::New(); m_FixedLandmarksChangedCommand->SetCallbackFunction(this, &QmitkPointBasedRegistrationView::updateFixedLandmarksList); m_MovingLandmarksChangedCommand = itk::SimpleMemberCommand::New(); m_MovingLandmarksChangedCommand->SetCallbackFunction(this, &QmitkPointBasedRegistrationView::updateMovingLandmarksList); this->GetDataStorage()->RemoveNodeEvent.AddListener(mitk::MessageDelegate1 ( this, &QmitkPointBasedRegistrationView::DataNodeHasBeenRemoved )); } QmitkPointBasedRegistrationView::~QmitkPointBasedRegistrationView() { if(m_SelListener.IsNotNull()) { berry::ISelectionService* s = GetSite()->GetWorkbenchWindow()->GetSelectionService(); if(s) s->RemovePostSelectionListener(m_SelListener); m_SelListener = NULL; } if (m_FixedPointSetNode.IsNotNull()) { m_Controls.m_FixedPointListWidget->DeactivateInteractor(true); m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldFixedLabel)); } if (m_MovingPointSetNode.IsNotNull()) { m_Controls.m_MovingPointListWidget->DeactivateInteractor(true); m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldMovingLabel)); } m_Controls.m_FixedPointListWidget->SetPointSetNode(NULL); m_Controls.m_MovingPointListWidget->SetPointSetNode(NULL); } void QmitkPointBasedRegistrationView::CreateQtPartControl(QWidget* parent) { m_Controls.setupUi(parent); m_Parent->setEnabled(false); m_Controls.m_MeanErrorLCD->hide(); m_Controls.m_MeanError->hide(); m_Controls.TextLabelFixed->hide(); m_Controls.line2->hide(); m_Controls.m_FixedPointListWidget->hide(); m_Controls.m_FixedLabel->hide(); m_Controls.TextLabelMoving->hide(); m_Controls.m_MovingLabel->hide(); m_Controls.line1->hide(); m_Controls.m_MovingPointListWidget->hide(); m_Controls.m_OpacityLabel->hide(); m_Controls.m_OpacitySlider->hide(); m_Controls.label->hide(); m_Controls.label_2->hide(); m_Controls.m_SwitchImages->hide(); m_Controls.m_ShowRedGreenValues->setEnabled(false); this->CreateConnections(); // let the point set widget know about the multi widget (cross hair updates) m_Controls.m_FixedPointListWidget->SetMultiWidget( m_MultiWidget ); m_Controls.m_MovingPointListWidget->SetMultiWidget( m_MultiWidget ); } void QmitkPointBasedRegistrationView::StdMultiWidgetAvailable (QmitkStdMultiWidget &stdMultiWidget) { m_Parent->setEnabled(true); m_MultiWidget = &stdMultiWidget; m_MultiWidget->SetWidgetPlanesVisibility(true); m_Controls.m_FixedPointListWidget->SetMultiWidget( m_MultiWidget ); m_Controls.m_MovingPointListWidget->SetMultiWidget( m_MultiWidget ); } void QmitkPointBasedRegistrationView::StdMultiWidgetNotAvailable() { m_Parent->setEnabled(false); m_MultiWidget = NULL; m_Controls.m_FixedPointListWidget->SetMultiWidget( NULL ); m_Controls.m_MovingPointListWidget->SetMultiWidget( NULL ); } void QmitkPointBasedRegistrationView::CreateConnections() { connect( (QObject*)(m_Controls.m_FixedPointListWidget), SIGNAL(EditPointSets(bool)), (QObject*)(m_Controls.m_MovingPointListWidget), SLOT(DeactivateInteractor(bool))); connect( (QObject*)(m_Controls.m_MovingPointListWidget), SIGNAL(EditPointSets(bool)), (QObject*)(m_Controls.m_FixedPointListWidget), SLOT(DeactivateInteractor(bool))); connect( (QObject*)(m_Controls.m_FixedPointListWidget), SIGNAL(EditPointSets(bool)), this, SLOT(HideMovingImage(bool))); connect( (QObject*)(m_Controls.m_MovingPointListWidget), SIGNAL(EditPointSets(bool)), this, SLOT(HideFixedImage(bool))); connect( (QObject*)(m_Controls.m_FixedPointListWidget), SIGNAL(PointListChanged()), this, SLOT(updateFixedLandmarksList())); connect( (QObject*)(m_Controls.m_MovingPointListWidget), SIGNAL(PointListChanged()), this, SLOT(updateMovingLandmarksList())); connect((QObject*)(m_Controls.m_Calculate),SIGNAL(clicked()),this,SLOT(calculate())); connect((QObject*)(m_Controls.m_SwitchImages),SIGNAL(clicked()),this,SLOT(SwitchImages())); connect((QObject*)(m_Controls.m_UndoTransformation),SIGNAL(clicked()),this,SLOT(UndoTransformation())); connect((QObject*)(m_Controls.m_RedoTransformation),SIGNAL(clicked()),this,SLOT(RedoTransformation())); connect((QObject*)(m_Controls.m_ShowRedGreenValues),SIGNAL(toggled(bool)),this,SLOT(showRedGreen(bool))); connect((QObject*)(m_Controls.m_OpacitySlider),SIGNAL(valueChanged(int)),this,SLOT(OpacityUpdate(int))); connect((QObject*)(m_Controls.m_SelectedTransformationClass),SIGNAL(activated(int)), this,SLOT(transformationChanged(int))); connect((QObject*)(m_Controls.m_UseICP),SIGNAL(toggled(bool)), this,SLOT(checkCalculateEnabled())); connect((QObject*)(m_Controls.m_UseICP),SIGNAL(toggled(bool)), this,SLOT(checkLandmarkError())); } void QmitkPointBasedRegistrationView::Activated() { m_Deactivated = false; mitk::RenderingManager::GetInstance()->RequestUpdateAll(); QmitkFunctionality::Activated(); this->clearTransformationLists(); if (m_SelListener.IsNull()) { m_SelListener = berry::ISelectionListener::Pointer(new SelListenerPointBasedRegistration(this)); this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->AddPostSelectionListener(/*"org.mitk.views.datamanager",*/ m_SelListener); berry::ISelection::ConstPointer sel( this->GetSite()->GetWorkbenchWindow()->GetSelectionService()->GetSelection("org.mitk.views.datamanager")); m_CurrentSelection = sel.Cast(); m_SelListener.Cast()->DoSelectionChanged(sel); } this->OpacityUpdate(m_Controls.m_OpacitySlider->value()); this->showRedGreen(m_Controls.m_ShowRedGreenValues->isChecked()); } void QmitkPointBasedRegistrationView::Visible() { } void QmitkPointBasedRegistrationView::Deactivated() { m_Deactivated = true; if (m_FixedPointSetNode.IsNotNull()) m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldFixedLabel)); m_Controls.m_FixedPointListWidget->SetPointSetNode(NULL); m_Controls.m_FixedPointListWidget->DeactivateInteractor(true); if (m_MovingPointSetNode.IsNotNull()) m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldMovingLabel)); m_Controls.m_MovingPointListWidget->SetPointSetNode(NULL); m_Controls.m_MovingPointListWidget->DeactivateInteractor(true); this->setImageColor(false); if (m_FixedNode.IsNotNull()) m_FixedNode->SetOpacity(1.0); if (m_MovingNode.IsNotNull()) { m_MovingNode->SetOpacity(m_OriginalOpacity); } this->clearTransformationLists(); if (m_FixedPointSetNode.IsNotNull() && m_FixedLandmarks.IsNotNull() && m_FixedLandmarks->GetSize() == 0) { this->GetDataStorage()->Remove(m_FixedPointSetNode); } if (m_MovingPointSetNode.IsNotNull() && m_MovingLandmarks.IsNotNull() && m_MovingLandmarks->GetSize() == 0) { this->GetDataStorage()->Remove(m_MovingPointSetNode); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); m_FixedNode = NULL; m_MovingNode = NULL; if(m_FixedLandmarks.IsNotNull()) m_FixedLandmarks->RemoveObserver(m_CurrentFixedLandmarksObserverID); m_FixedLandmarks = NULL; if(m_MovingLandmarks.IsNotNull()) m_MovingLandmarks->RemoveObserver(m_CurrentMovingLandmarksObserverID); m_MovingLandmarks = NULL; m_FixedPointSetNode = NULL; m_MovingPointSetNode = NULL; m_Controls.m_FixedLabel->hide(); m_Controls.TextLabelFixed->hide(); m_Controls.line2->hide(); m_Controls.m_FixedPointListWidget->hide(); m_Controls.m_MovingLabel->hide(); m_Controls.TextLabelMoving->hide(); m_Controls.line1->hide(); m_Controls.m_MovingPointListWidget->hide(); m_Controls.m_OpacityLabel->hide(); m_Controls.m_OpacitySlider->hide(); m_Controls.label->hide(); m_Controls.label_2->hide(); m_Controls.m_SwitchImages->hide(); berry::ISelectionService* s = GetSite()->GetWorkbenchWindow()->GetSelectionService(); if(s) s->RemovePostSelectionListener(m_SelListener); m_SelListener = NULL; } void QmitkPointBasedRegistrationView::Hidden() { /* m_Deactivated = true; if (m_FixedPointSetNode.IsNotNull()) m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldFixedLabel)); m_Controls.m_FixedPointListWidget->SetPointSetNode(NULL); m_Controls.m_FixedPointListWidget->DeactivateInteractor(true); if (m_MovingPointSetNode.IsNotNull()) m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldMovingLabel)); m_Controls.m_MovingPointListWidget->SetPointSetNode(NULL); m_Controls.m_MovingPointListWidget->DeactivateInteractor(true); this->setImageColor(false); if (m_MovingNode.IsNotNull()) { m_MovingNode->SetOpacity(m_OriginalOpacity); } this->clearTransformationLists(); if (m_FixedPointSetNode.IsNotNull() && m_FixedLandmarks.IsNotNull() && m_FixedLandmarks->GetSize() == 0) { this->GetDataStorage()->Remove(m_FixedPointSetNode); } if (m_MovingPointSetNode.IsNotNull() && m_MovingLandmarks.IsNotNull() && m_MovingLandmarks->GetSize() == 0) { this->GetDataStorage()->Remove(m_MovingPointSetNode); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); m_FixedNode = NULL; m_MovingNode = NULL; if(m_FixedLandmarks.IsNotNull()) m_FixedLandmarks->RemoveObserver(m_CurrentFixedLandmarksObserverID); m_FixedLandmarks = NULL; if(m_MovingLandmarks.IsNotNull()) m_MovingLandmarks->RemoveObserver(m_CurrentMovingLandmarksObserverID); m_MovingLandmarks = NULL; m_FixedPointSetNode = NULL; m_MovingPointSetNode = NULL; m_Controls.m_FixedLabel->hide(); m_Controls.TextLabelFixed->hide(); m_Controls.line2->hide(); m_Controls.m_FixedPointListWidget->hide(); m_Controls.m_MovingLabel->hide(); m_Controls.TextLabelMoving->hide(); m_Controls.line1->hide(); m_Controls.m_MovingPointListWidget->hide(); m_Controls.m_OpacityLabel->hide(); m_Controls.m_OpacitySlider->hide(); m_Controls.label->hide(); m_Controls.label_2->hide(); m_Controls.m_SwitchImages->hide(); berry::ISelectionService* s = GetSite()->GetWorkbenchWindow()->GetSelectionService(); if(s) s->RemovePostSelectionListener(m_SelListener); m_SelListener = NULL; //mitk::RenderingManager::GetInstance()->RequestUpdateAll(); //QmitkFunctionality::Deactivated();*/ } void QmitkPointBasedRegistrationView::DataNodeHasBeenRemoved(const mitk::DataNode* node) { if(node == m_FixedNode || node == m_MovingNode) { m_Controls.m_StatusLabel->show(); m_Controls.TextLabelFixed->hide(); m_Controls.m_FixedLabel->hide(); m_Controls.line2->hide(); m_Controls.m_FixedPointListWidget->hide(); m_Controls.TextLabelMoving->hide(); m_Controls.m_MovingLabel->hide(); m_Controls.line1->hide(); m_Controls.m_MovingPointListWidget->hide(); m_Controls.m_OpacityLabel->hide(); m_Controls.m_OpacitySlider->hide(); m_Controls.label->hide(); m_Controls.label_2->hide(); m_Controls.m_SwitchImages->hide(); m_Controls.m_ShowRedGreenValues->setEnabled(false); } } void QmitkPointBasedRegistrationView::FixedSelected(mitk::DataNode::Pointer fixedImage) { if(m_FixedLandmarks.IsNotNull()) m_FixedLandmarks->RemoveObserver(m_CurrentFixedLandmarksObserverID); if (fixedImage.IsNotNull()) { if (m_FixedNode != fixedImage) { // remove changes on previous selected node if (m_FixedNode.IsNotNull()) { this->setImageColor(false); m_FixedNode->SetOpacity(1.0); if (m_FixedPointSetNode.IsNotNull()) { m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldFixedLabel)); } } // get selected node m_FixedNode = fixedImage; m_FixedNode->SetOpacity(0.5); m_FixedNode->SetVisibility(true); m_Controls.m_FixedLabel->setText(QString::fromStdString(m_FixedNode->GetName())); m_Controls.m_FixedLabel->show(); m_Controls.m_SwitchImages->show(); m_Controls.TextLabelFixed->show(); m_Controls.line2->show(); m_Controls.m_FixedPointListWidget->show(); mitk::ColorProperty::Pointer colorProperty; colorProperty = dynamic_cast(m_FixedNode->GetProperty("color")); if ( colorProperty.IsNotNull() ) { m_FixedColor = colorProperty->GetColor(); } this->setImageColor(m_ShowRedGreen); bool hasPointSetNode = false; mitk::DataStorage::SetOfObjects::ConstPointer children = this->GetDataStorage()->GetDerivations(m_FixedNode); unsigned long size; size = children->Size(); for (unsigned long i = 0; i < size; ++i) { mitk::StringProperty::Pointer nameProp = dynamic_cast(children->GetElement(i)->GetProperty("name")); if(nameProp.IsNotNull() && nameProp->GetValueAsString()=="PointBasedRegistrationNode") { m_FixedPointSetNode=children->GetElement(i); m_FixedLandmarks = dynamic_cast (m_FixedPointSetNode->GetData()); this->GetDataStorage()->Remove(m_FixedPointSetNode); hasPointSetNode = true; break; } } if (!hasPointSetNode) { m_FixedLandmarks = mitk::PointSet::New(); m_FixedPointSetNode = mitk::DataNode::New(); m_FixedPointSetNode->SetData(m_FixedLandmarks); m_FixedPointSetNode->SetProperty("name", mitk::StringProperty::New("PointBasedRegistrationNode")); } m_FixedPointSetNode->GetStringProperty("label", m_OldFixedLabel); m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New("F ")); m_FixedPointSetNode->SetProperty("color", mitk::ColorProperty::New(0.0f, 1.0f, 1.0f)); m_FixedPointSetNode->SetVisibility(true); m_Controls.m_FixedPointListWidget->SetPointSetNode(m_FixedPointSetNode); this->GetDataStorage()->Add(m_FixedPointSetNode, m_FixedNode); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } if (m_FixedPointSetNode.IsNull()) { m_FixedLandmarks = mitk::PointSet::New(); m_FixedPointSetNode = mitk::DataNode::New(); m_FixedPointSetNode->SetData(m_FixedLandmarks); m_FixedPointSetNode->SetProperty("name", mitk::StringProperty::New("PointBasedRegistrationNode")); m_FixedPointSetNode->GetStringProperty("label", m_OldFixedLabel); m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New("F ")); m_FixedPointSetNode->SetProperty("color", mitk::ColorProperty::New(0.0f, 1.0f, 1.0f)); m_FixedPointSetNode->SetVisibility(true); m_Controls.m_FixedPointListWidget->SetPointSetNode(m_FixedPointSetNode); this->GetDataStorage()->Add(m_FixedPointSetNode, m_FixedNode); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } else { m_FixedNode = NULL; if (m_FixedPointSetNode.IsNotNull()) m_FixedPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldFixedLabel)); m_FixedPointSetNode = NULL; m_FixedLandmarks = NULL; m_Controls.m_FixedPointListWidget->SetPointSetNode(m_FixedPointSetNode); m_Controls.m_FixedLabel->hide(); m_Controls.TextLabelFixed->hide(); m_Controls.line2->hide(); m_Controls.m_FixedPointListWidget->hide(); m_Controls.m_SwitchImages->hide(); } if(m_FixedLandmarks.IsNotNull()) m_CurrentFixedLandmarksObserverID = m_FixedLandmarks->AddObserver(itk::ModifiedEvent(), m_FixedLandmarksChangedCommand); } void QmitkPointBasedRegistrationView::MovingSelected(mitk::DataNode::Pointer movingImage) { if(m_MovingLandmarks.IsNotNull()) m_MovingLandmarks->RemoveObserver(m_CurrentMovingLandmarksObserverID); if (movingImage.IsNotNull()) { if (m_MovingNode != movingImage) { if (m_MovingNode.IsNotNull()) { m_MovingNode->SetOpacity(m_OriginalOpacity); if (m_FixedNode == m_MovingNode) m_FixedNode->SetOpacity(0.5); this->setImageColor(false); if (m_MovingNode != m_FixedNode) { m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldMovingLabel)); } else { m_OldFixedLabel = m_OldMovingLabel; } } if (m_MovingPointSetNode.IsNotNull()) m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldMovingLabel)); m_MovingNode = movingImage; m_MovingNode->SetVisibility(true); m_Controls.m_MovingLabel->setText(QString::fromStdString(m_MovingNode->GetName())); m_Controls.m_MovingLabel->show(); m_Controls.TextLabelMoving->show(); m_Controls.line1->show(); m_Controls.m_MovingPointListWidget->show(); m_Controls.m_OpacityLabel->show(); m_Controls.m_OpacitySlider->show(); m_Controls.label->show(); m_Controls.label_2->show(); mitk::ColorProperty::Pointer colorProperty; colorProperty = dynamic_cast(m_MovingNode->GetProperty("color")); if ( colorProperty.IsNotNull() ) { m_MovingColor = colorProperty->GetColor(); } this->setImageColor(m_ShowRedGreen); m_MovingNode->GetFloatProperty("opacity", m_OriginalOpacity); this->OpacityUpdate(m_Opacity); bool hasPointSetNode = false; mitk::DataStorage::SetOfObjects::ConstPointer children = this->GetDataStorage()->GetDerivations(m_MovingNode); unsigned long size; size = children->Size(); for (unsigned long i = 0; i < size; ++i) { mitk::StringProperty::Pointer nameProp = dynamic_cast(children->GetElement(i)->GetProperty("name")); if(nameProp.IsNotNull() && nameProp->GetValueAsString()=="PointBasedRegistrationNode") { m_MovingPointSetNode=children->GetElement(i); m_MovingLandmarks = dynamic_cast (m_MovingPointSetNode->GetData()); this->GetDataStorage()->Remove(m_MovingPointSetNode); hasPointSetNode = true; break; } } if (!hasPointSetNode) { m_MovingLandmarks = mitk::PointSet::New(); m_MovingPointSetNode = mitk::DataNode::New(); m_MovingPointSetNode->SetData(m_MovingLandmarks); m_MovingPointSetNode->SetProperty("name", mitk::StringProperty::New("PointBasedRegistrationNode")); } this->GetDataStorage()->Add(m_MovingPointSetNode, m_MovingNode); m_MovingPointSetNode->GetStringProperty("label", m_OldMovingLabel); m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New("M ")); m_MovingPointSetNode->SetProperty("color", mitk::ColorProperty::New(1.0f, 1.0f, 0.0f)); m_MovingPointSetNode->SetVisibility(true); m_Controls.m_MovingPointListWidget->SetPointSetNode(m_MovingPointSetNode); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->clearTransformationLists(); this->OpacityUpdate(m_Opacity); } if (m_MovingPointSetNode.IsNull()) { m_MovingLandmarks = mitk::PointSet::New(); m_MovingPointSetNode = mitk::DataNode::New(); m_MovingPointSetNode->SetData(m_MovingLandmarks); m_MovingPointSetNode->SetProperty("name", mitk::StringProperty::New("PointBasedRegistrationNode")); m_MovingPointSetNode->GetStringProperty("label", m_OldMovingLabel); m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New("M ")); m_MovingPointSetNode->SetProperty("color", mitk::ColorProperty::New(1.0f, 1.0f, 0.0f)); m_MovingPointSetNode->SetVisibility(true); m_Controls.m_MovingPointListWidget->SetPointSetNode(m_MovingPointSetNode); this->GetDataStorage()->Add(m_MovingPointSetNode, m_MovingNode); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } else { m_MovingNode = NULL; if (m_MovingPointSetNode.IsNotNull()) m_MovingPointSetNode->SetProperty("label", mitk::StringProperty::New(m_OldMovingLabel)); m_MovingPointSetNode = NULL; m_MovingLandmarks = NULL; m_Controls.m_MovingPointListWidget->SetPointSetNode(m_MovingPointSetNode); m_Controls.m_MovingLabel->hide(); m_Controls.TextLabelMoving->hide(); m_Controls.line1->hide(); m_Controls.m_MovingPointListWidget->hide(); m_Controls.m_OpacityLabel->hide(); m_Controls.m_OpacitySlider->hide(); m_Controls.label->hide(); m_Controls.label_2->hide(); } if(m_MovingLandmarks.IsNotNull()) m_CurrentMovingLandmarksObserverID = m_MovingLandmarks->AddObserver(itk::ModifiedEvent(), m_MovingLandmarksChangedCommand); } void QmitkPointBasedRegistrationView::updateMovingLandmarksList() { // mitk::PointSet* ps = mitk::PointSet::New(); // ps = dynamic_cast(m_MovingPointSetNode->GetData()); // mitk::DataNode::Pointer tmpPtr = m_MovingPointSetNode; // m_MovingLandmarks = 0; // m_MovingLandmarks = (ps); m_MovingLandmarks = dynamic_cast(m_MovingPointSetNode->GetData()); // m_Controls.m_MovingPointListWidget->SetPointSetNode(m_MovingPointSetNode); //Workaround: m_MovingPointListWidget->m_PointListView->m_PointListModel loses the pointer on the pointsetnode this->checkLandmarkError(); this->CheckCalculate(); } void QmitkPointBasedRegistrationView::updateFixedLandmarksList() { m_FixedLandmarks = dynamic_cast(m_FixedPointSetNode->GetData()); this->checkLandmarkError(); this->CheckCalculate(); } void QmitkPointBasedRegistrationView::HideFixedImage(bool hide) { m_HideFixedImage = hide; if(m_FixedNode.IsNotNull()) { m_FixedNode->SetVisibility(!hide); } if (hide) { //this->reinitMovingClicked(); } if (!m_HideMovingImage && !m_HideFixedImage) { //this->globalReinitClicked(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkPointBasedRegistrationView::HideMovingImage(bool hide) { m_HideMovingImage = hide; if(m_MovingNode.IsNotNull()) { m_MovingNode->SetVisibility(!hide); } if (hide) { //this->reinitFixedClicked(); } if (!m_HideMovingImage && !m_HideFixedImage) { //this->globalReinitClicked(); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } bool QmitkPointBasedRegistrationView::CheckCalculate() { if((m_MovingPointSetNode.IsNull())||(m_FixedPointSetNode.IsNull()||m_FixedLandmarks.IsNull()||m_MovingLandmarks.IsNull())) return false; if(m_MovingNode==m_FixedNode) return false; return this->checkCalculateEnabled(); } void QmitkPointBasedRegistrationView::UndoTransformation() { if(!m_UndoPointsGeometryList.empty()) { - mitk::AffineGeometryFrame3D::Pointer movingLandmarksGeometry = m_MovingLandmarks->GetGeometry(0)->Clone(); - m_RedoPointsGeometryList.push_back(static_cast(movingLandmarksGeometry.GetPointer())); + mitk::Geometry3D::Pointer movingLandmarksGeometry = m_MovingLandmarks->GetGeometry(0)->Clone(); + m_RedoPointsGeometryList.push_back(movingLandmarksGeometry.GetPointer()); m_MovingLandmarks->SetGeometry(m_UndoPointsGeometryList.back()); m_UndoPointsGeometryList.pop_back(); //\FIXME when geometry is substituted the matrix referenced by the actor created by the mapper //is still pointing to the old one. Workaround: delete mapper m_MovingPointSetNode->SetMapper(1, NULL); mitk::BaseData::Pointer movingData = m_MovingNode->GetData(); - mitk::AffineGeometryFrame3D::Pointer movingGeometry = movingData->GetGeometry(0)->Clone(); - m_RedoGeometryList.push_back(static_cast(movingGeometry.GetPointer())); + mitk::Geometry3D::Pointer movingGeometry = movingData->GetGeometry(0)->Clone(); + m_RedoGeometryList.push_back(movingGeometry.GetPointer()); movingData->SetGeometry(m_UndoGeometryList.back()); m_UndoGeometryList.pop_back(); //\FIXME when geometry is substituted the matrix referenced by the actor created by the mapper //is still pointing to the old one. Workaround: delete mapper m_MovingNode->SetMapper(1, NULL); mitk::RenderingManager::GetInstance()->RequestUpdate(m_MultiWidget->mitkWidget4->GetRenderWindow()); movingData->GetTimeGeometry()->Update(); m_MovingLandmarks->GetTimeGeometry()->Update(); m_Controls.m_RedoTransformation->setEnabled(true); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->checkLandmarkError(); } if(!m_UndoPointsGeometryList.empty()) { m_Controls.m_UndoTransformation->setEnabled(true); } else { m_Controls.m_UndoTransformation->setEnabled(false); } } void QmitkPointBasedRegistrationView::RedoTransformation() { if(!m_RedoPointsGeometryList.empty()) { - mitk::AffineGeometryFrame3D::Pointer movingLandmarksGeometry = m_MovingLandmarks->GetGeometry(0)->Clone(); - m_UndoPointsGeometryList.push_back(static_cast(movingLandmarksGeometry.GetPointer())); + mitk::Geometry3D::Pointer movingLandmarksGeometry = m_MovingLandmarks->GetGeometry(0)->Clone(); + m_UndoPointsGeometryList.push_back(movingLandmarksGeometry.GetPointer()); m_MovingLandmarks->SetGeometry(m_RedoPointsGeometryList.back()); m_RedoPointsGeometryList.pop_back(); //\FIXME when geometry is substituted the matrix referenced by the actor created by the mapper //is still pointing to the old one. Workaround: delete mapper m_MovingPointSetNode->SetMapper(1, NULL); mitk::BaseData::Pointer movingData = m_MovingNode->GetData(); - mitk::AffineGeometryFrame3D::Pointer movingGeometry = movingData->GetGeometry(0)->Clone(); - m_UndoGeometryList.push_back(static_cast(movingGeometry.GetPointer())); + mitk::Geometry3D::Pointer movingGeometry = movingData->GetGeometry(0)->Clone(); + m_UndoGeometryList.push_back(movingGeometry.GetPointer()); movingData->SetGeometry(m_RedoGeometryList.back()); m_RedoGeometryList.pop_back(); //\FIXME when geometry is substituted the matrix referenced by the actor created by the mapper //is still pointing to the old one. Workaround: delete mapper m_MovingNode->SetMapper(1, NULL); mitk::RenderingManager::GetInstance()->RequestUpdate(m_MultiWidget->mitkWidget4->GetRenderWindow()); movingData->GetTimeGeometry()->Update(); m_MovingLandmarks->GetTimeGeometry()->Update(); m_Controls.m_UndoTransformation->setEnabled(true); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->checkLandmarkError(); } if(!m_RedoPointsGeometryList.empty()) { m_Controls.m_RedoTransformation->setEnabled(true); } else { m_Controls.m_RedoTransformation->setEnabled(false); } } void QmitkPointBasedRegistrationView::showRedGreen(bool redGreen) { m_ShowRedGreen = redGreen; this->setImageColor(m_ShowRedGreen); } void QmitkPointBasedRegistrationView::setImageColor(bool redGreen) { if (!redGreen && m_FixedNode.IsNotNull()) { m_FixedNode->SetColor(m_FixedColor); } if (!redGreen && m_MovingNode.IsNotNull()) { m_MovingNode->SetColor(m_MovingColor); } if (redGreen && m_FixedNode.IsNotNull()) { m_FixedNode->SetColor(1.0f, 0.0f, 0.0f); } if (redGreen && m_MovingNode.IsNotNull()) { m_MovingNode->SetColor(0.0f, 1.0f, 0.0f); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkPointBasedRegistrationView::OpacityUpdate(float opacity) { if (opacity > 1) { opacity = opacity/100.0f; } m_Opacity = opacity; if (m_MovingNode.IsNotNull()) { m_MovingNode->SetOpacity(m_Opacity); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkPointBasedRegistrationView::OpacityUpdate(int opacity) { float fValue = ((float)opacity)/100.0f; this->OpacityUpdate(fValue); } void QmitkPointBasedRegistrationView::clearTransformationLists() { m_Controls.m_UndoTransformation->setEnabled(false); m_Controls.m_RedoTransformation->setEnabled(false); m_Controls.m_MeanErrorLCD->hide(); m_Controls.m_MeanError->hide(); m_UndoGeometryList.clear(); m_UndoPointsGeometryList.clear(); m_RedoGeometryList.clear(); m_RedoPointsGeometryList.clear(); } void QmitkPointBasedRegistrationView::checkLandmarkError() { double totalDist = 0, dist = 0, dist2 = 0; mitk::Point3D point1, point2, point3; double p1[3], p2[3]; if(m_Transformation < 3) { if (m_Controls.m_UseICP->isChecked()) { if (m_MovingLandmarks.IsNotNull() && m_FixedLandmarks.IsNotNull()&& m_MovingLandmarks->GetSize() != 0 && m_FixedLandmarks->GetSize() != 0) { for(int pointId = 0; pointId < m_MovingLandmarks->GetSize(); ++pointId) { point1 = m_MovingLandmarks->GetPoint(pointId); point2 = m_FixedLandmarks->GetPoint(0); p1[0] = point1[0]; p1[1] = point1[1]; p1[2] = point1[2]; p2[0] = point2[0]; p2[1] = point2[1]; p2[2] = point2[2]; dist = vtkMath::Distance2BetweenPoints(p1, p2); for(int pointId2 = 1; pointId2 < m_FixedLandmarks->GetSize(); ++pointId2) { point2 = m_FixedLandmarks->GetPoint(pointId2); p1[0] = point1[0]; p1[1] = point1[1]; p1[2] = p1[2]; p2[0] = point2[0]; p2[1] = point2[1]; p2[2] = p2[2]; dist2 = vtkMath::Distance2BetweenPoints(p1, p2); if (dist2 < dist) { dist = dist2; } } totalDist += dist; } m_Controls.m_MeanErrorLCD->display(sqrt(totalDist/m_FixedLandmarks->GetSize())); m_Controls.m_MeanErrorLCD->show(); m_Controls.m_MeanError->show(); } else { m_Controls.m_MeanErrorLCD->hide(); m_Controls.m_MeanError->hide(); } } else { if (m_MovingLandmarks.IsNotNull() && m_FixedLandmarks.IsNotNull() && m_MovingLandmarks->GetSize() != 0 && m_FixedLandmarks->GetSize() != 0 && m_MovingLandmarks->GetSize() == m_FixedLandmarks->GetSize()) { for(int pointId = 0; pointId < m_MovingLandmarks->GetSize(); ++pointId) { point1 = m_MovingLandmarks->GetPoint(pointId); point2 = m_FixedLandmarks->GetPoint(pointId); p1[0] = point1[0]; p1[1] = point1[1]; p1[2] = point1[2]; p2[0] = point2[0]; p2[1] = point2[1]; p2[2] = point2[2]; totalDist += vtkMath::Distance2BetweenPoints(p1, p2); } m_Controls.m_MeanErrorLCD->display(sqrt(totalDist/m_FixedLandmarks->GetSize())); m_Controls.m_MeanErrorLCD->show(); m_Controls.m_MeanError->show(); } else { m_Controls.m_MeanErrorLCD->hide(); m_Controls.m_MeanError->hide(); } } } else { if (m_MovingLandmarks.IsNotNull() && m_FixedLandmarks.IsNotNull() && m_MovingLandmarks->GetSize() != 0 && m_FixedLandmarks->GetSize() != 0 && m_MovingLandmarks->GetSize() == m_FixedLandmarks->GetSize()) { for(int pointId = 0; pointId < m_MovingLandmarks->GetSize(); ++pointId) { point1 = m_MovingLandmarks->GetPoint(pointId); point2 = m_FixedLandmarks->GetPoint(pointId); p1[0] = point1[0]; p1[1] = point1[1]; p1[2] = point1[2]; p2[0] = point2[0]; p2[1] = point2[1]; p2[2] = point2[2]; totalDist += vtkMath::Distance2BetweenPoints(p1, p2); } m_Controls.m_MeanErrorLCD->display(sqrt(totalDist/m_FixedLandmarks->GetSize())); m_Controls.m_MeanErrorLCD->show(); m_Controls.m_MeanError->show(); } else { m_Controls.m_MeanErrorLCD->hide(); m_Controls.m_MeanError->hide(); } } } void QmitkPointBasedRegistrationView::transformationChanged(int transform) { m_Transformation = transform; this->checkCalculateEnabled(); this->checkLandmarkError(); } // ICP with vtkLandmarkTransformation void QmitkPointBasedRegistrationView::calculateLandmarkbasedWithICP() { if(CheckCalculate()) { mitk::Geometry3D::Pointer pointsGeometry = m_MovingLandmarks->GetGeometry(0); - mitk::AffineGeometryFrame3D::Pointer movingLandmarksGeometry = m_MovingLandmarks->GetGeometry(0)->Clone(); - m_UndoPointsGeometryList.push_back(static_cast(movingLandmarksGeometry.GetPointer())); + mitk::Geometry3D::Pointer movingLandmarksGeometry = m_MovingLandmarks->GetGeometry(0)->Clone(); + m_UndoPointsGeometryList.push_back(movingLandmarksGeometry.GetPointer()); mitk::BaseData::Pointer originalData = m_MovingNode->GetData(); - mitk::AffineGeometryFrame3D::Pointer originalDataGeometry = originalData->GetGeometry(0)->Clone(); - m_UndoGeometryList.push_back(static_cast(originalDataGeometry.GetPointer())); + mitk::Geometry3D::Pointer originalDataGeometry = originalData->GetGeometry(0)->Clone(); + m_UndoGeometryList.push_back(originalDataGeometry.GetPointer()); vtkIdType pointId; vtkPoints* vPointsSource=vtkPoints::New(); vtkCellArray* vCellsSource=vtkCellArray::New(); for(pointId=0; pointIdGetSize();++pointId) { mitk::Point3D pointSource=m_MovingLandmarks->GetPoint(pointId); vPointsSource->InsertNextPoint(pointSource[0],pointSource[1],pointSource[2]); vCellsSource->InsertNextCell(1, &pointId); } vtkPoints* vPointsTarget=vtkPoints::New(); vtkCellArray* vCellsTarget = vtkCellArray::New(); for(pointId=0; pointIdGetSize();++pointId) { mitk::Point3D pointTarget=m_FixedLandmarks->GetPoint(pointId); vPointsTarget->InsertNextPoint(pointTarget[0],pointTarget[1],pointTarget[2]); vCellsTarget->InsertNextCell(1, &pointId); } vtkPolyData* vPointSetSource=vtkPolyData::New(); vtkPolyData* vPointSetTarget=vtkPolyData::New(); vPointSetTarget->SetPoints(vPointsTarget); vPointSetTarget->SetVerts(vCellsTarget); vPointSetSource->SetPoints(vPointsSource); vPointSetSource->SetVerts(vCellsSource); vtkIterativeClosestPointTransform * icp=vtkIterativeClosestPointTransform::New(); icp->SetCheckMeanDistance(1); icp->SetSource(vPointSetSource); icp->SetTarget(vPointSetTarget); icp->SetMaximumNumberOfIterations(50); icp->StartByMatchingCentroidsOn(); vtkLandmarkTransform * transform=icp->GetLandmarkTransform(); if(m_Transformation==0) { transform->SetModeToRigidBody(); } if(m_Transformation==1) { transform->SetModeToSimilarity(); } if(m_Transformation==2) { transform->SetModeToAffine(); } vtkMatrix4x4 * matrix=icp->GetMatrix(); double determinant = fabs(matrix->Determinant()); if((determinant < mitk::eps) || (determinant > 100) || (determinant < 0.01) || (determinant==itk::NumericTraits::infinity()) || (determinant==itk::NumericTraits::quiet_NaN()) || (determinant==itk::NumericTraits::signaling_NaN()) || (determinant==-itk::NumericTraits::infinity()) || (determinant==-itk::NumericTraits::quiet_NaN()) || (determinant==-itk::NumericTraits::signaling_NaN()) || (!(determinant <= 0) && !(determinant > 0))) { QMessageBox msgBox; msgBox.setText("Suspicious determinant of matrix calculated by ICP.\n" "Please select more points or other points!" ); msgBox.exec(); return; } pointsGeometry->Compose(matrix); m_MovingLandmarks->GetTimeGeometry()->Update(); mitk::BaseData::Pointer movingData = m_MovingNode->GetData(); mitk::Geometry3D::Pointer movingGeometry = movingData->GetGeometry(0); movingGeometry->Compose(matrix); movingData->GetTimeGeometry()->Update(); m_Controls.m_UndoTransformation->setEnabled(true); m_Controls.m_RedoTransformation->setEnabled(false); m_RedoGeometryList.clear(); m_RedoPointsGeometryList.clear(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->checkLandmarkError(); } } // only vtkLandmarkTransformation void QmitkPointBasedRegistrationView::calculateLandmarkbased() { if(CheckCalculate()) { mitk::Geometry3D::Pointer pointsGeometry = m_MovingLandmarks->GetGeometry(0); - mitk::AffineGeometryFrame3D::Pointer movingLandmarksGeometry = m_MovingLandmarks->GetGeometry(0)->Clone(); - m_UndoPointsGeometryList.push_back(static_cast(movingLandmarksGeometry.GetPointer())); + mitk::Geometry3D::Pointer movingLandmarksGeometry = m_MovingLandmarks->GetGeometry(0)->Clone(); + m_UndoPointsGeometryList.push_back(movingLandmarksGeometry.GetPointer()); mitk::BaseData::Pointer originalData = m_MovingNode->GetData(); - mitk::AffineGeometryFrame3D::Pointer originalDataGeometry = originalData->GetGeometry(0)->Clone(); - m_UndoGeometryList.push_back(static_cast(originalDataGeometry.GetPointer())); + mitk::Geometry3D::Pointer originalDataGeometry = originalData->GetGeometry(0)->Clone(); + m_UndoGeometryList.push_back(originalDataGeometry.GetPointer()); vtkIdType pointId; vtkPoints* vPointsSource=vtkPoints::New(); for(pointId = 0; pointId < m_MovingLandmarks->GetSize(); ++pointId) { mitk::Point3D sourcePoint = m_MovingLandmarks->GetPoint(pointId); vPointsSource->InsertNextPoint(sourcePoint[0],sourcePoint[1],sourcePoint[2]); } vtkPoints* vPointsTarget=vtkPoints::New(); for(pointId=0; pointIdGetSize();++pointId) { mitk::Point3D targetPoint=m_FixedLandmarks->GetPoint(pointId); vPointsTarget->InsertNextPoint(targetPoint[0],targetPoint[1],targetPoint[2]); } vtkLandmarkTransform * transform= vtkLandmarkTransform::New(); transform->SetSourceLandmarks(vPointsSource); transform->SetTargetLandmarks(vPointsTarget); if(m_Transformation==0) { transform->SetModeToRigidBody(); } if(m_Transformation==1) { transform->SetModeToSimilarity(); } if(m_Transformation==2) { transform->SetModeToAffine(); } vtkMatrix4x4 * matrix=transform->GetMatrix(); double determinant = fabs(matrix->Determinant()); if((determinant < mitk::eps) || (determinant > 100) || (determinant < 0.01) || (determinant==itk::NumericTraits::infinity()) || (determinant==itk::NumericTraits::quiet_NaN()) || (determinant==itk::NumericTraits::signaling_NaN()) || (determinant==-itk::NumericTraits::infinity()) || (determinant==-itk::NumericTraits::quiet_NaN()) || (determinant==-itk::NumericTraits::signaling_NaN()) || (!(determinant <= 0) && !(determinant > 0))) { QMessageBox msgBox; msgBox.setText("Suspicious determinant of matrix calculated.\n" "Please select more points or other points!" ); msgBox.exec(); return; } pointsGeometry->Compose(matrix); m_MovingLandmarks->GetTimeGeometry()->Update(); mitk::BaseData::Pointer movingData = m_MovingNode->GetData(); mitk::Geometry3D::Pointer movingGeometry = movingData->GetGeometry(0); movingGeometry->Compose(matrix); movingData->GetTimeGeometry()->Update(); m_Controls.m_UndoTransformation->setEnabled(true); m_Controls.m_RedoTransformation->setEnabled(false); m_RedoGeometryList.clear(); m_RedoPointsGeometryList.clear(); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->checkLandmarkError(); } } void QmitkPointBasedRegistrationView::calculateLandmarkWarping() { mitk::LandmarkWarping* registration = new mitk::LandmarkWarping(); mitk::LandmarkWarping::FixedImageType::Pointer fixedImage = mitk::LandmarkWarping::FixedImageType::New(); mitk::Image::Pointer fimage = dynamic_cast(m_FixedNode->GetData()); mitk::LandmarkWarping::MovingImageType::Pointer movingImage = mitk::LandmarkWarping::MovingImageType::New(); mitk::Image::Pointer mimage = dynamic_cast(m_MovingNode->GetData()); if (fimage.IsNotNull() && /*fimage->GetDimension() == 2 || */ fimage->GetDimension() == 3 && mimage.IsNotNull() && mimage->GetDimension() == 3) { mitk::CastToItkImage(fimage, fixedImage); mitk::CastToItkImage(mimage, movingImage); registration->SetFixedImage(fixedImage); registration->SetMovingImage(movingImage); unsigned int pointId; mitk::Point3D sourcePoint, targetPoint; mitk::LandmarkWarping::LandmarkContainerType::Pointer fixedLandmarks = mitk::LandmarkWarping::LandmarkContainerType::New(); mitk::LandmarkWarping::LandmarkPointType point; for(pointId = 0; pointId < (unsigned int)m_FixedLandmarks->GetSize(); ++pointId) { fimage->GetGeometry(0)->WorldToItkPhysicalPoint(m_FixedLandmarks->GetPoint(pointId), point); fixedLandmarks->InsertElement( pointId, point); } mitk::LandmarkWarping::LandmarkContainerType::Pointer movingLandmarks = mitk::LandmarkWarping::LandmarkContainerType::New(); for(pointId = 0; pointId < (unsigned int)m_MovingLandmarks->GetSize(); ++pointId) { mitk::BaseData::Pointer fixedData = m_FixedNode->GetData(); mitk::Geometry3D::Pointer fixedGeometry = fixedData->GetGeometry(0); fixedGeometry->WorldToItkPhysicalPoint(m_MovingLandmarks->GetPoint(pointId), point); movingLandmarks->InsertElement( pointId, point); } registration->SetLandmarks(fixedLandmarks.GetPointer(), movingLandmarks.GetPointer()); mitk::LandmarkWarping::MovingImageType::Pointer output = registration->Register(); if (output.IsNotNull()) { mitk::Image::Pointer image = mitk::Image::New(); mitk::CastToMitkImage(output, image); m_MovingNode->SetData(image); mitk::LevelWindowProperty::Pointer levWinProp = mitk::LevelWindowProperty::New(); mitk::LevelWindow levelWindow; levelWindow.SetAuto( image ); levWinProp->SetLevelWindow(levelWindow); m_MovingNode->GetPropertyList()->SetProperty("levelwindow",levWinProp); movingLandmarks = registration->GetTransformedTargetLandmarks(); mitk::PointSet::PointDataIterator it; it = m_MovingLandmarks->GetPointSet()->GetPointData()->Begin(); //increase the eventId to encapsulate the coming operations mitk::OperationEvent::IncCurrObjectEventId(); mitk::OperationEvent::ExecuteIncrement(); for(pointId=0; pointIdSize();++pointId, ++it) { int position = it->Index(); mitk::PointSet::PointType pt = m_MovingLandmarks->GetPoint(position); mitk::Point3D undoPoint = ( pt ); point = movingLandmarks->GetElement(pointId); fimage->GetGeometry(0)->ItkPhysicalPointToWorld(point, pt); mitk::PointOperation* doOp = new mitk::PointOperation(mitk::OpMOVE, pt, position); //undo operation mitk::PointOperation* undoOp = new mitk::PointOperation(mitk::OpMOVE, undoPoint, position); mitk::OperationEvent* operationEvent = new mitk::OperationEvent(m_MovingLandmarks, doOp, undoOp, "Move point"); mitk::UndoController::GetCurrentUndoModel()->SetOperationEvent(operationEvent); //execute the Operation m_MovingLandmarks->ExecuteOperation(doOp); } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); this->clearTransformationLists(); this->checkLandmarkError(); } } } bool QmitkPointBasedRegistrationView::checkCalculateEnabled() { if (m_FixedLandmarks.IsNotNull() && m_MovingLandmarks.IsNotNull()) { int fixedPoints = m_FixedLandmarks->GetSize(); int movingPoints = m_MovingLandmarks->GetSize(); if (m_Transformation == 0 || m_Transformation == 1 || m_Transformation == 2) { if (m_Controls.m_UseICP->isChecked()) { if((movingPoints > 0 && fixedPoints > 0)) { m_Controls.m_Calculate->setEnabled(true); return true; } else { m_Controls.m_Calculate->setEnabled(false); return false; } } else { if ((movingPoints == fixedPoints) && movingPoints > 0) { m_Controls.m_Calculate->setEnabled(true); return true; } else { m_Controls.m_Calculate->setEnabled(false); return false; } } } else { m_Controls.m_Calculate->setEnabled(true); return true; } } else { return false; } } void QmitkPointBasedRegistrationView::calculate() { if (m_Transformation == 0 || m_Transformation == 1 || m_Transformation == 2) { if (m_Controls.m_UseICP->isChecked()) { if (m_MovingLandmarks->GetSize() == 1 && m_FixedLandmarks->GetSize() == 1) { this->calculateLandmarkbased(); } else { this->calculateLandmarkbasedWithICP(); } } else { this->calculateLandmarkbased(); } } else { this->calculateLandmarkWarping(); } } void QmitkPointBasedRegistrationView::SetImagesVisible(berry::ISelection::ConstPointer /*selection*/) { if (this->m_CurrentSelection->Size() == 0) { // show all images mitk::DataStorage::SetOfObjects::ConstPointer setOfObjects = this->GetDataStorage()->GetAll(); for (mitk::DataStorage::SetOfObjects::ConstIterator nodeIt = setOfObjects->Begin() ; nodeIt != setOfObjects->End(); ++nodeIt) // for each node { if ( (nodeIt->Value().IsNotNull()) && (nodeIt->Value()->GetProperty("visible")) && dynamic_cast(nodeIt->Value()->GetData())==NULL) { nodeIt->Value()->SetVisibility(true); } } } else { // hide all images mitk::DataStorage::SetOfObjects::ConstPointer setOfObjects = this->GetDataStorage()->GetAll(); for (mitk::DataStorage::SetOfObjects::ConstIterator nodeIt = setOfObjects->Begin() ; nodeIt != setOfObjects->End(); ++nodeIt) // for each node { if ( (nodeIt->Value().IsNotNull()) && (nodeIt->Value()->GetProperty("visible")) && dynamic_cast(nodeIt->Value()->GetData())==NULL) { nodeIt->Value()->SetVisibility(false); } } } } void QmitkPointBasedRegistrationView::SwitchImages() { mitk::DataNode::Pointer newMoving = m_FixedNode; mitk::DataNode::Pointer newFixed = m_MovingNode; this->FixedSelected(newFixed); this->MovingSelected(newMoving); } diff --git a/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkRigidRegistrationSelectorView.cpp b/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkRigidRegistrationSelectorView.cpp index 703d4a7220..7d8b011623 100644 --- a/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkRigidRegistrationSelectorView.cpp +++ b/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkRigidRegistrationSelectorView.cpp @@ -1,774 +1,774 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkImageTimeSelector.h" #include #include #include #include "mitkMatrixConvert.h" #include #include #include "QmitkLoadPresetDialog.h" #include #include "mitkRigidRegistrationPreset.h" #include "mitkProgressBar.h" #include "QmitkRigidRegistrationSelectorView.h" #include "QmitkTranslationTransformView.h" #include "QmitkScaleTransformView.h" #include "QmitkScaleLogarithmicTransformView.h" #include "QmitkAffineTransformView.h" #include "QmitkFixedCenterOfRotationAffineTransformView.h" #include "QmitkRigid3DTransformView.h" #include "QmitkEuler3DTransformView.h" #include "QmitkCenteredEuler3DTransformView.h" #include "QmitkQuaternionRigidTransformView.h" #include "QmitkVersorTransformView.h" #include "QmitkVersorRigid3DTransformView.h" #include "QmitkScaleSkewVersor3DTransformView.h" #include "QmitkSimilarity3DTransformView.h" #include "QmitkRigid2DTransformView.h" #include "QmitkCenteredRigid2DTransformView.h" #include "QmitkEuler2DTransformView.h" #include "QmitkSimilarity2DTransformView.h" #include "QmitkCenteredSimilarity2DTransformView.h" #include "QmitkMeanSquaresMetricView.h" #include "QmitkNormalizedCorrelationMetricView.h" #include "QmitkGradientDifferenceMetricView.h" #include "QmitkKullbackLeiblerCompareHistogramMetricView.h" #include "QmitkCorrelationCoefficientHistogramMetricView.h" #include "QmitkMeanSquaresHistogramMetricView.h" #include "QmitkMutualInformationHistogramMetricView.h" #include "QmitkNormalizedMutualInformationHistogramMetricView.h" #include "QmitkMattesMutualInformationMetricView.h" #include "QmitkMeanReciprocalSquareDifferenceMetricView.h" #include "QmitkMutualInformationMetricView.h" #include "QmitkMatchCardinalityMetricView.h" #include "QmitkKappaStatisticMetricView.h" #include "QmitkExhaustiveOptimizerView.h" #include "QmitkGradientDescentOptimizerView.h" #include "QmitkQuaternionRigidTransformGradientDescentOptimizerView.h" #include "QmitkLBFGSBOptimizerView.h" #include "QmitkOnePlusOneEvolutionaryOptimizerView.h" #include "QmitkPowellOptimizerView.h" #include "QmitkFRPROptimizerView.h" #include "QmitkRegularStepGradientDescentOptimizerView.h" #include "QmitkVersorTransformOptimizerView.h" #include "QmitkAmoebaOptimizerView.h" #include "QmitkConjugateGradientOptimizerView.h" #include "QmitkLBFGSOptimizerView.h" #include "QmitkSPSAOptimizerView.h" #include "QmitkVersorRigid3DTransformOptimizerView.h" QmitkRigidRegistrationSelectorView::QmitkRigidRegistrationSelectorView(QWidget* parent, Qt::WindowFlags f ) : QWidget( parent, f ), m_FixedNode(NULL), m_FixedMaskNode(NULL), m_MovingNode(NULL), m_MovingMaskNode(NULL), m_FixedDimension(0), m_MovingDimension(0), m_StopOptimization(false), m_GeometryItkPhysicalToWorldTransform(NULL), m_GeometryWorldToItkPhysicalTransform(NULL), m_MovingGeometry(NULL), m_ImageGeometry(NULL) { m_Controls.setupUi(parent); this->AddTransform(new QmitkTranslationTransformView(this, f)); this->AddTransform(new QmitkScaleTransformView(this, f)); this->AddTransform(new QmitkScaleLogarithmicTransformView(this, f)); this->AddTransform(new QmitkAffineTransformView(this, f)); this->AddTransform(new QmitkFixedCenterOfRotationAffineTransformView(this, f)); this->AddTransform(new QmitkEuler3DTransformView(this, f)); this->AddTransform(new QmitkCenteredEuler3DTransformView(this, f)); this->AddTransform(new QmitkQuaternionRigidTransformView(this, f)); this->AddTransform(new QmitkVersorTransformView(this, f)); this->AddTransform(new QmitkVersorRigid3DTransformView(this, f)); this->AddTransform(new QmitkScaleSkewVersor3DTransformView(this, f)); this->AddTransform(new QmitkSimilarity3DTransformView(this, f)); this->AddTransform(new QmitkRigid2DTransformView(this, f)); this->AddTransform(new QmitkCenteredRigid2DTransformView(this, f)); this->AddTransform(new QmitkEuler2DTransformView(this, f)); this->AddTransform(new QmitkSimilarity2DTransformView(this, f)); this->AddTransform(new QmitkCenteredSimilarity2DTransformView(this, f)); this->AddMetric(new QmitkMeanSquaresMetricView(this, f)); this->AddMetric(new QmitkNormalizedCorrelationMetricView(this, f)); this->AddMetric(new QmitkGradientDifferenceMetricView(this, f)); this->AddMetric(new QmitkKullbackLeiblerCompareHistogramMetricView(this, f)); this->AddMetric(new QmitkCorrelationCoefficientHistogramMetricView(this, f)); this->AddMetric(new QmitkMeanSquaresHistogramMetricView(this, f)); this->AddMetric(new QmitkMutualInformationHistogramMetricView(this, f)); this->AddMetric(new QmitkNormalizedMutualInformationHistogramMetricView(this, f)); this->AddMetric(new QmitkMattesMutualInformationMetricView(this, f)); this->AddMetric(new QmitkMeanReciprocalSquareDifferenceMetricView(this, f)); this->AddMetric(new QmitkMutualInformationMetricView(this, f)); this->AddMetric(new QmitkMatchCardinalityMetricView(this, f)); this->AddMetric(new QmitkKappaStatisticMetricView(this, f)); this->AddOptimizer(new QmitkExhaustiveOptimizerView(this, f)); this->AddOptimizer(new QmitkGradientDescentOptimizerView(this, f)); this->AddOptimizer(new QmitkQuaternionRigidTransformGradientDescentOptimizerView(this, f)); this->AddOptimizer(new QmitkLBFGSBOptimizerView(this, f)); this->AddOptimizer(new QmitkOnePlusOneEvolutionaryOptimizerView(this, f)); this->AddOptimizer(new QmitkPowellOptimizerView(this, f)); this->AddOptimizer(new QmitkFRPROptimizerView(this, f)); this->AddOptimizer(new QmitkRegularStepGradientDescentOptimizerView(this, f)); this->AddOptimizer(new QmitkVersorTransformOptimizerView(this, f)); this->AddOptimizer(new QmitkAmoebaOptimizerView(this, f)); this->AddOptimizer(new QmitkConjugateGradientOptimizerView(this, f)); this->AddOptimizer(new QmitkLBFGSOptimizerView(this, f)); this->AddOptimizer(new QmitkSPSAOptimizerView(this, f)); this->AddOptimizer(new QmitkVersorRigid3DTransformOptimizerView(this, f)); m_Observer = mitk::RigidRegistrationObserver::New(); m_Controls.m_TransformFrame->setEnabled(true); m_Controls.m_MetricFrame->setEnabled(true); m_Controls.m_OptimizerFrame->setEnabled(true); m_Controls.m_InterpolatorFrame->setEnabled(true); m_Controls.m_TransformFrame->hide(); m_Controls.m_MetricFrame->hide(); m_Controls.m_OptimizerFrame->hide(); m_Controls.m_InterpolatorFrame->hide(); m_Controls.m_TransformBox->setCurrentIndex(0); m_Controls.m_MetricBox->setCurrentIndex(0); m_Controls.m_OptimizerBox->setCurrentIndex(0); m_Controls.m_TransformWidgetStack->setCurrentIndex(0); m_Controls.m_MetricWidgetStack->setCurrentIndex(0); m_Controls.m_OptimizerWidgetStack->setCurrentIndex(0); /// and show the selected views this->TransformSelected(m_Controls.m_TransformBox->currentIndex()); this->MetricSelected(m_Controls.m_MetricBox->currentIndex()); this->OptimizerSelected(m_Controls.m_OptimizerBox->currentIndex()); //// create connections connect( m_Controls.m_TransformGroup, SIGNAL(clicked(bool)), m_Controls.m_TransformFrame, SLOT(setVisible(bool))); connect( m_Controls.m_TransformBox, SIGNAL(activated(int)), m_Controls.m_TransformWidgetStack, SLOT(setCurrentIndex(int))); connect( m_Controls.m_TransformBox, SIGNAL(activated(int)), this, SLOT(TransformSelected(int))); connect( m_Controls.m_MetricBox, SIGNAL(activated(int)), this, SLOT(MetricSelected(int))); connect( m_Controls.m_OptimizerBox, SIGNAL(activated(int)), this, SLOT(OptimizerSelected(int))); connect( m_Controls.m_MetricGroup, SIGNAL(clicked(bool)), m_Controls.m_MetricFrame, SLOT(setVisible(bool))); connect( m_Controls.m_MetricBox, SIGNAL(activated(int)), m_Controls.m_MetricWidgetStack, SLOT(setCurrentIndex(int))); connect( m_Controls.m_OptimizerGroup, SIGNAL(clicked(bool)), m_Controls.m_OptimizerFrame, SLOT(setVisible(bool))); connect( m_Controls.m_OptimizerBox, SIGNAL(activated(int)), m_Controls.m_OptimizerWidgetStack, SLOT(setCurrentIndex(int))); connect( m_Controls.m_InterpolatorGroup, SIGNAL(toggled(bool)), m_Controls.m_InterpolatorFrame, SLOT(setVisible(bool))); m_Preset = new mitk::RigidRegistrationPreset(); m_Preset->LoadPreset(); this->DoLoadRigidRegistrationPreset("AffineMutualInformationGradientDescent"); } QmitkRigidRegistrationSelectorView::~QmitkRigidRegistrationSelectorView() { } /// this method starts the registration process void QmitkRigidRegistrationSelectorView::CalculateTransformation(unsigned int timestep) { if (m_FixedNode.IsNotNull() && m_MovingNode.IsNotNull()) { emit AddNewTransformationToUndoList(); mitk::Image::Pointer fimage = dynamic_cast(m_FixedNode->GetData()); mitk::Image::Pointer mimage = dynamic_cast(m_MovingNode->GetData()); mitk::Image::Pointer mmimage = NULL; mitk::Image::Pointer fmimage = NULL; if (m_MovingMaskNode.IsNotNull()) { mmimage = dynamic_cast(m_MovingMaskNode->GetData()); } if (m_FixedMaskNode.IsNotNull()) { fmimage = dynamic_cast(m_FixedMaskNode->GetData()); } mitk::ImageTimeSelector::Pointer its = mitk::ImageTimeSelector::New(); if(fimage->GetDimension()>3) { its->SetInput(fimage); its->SetTimeNr(timestep); its->Update(); fimage = its->GetOutput(); } if(mimage->GetDimension()>3) { its->SetInput(mimage); its->SetTimeNr(timestep); its->Update(); mimage = its->GetOutput(); } // Initial moving image geometry m_ImageGeometry = m_MovingNode->GetData()->GetGeometry()->Clone(); std::cout << "Moving Image Geometry (IndexToWorldTransform)" << std::endl; std::cout << m_ImageGeometry->GetIndexToWorldTransform()->GetMatrix(); mitk::Geometry3D::TransformType::InputPointType center = m_ImageGeometry->GetIndexToWorldTransform()->GetCenter(); std::cout << "center " << center[0] << " " << center[1] << " " << center[2] << std::endl; mitk::Geometry3D::TransformType::OutputVectorType offset = m_ImageGeometry->GetIndexToWorldTransform()->GetOffset(); std::cout << "offset " << offset[0] << " " << offset[1] << " " << offset[2] << std::endl; std::cout << std::endl; // Fixed image geometry - // mitk::AffineGeometryFrame3D::Pointer m_FixedGeometryCopy = m_FixedNode->GetData()->GetGeometry()->Clone(); + // mitk::Geometry3D::Pointer m_FixedGeometryCopy = m_FixedNode->GetData()->GetGeometry()->Clone(); // std::cout << "Fixed Image Geometry (IndexToWorldTransform)" << std::endl; // std::cout << m_FixedGeometryCopy->GetIndexToWorldTransform()->GetMatrix(); // center = m_FixedGeometryCopy->GetIndexToWorldTransform()->GetCenter(); // std::cout << "center " << center[0] << " " << center[1] << " " << center[2] << std::endl; // offset = m_FixedGeometryCopy->GetIndexToWorldTransform()->GetOffset(); // std::cout << "offset " << offset[0] << " " << offset[1] << " " << offset[2] << std::endl; // std::cout << std::endl; // Calculate the World to ITK-Physical transform for the moving image m_MovingGeometry = m_MovingNode->GetData()->GetGeometry(); unsigned long size; size = m_MovingNodeChildren->Size(); mitk::DataNode::Pointer childNode; for (unsigned long i = 0; i < size; ++i) { m_ChildNodes.insert(std::pair(m_MovingNodeChildren->GetElement(i), m_MovingNodeChildren->GetElement(i)->GetData()->GetGeometry())); - m_ChildNodes2.insert(std::pair(m_MovingNodeChildren->GetElement(i), m_MovingNodeChildren->GetElement(i)->GetData()->GetGeometry()->Clone())); + m_ChildNodes2.insert(std::pair(m_MovingNodeChildren->GetElement(i), m_MovingNodeChildren->GetElement(i)->GetData()->GetGeometry()->Clone())); } m_GeometryWorldToItkPhysicalTransform = mitk::Geometry3D::TransformType::New(); GetWorldToItkPhysicalTransform(m_MovingGeometry, m_GeometryWorldToItkPhysicalTransform.GetPointer()); // std::cout << "Moving Image: World to ITK-physical transform" << std::endl; // std::cout << m_GeometryWorldToItkPhysicalTransform->GetMatrix(); // center = m_GeometryWorldToItkPhysicalTransform->GetCenter(); // std::cout << "center " << center[0] << " " << center[1] << " " << center[2] << std::endl; // offset = m_GeometryWorldToItkPhysicalTransform->GetOffset(); // std::cout << "offset " << offset[0] << " " << offset[1] << " " << offset[2] << std::endl; // std::cout << std::endl; // Calculate the ITK-Physical to World transform for the fixed image m_GeometryItkPhysicalToWorldTransform = mitk::Geometry3D::TransformType::New(); mitk::Geometry3D::TransformType::Pointer fixedWorld2Phys = mitk::Geometry3D::TransformType::New(); GetWorldToItkPhysicalTransform(m_FixedNode->GetData()->GetGeometry(), fixedWorld2Phys.GetPointer()); fixedWorld2Phys->GetInverse(m_GeometryItkPhysicalToWorldTransform); // std::cout << "Fixed Image: ITK-physical to World transform" << std::endl; // std::cout << m_GeometryItkPhysicalToWorldTransform->GetMatrix(); // center = m_GeometryItkPhysicalToWorldTransform->GetCenter(); // std::cout << "center " << center[0] << " " << center[1] << " " << center[2] << std::endl; // offset = m_GeometryItkPhysicalToWorldTransform->GetOffset(); // std::cout << "offset " << offset[0] << " " << offset[1] << " " << offset[2] << std::endl; // std::cout << std::endl; // init callback itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction(this, &QmitkRigidRegistrationSelectorView::SetOptimizerValue); int observer = m_Observer->AddObserver( itk::AnyEvent(), command ); std::vector presets; // init registration method mitk::ImageRegistrationMethod::Pointer registration = mitk::ImageRegistrationMethod::New(); registration->SetObserver(m_Observer); registration->SetInterpolator(m_Controls.m_InterpolatorBox->currentIndex()); registration->SetReferenceImage(fimage); registration->SetInput(mimage); if (mmimage.IsNotNull()) { registration->SetMovingMask(mmimage); } if (fmimage.IsNotNull()) { registration->SetFixedMask(fmimage); } dynamic_cast(m_Controls.m_TransformWidgetStack->currentWidget())->SetFixedImage(dynamic_cast(m_FixedNode->GetData())); dynamic_cast(m_Controls.m_TransformWidgetStack->currentWidget())->SetMovingImage(dynamic_cast(m_MovingNode->GetData())); registration->SetOptimizerScales(dynamic_cast(m_Controls.m_TransformWidgetStack->currentWidget())->GetScales()); registration->SetTransform(dynamic_cast(m_Controls.m_TransformWidgetStack->currentWidget())->GetTransform()); dynamic_cast(m_Controls.m_MetricWidgetStack->currentWidget())->SetMovingImage(dynamic_cast(m_MovingNode->GetData())); registration->SetMetric(dynamic_cast(m_Controls.m_MetricWidgetStack->currentWidget())->GetMetric()); registration->SetOptimizer(dynamic_cast(m_Controls.m_OptimizerWidgetStack->currentWidget())->GetOptimizer()); double time(0.0); double tstart(0.0); tstart = clock(); try { registration->Update(); } catch (itk::ExceptionObject e) { MITK_INFO << "Caught exception: "<Progress(20); } time += clock() - tstart; time = time / CLOCKS_PER_SEC; //printOut of the Time MITK_INFO << "Registration Time: " << time; m_Observer->RemoveObserver(observer); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkRigidRegistrationSelectorView::SetFixedNode( mitk::DataNode * fixedNode ) { m_FixedNode = fixedNode; m_Controls.m_TransformBox->setCurrentIndex(m_Controls.m_TransformBox->currentIndex()); } void QmitkRigidRegistrationSelectorView::SetFixedDimension( int dimension ) { m_FixedDimension = dimension; } void QmitkRigidRegistrationSelectorView::SetMovingNode( mitk::DataNode * movingNode ) { m_MovingNode = movingNode; this->TransformSelected(m_Controls.m_TransformBox->currentIndex()); } void QmitkRigidRegistrationSelectorView::SetMovingDimension(int dimension ) { m_MovingDimension = dimension; } // this is a callback function that retrieves the current transformation // parameters after every step of progress in the optimizer. // depending on the choosen transformation, we construct a vtktransform // that will be applied to the geometry of the moving image. // the values are delivered by mitkRigidRgistrationObserver.cpp void QmitkRigidRegistrationSelectorView::SetOptimizerValue( const itk::EventObject & ) { if (m_StopOptimization) { m_Observer->SetStopOptimization(true); m_StopOptimization = false; } // retreive optimizer value for the current transformation double value = m_Observer->GetCurrentOptimizerValue(); // retreive current parameterset of the transformation itk::Array transformParams = m_Observer->GetCurrentTranslation(); // init an empty affine transformation that will be filled with // the corresponding transformation parameters in the following vtkMatrix4x4* vtkmatrix = vtkMatrix4x4::New(); vtkmatrix->Identity(); // init a transform that will be initialized with the vtkmatrix later vtkTransform* vtktransform = vtkTransform::New(); if (m_MovingNode.IsNotNull()) { vtktransform = dynamic_cast(m_Controls.m_TransformWidgetStack->currentWidget())->Transform(vtkmatrix, vtktransform, transformParams); // the retrieved transform goes from fixed to moving space. // invert the transform in order to go from moving to fixed space. vtkMatrix4x4* vtkmatrix_inv = vtkMatrix4x4::New(); vtktransform->GetInverse(vtkmatrix_inv); // now adapt the moving geometry accordingly m_MovingGeometry->GetIndexToWorldTransform()->SetIdentity(); // the next view lines: Phi(Phys2World)*Phi(Result)*Phi(World2Phy)*Phi(Initial) // set moving image geometry to registration result m_MovingGeometry->SetIndexToWorldTransformByVtkMatrix(vtkmatrix_inv); /*std::cout << std::endl; std::cout << m_MovingGeometry->GetIndexToWorldTransform()->GetMatrix(); mitk::Geometry3D::TransformType::OutputVectorType offset = m_MovingGeometry->GetIndexToWorldTransform()->GetOffset(); std::cout << "offset " << offset[0] << " " << offset[1] << " " << offset[2] << std::endl;*/ #if !defined(ITK_IMAGE_BEHAVES_AS_ORIENTED_IMAGE) // the next few lines: Phi(Phys2World)*Phi(Result)*Phi(World2Phy)*Phi(Initial) // go to itk physical space before applying the registration result m_MovingGeometry->Compose(m_GeometryWorldToItkPhysicalTransform, 1); // right in the beginning, transform by initial moving image geometry m_MovingGeometry->Compose(m_ImageGeometry->GetIndexToWorldTransform(), 1); // in the end, go back to world space m_MovingGeometry->Compose(m_GeometryItkPhysicalToWorldTransform, 0); #else m_MovingGeometry->Compose(m_ImageGeometry->GetIndexToWorldTransform(), 1); #endif /*std::cout << std::endl << m_MovingGeometry->GetIndexToWorldTransform()->GetMatrix(); offset = m_MovingGeometry->GetIndexToWorldTransform()->GetOffset(); std::cout << "offset " << offset[0] << " " << offset[1] << " " << offset[2] << std::endl << std::endl;*/ // now adapt all children geometries accordingly if children exist std::map::iterator iter; - std::map::iterator iter2; + std::map::iterator iter2; mitk::DataNode::Pointer childNode; for( iter = m_ChildNodes.begin(); iter != m_ChildNodes.end(); iter++ ) { childNode = (*iter).first; if (childNode.IsNotNull()) { mitk::Geometry3D* childGeometry; - mitk::AffineGeometryFrame3D::Pointer childImageGeometry; + mitk::Geometry3D::Pointer childImageGeometry; // Calculate the World to ITK-Physical transform for the moving mask childGeometry = (*iter).second; iter2 = m_ChildNodes2.find(childNode); childImageGeometry = (*iter2).second; childGeometry->GetIndexToWorldTransform()->SetIdentity(); // the next view lines: Phi(Phys2World)*Phi(Result)*Phi(World2Phy)*Phi(Initial) // set moving mask geometry to registration result childGeometry->SetIndexToWorldTransformByVtkMatrix(vtkmatrix_inv); #if !defined(ITK_IMAGE_BEHAVES_AS_ORIENTED_IMAGE) // the next few lines: Phi(Phys2World)*Phi(Result)*Phi(World2Phy)*Phi(Initial) // go to itk physical space before applying the registration result childGeometry->Compose(m_GeometryWorldToItkPhysicalTransform, 1); // right in the beginning, transform by initial moving image geometry childGeometry->Compose(childImageGeometry->GetIndexToWorldTransform(), 1); // in the end, go back to world space childGeometry->Compose(m_GeometryItkPhysicalToWorldTransform, 0); #else childGeometry->Compose(childImageGeometry->GetIndexToWorldTransform(), 1); #endif } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } emit OptimizerChanged(value); } /// this method is called whenever the combobox with the selectable transforms changes /// responsible for showing the selected transform parameters void QmitkRigidRegistrationSelectorView::TransformSelected( int transform ) { if (m_FixedNode.IsNotNull()) { dynamic_cast(m_Controls.m_TransformWidgetStack->widget(transform))->SetFixedImage(dynamic_cast(m_FixedNode->GetData())); } if (m_MovingNode.IsNotNull()) { dynamic_cast(m_Controls.m_TransformWidgetStack->widget(transform))->SetMovingImage(dynamic_cast(m_MovingNode->GetData())); } int numberOfTransformParameters = dynamic_cast(m_Controls.m_TransformWidgetStack->widget(transform))->GetNumberOfTransformParameters(); dynamic_cast(m_Controls.m_OptimizerWidgetStack->currentWidget())->SetNumberOfTransformParameters(numberOfTransformParameters); //set fixed height m_Controls.m_TransformWidgetStack->setFixedHeight( dynamic_cast(m_Controls.m_TransformWidgetStack->widget(transform))->minimumSizeHint().height() ); this->OptimizerSelected(m_Controls.m_OptimizerWidgetStack->currentIndex()); } /// this method is called whenever the combobox with the selectable metrics changes /// responsible for showing the selected metric parameters void QmitkRigidRegistrationSelectorView::MetricSelected( int metric ) { if (m_FixedNode.IsNotNull()) { dynamic_cast(m_Controls.m_MetricWidgetStack->widget(metric))->SetMovingImage(dynamic_cast(m_MovingNode->GetData())); } //set fixed height m_Controls.m_MetricWidgetStack->setFixedHeight( dynamic_cast(m_Controls.m_MetricWidgetStack->widget(metric))->minimumSizeHint().height() ); } /// this method is called whenever the combobox with the selectable optimizers changes /// responsible for showing the selected optimizer parameters void QmitkRigidRegistrationSelectorView::OptimizerSelected( int optimizer ) { int numberOfTransformParameters = dynamic_cast(m_Controls.m_TransformWidgetStack->currentWidget())->GetNumberOfTransformParameters(); dynamic_cast(m_Controls.m_OptimizerWidgetStack->widget(optimizer))->SetNumberOfTransformParameters(numberOfTransformParameters); //set fixed height m_Controls.m_OptimizerWidgetStack->setFixedHeight( dynamic_cast(m_Controls.m_OptimizerWidgetStack->widget(optimizer))->minimumSizeHint().height() ); } void QmitkRigidRegistrationSelectorView::LoadRigidRegistrationParameter() { this->DoLoadRigidRegistrationParameter(); } void QmitkRigidRegistrationSelectorView::DoLoadRigidRegistrationParameter() { std::map > existingPresets; existingPresets = m_Preset->getTransformValuesPresets(); std::map >::iterator iter; std::list presets; for( iter = existingPresets.begin(); iter != existingPresets.end(); iter++ ) { presets.push_back( (*iter).first ); } if (presets.empty()) { QMessageBox::warning( NULL, "RigidRegistrationParameters.xml", "RigidRegistrationParameters.xml is empty/does not exist. There are no presets to select."); return; } presets.sort(); // ask about the name to load a preset QmitkLoadPresetDialog dialog( this, 0, "Load Preset", presets ); // needs a QWidget as parent int dialogReturnValue = dialog.exec(); if ( dialogReturnValue == QDialog::Rejected ) return; // user clicked cancel or pressed Esc or something similar this->DoLoadRigidRegistrationPreset(dialog.GetPresetName()); } void QmitkRigidRegistrationSelectorView::DoLoadRigidRegistrationPreset(std::string presetName) { itk::Array transformValues; transformValues = m_Preset->getTransformValues(presetName); m_Controls.m_TransformGroup->setChecked(true); m_Controls.m_TransformFrame->setVisible(true); m_Controls.m_TransformBox->setCurrentIndex((int)transformValues[0]); m_Controls.m_TransformWidgetStack->setCurrentIndex((int)transformValues[0]); this->TransformSelected((int)transformValues[0]); itk::Array transformValuesForGUI; transformValuesForGUI.SetSize(transformValues.Size()); transformValuesForGUI.fill(0); for (unsigned int i = 1; i < transformValues.Size(); i++) { transformValuesForGUI[i-1] = transformValues[i]; } dynamic_cast(m_Controls.m_TransformWidgetStack->currentWidget())->SetTransformParameters(transformValuesForGUI); itk::Array metricValues; metricValues = m_Preset->getMetricValues(presetName); m_Controls.m_MetricGroup->setChecked(true); m_Controls.m_MetricFrame->setVisible(true); m_Controls.m_MetricBox->setCurrentIndex((int)metricValues[0]); m_Controls.m_MetricWidgetStack->setCurrentIndex((int)metricValues[0]); this->MetricSelected((int)metricValues[0]); itk::Array metricValuesForGUI; metricValuesForGUI.SetSize(metricValues.Size()); metricValuesForGUI.fill(0); for (unsigned int i = 1; i < metricValues.Size(); i++) { metricValuesForGUI[i-1] = metricValues[i]; } dynamic_cast(m_Controls.m_MetricWidgetStack->currentWidget())->SetMetricParameters(metricValuesForGUI); itk::Array optimizerValues; optimizerValues = m_Preset->getOptimizerValues(presetName); m_Controls.m_OptimizerGroup->setChecked(true); m_Controls.m_OptimizerFrame->setVisible(true); m_Controls.m_OptimizerBox->setCurrentIndex((int)optimizerValues[0]); m_Controls.m_OptimizerWidgetStack->setCurrentIndex((int)optimizerValues[0]); this->OptimizerSelected((int)optimizerValues[0]); itk::Array optimizerValuesForGUI; optimizerValuesForGUI.SetSize(optimizerValues.Size()); optimizerValuesForGUI.fill(0); for (unsigned int i = 1; i < optimizerValues.Size(); i++) { optimizerValuesForGUI[i-1] = optimizerValues[i]; } dynamic_cast(m_Controls.m_OptimizerWidgetStack->currentWidget())->SetOptimizerParameters(optimizerValuesForGUI); itk::Array interpolatorValues; interpolatorValues = m_Preset->getInterpolatorValues(presetName); m_Controls.m_InterpolatorGroup->setChecked(true); m_Controls.m_InterpolatorFrame->setVisible(true); m_Controls.m_InterpolatorBox->setCurrentIndex((int)interpolatorValues[0]); } void QmitkRigidRegistrationSelectorView::SaveRigidRegistrationParameter() { this->DoSaveRigidRegistrationParameter(); } void QmitkRigidRegistrationSelectorView::DoSaveRigidRegistrationParameter() { bool ok; QString text = QInputDialog::getText(this, "Save Parameter Preset", "Enter name for preset:", QLineEdit::Normal, QString::null, &ok ); if ( ok ) { std::map > existingPresets; existingPresets = m_Preset->getTransformValuesPresets(); std::map >::iterator iter = existingPresets.find(std::string((const char*)text.toLatin1())); if (iter != existingPresets.end()) { QMessageBox::critical( this, "Preset definition", "Presetname already exists."); return; } if (text.isEmpty()) { QMessageBox::critical( this, "Preset definition", "Presetname has to be set.\n" "You have to enter a Presetname." ); return; } itk::Array transformValues; transformValues.SetSize(25); transformValues.fill(0); transformValues[0] = m_Controls.m_TransformBox->currentIndex(); itk::Array transformValuesFromGUI = dynamic_cast(m_Controls.m_TransformWidgetStack->currentWidget())->GetTransformParameters(); for (unsigned int i = 0; i < transformValuesFromGUI.Size(); i++) { transformValues[i+1] = transformValuesFromGUI[i]; } std::map > transformMap; transformMap = m_Preset->getTransformValuesPresets(); transformMap[std::string((const char*)text.toLatin1())] = transformValues; itk::Array metricValues; metricValues.SetSize(25); metricValues.fill(0); metricValues[0] = m_Controls.m_MetricBox->currentIndex(); itk::Array metricValuesFromGUI = dynamic_cast(m_Controls.m_MetricWidgetStack->currentWidget())->GetMetricParameters(); for (unsigned int i = 0; i < metricValuesFromGUI.Size(); i++) { metricValues[i+1] = metricValuesFromGUI[i]; } std::map > metricMap; metricMap = m_Preset->getMetricValuesPresets(); metricMap[std::string((const char*)text.toLatin1())] = metricValues; itk::Array optimizerValues; optimizerValues.SetSize(25); optimizerValues.fill(0); optimizerValues[0] = m_Controls.m_OptimizerBox->currentIndex(); itk::Array optimizerValuesFromGUI = dynamic_cast(m_Controls.m_OptimizerWidgetStack->currentWidget())->GetOptimizerParameters(); for (unsigned int i = 0; i < optimizerValuesFromGUI.Size(); i++) { optimizerValues[i+1] = optimizerValuesFromGUI[i]; } std::map > optimizerMap; optimizerMap = m_Preset->getOptimizerValuesPresets(); optimizerMap[std::string((const char*)text.toLatin1())] = optimizerValues; itk::Array interpolatorValues; interpolatorValues.SetSize(25); interpolatorValues.fill(0); interpolatorValues[0] = m_Controls.m_InterpolatorBox->currentIndex(); std::map > interpolatorMap; interpolatorMap = m_Preset->getInterpolatorValuesPresets(); interpolatorMap[std::string((const char*)text.toLatin1())] = interpolatorValues; m_Preset->newPresets(transformMap, metricMap, optimizerMap, interpolatorMap); } else { // user pressed Cancel } } void QmitkRigidRegistrationSelectorView::StopOptimization(bool stopOptimization) { m_StopOptimization = stopOptimization; } int QmitkRigidRegistrationSelectorView::GetSelectedTransform() { return m_Controls.m_TransformBox->currentIndex(); } void QmitkRigidRegistrationSelectorView::SetFixedMaskNode( mitk::DataNode * fixedMaskNode ) { m_FixedMaskNode = fixedMaskNode; this->TransformSelected(m_Controls.m_TransformBox->currentIndex()); } void QmitkRigidRegistrationSelectorView::SetMovingMaskNode( mitk::DataNode * movingMaskNode ) { m_MovingMaskNode = movingMaskNode; this->TransformSelected(m_Controls.m_TransformBox->currentIndex()); } void QmitkRigidRegistrationSelectorView::SetMovingNodeChildren(mitk::DataStorage::SetOfObjects::ConstPointer children) { m_MovingNodeChildren = children; } void QmitkRigidRegistrationSelectorView::AddTransform(QmitkRigidRegistrationTransformsGUIBase* transform) { m_Controls.m_TransformBox->addItem(transform->GetName()); int i = 0; if (!dynamic_cast(m_Controls.m_TransformWidgetStack->widget(i))) { m_Controls.m_TransformWidgetStack->addWidget(transform); m_Controls.m_TransformWidgetStack->removeWidget(m_Controls.m_TransformWidgetStack->widget(i)); transform->SetupUI(m_Controls.m_TransformWidgetStack->widget(i)); } else { i = m_Controls.m_TransformWidgetStack->addWidget(transform); transform->SetupUI(m_Controls.m_TransformWidgetStack->widget(i)); } } void QmitkRigidRegistrationSelectorView::AddMetric(QmitkRigidRegistrationMetricsGUIBase* metric) { m_Controls.m_MetricBox->addItem(metric->GetName()); int i = 0; if (!dynamic_cast(m_Controls.m_MetricWidgetStack->widget(i))) { m_Controls.m_MetricWidgetStack->addWidget(metric); m_Controls.m_MetricWidgetStack->removeWidget(m_Controls.m_MetricWidgetStack->widget(i)); metric->SetupUI(m_Controls.m_MetricWidgetStack->widget(i)); } else { i = m_Controls.m_MetricWidgetStack->addWidget(metric); metric->SetupUI(m_Controls.m_MetricWidgetStack->widget(i)); } } void QmitkRigidRegistrationSelectorView::AddOptimizer(QmitkRigidRegistrationOptimizerGUIBase* optimizer) { m_Controls.m_OptimizerBox->addItem(optimizer->GetName()); int i = 0; if (!dynamic_cast(m_Controls.m_OptimizerWidgetStack->widget(i))) { m_Controls.m_OptimizerWidgetStack->addWidget(optimizer); m_Controls.m_OptimizerWidgetStack->removeWidget(m_Controls.m_OptimizerWidgetStack->widget(i)); optimizer->SetupUI(m_Controls.m_OptimizerWidgetStack->widget(i)); } else { i = m_Controls.m_OptimizerWidgetStack->addWidget(optimizer); optimizer->SetupUI(m_Controls.m_OptimizerWidgetStack->widget(i)); } } diff --git a/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkRigidRegistrationSelectorView.h b/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkRigidRegistrationSelectorView.h index 90586362d8..955fc12807 100644 --- a/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkRigidRegistrationSelectorView.h +++ b/Plugins/org.mitk.gui.qt.registration/src/internal/QmitkRigidRegistrationSelectorView.h @@ -1,110 +1,110 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef QmitkRigidRegistrationSelectorViewWidgetHIncluded #define QmitkRigidRegistrationSelectorViewWidgetHIncluded #include "mitkDataNode.h" #include "mitkDataStorage.h" #include "ui_QmitkRigidRegistrationSelector.h" #include "qobject.h" #include #include "QmitkRigidRegistrationTransformsGUIBase.h" #include "QmitkRigidRegistrationMetricsGUIBase.h" #include "QmitkRigidRegistrationOptimizerGUIBase.h" /*! * \brief Widget for rigid registration * * Displays options for rigid registration. */ class REGISTRATION_EXPORT QmitkRigidRegistrationSelectorView : public QWidget { Q_OBJECT public: QmitkRigidRegistrationSelectorView( QWidget* parent = 0, Qt::WindowFlags f = 0 ); ~QmitkRigidRegistrationSelectorView(); signals: void TransformChanged(); void OptimizerChanged(double value); void AddNewTransformationToUndoList(); public slots: void SetFixedNode( mitk::DataNode * fixedNode ); void SetFixedMaskNode(mitk::DataNode * fixedMaskNode ); void SetFixedDimension( int dimension ); void SetMovingNode( mitk::DataNode * movingNode ); void SetMovingNodeChildren(mitk::DataStorage::SetOfObjects::ConstPointer children); void SetMovingMaskNode(mitk::DataNode * movingMaskNode ); void SetMovingDimension(int dimension ); int GetSelectedTransform(); void CalculateTransformation(unsigned int timestep = 0); void StopOptimization(bool stopOptimization); protected slots: // this is a callback function that retrieves the current transformation // parameters after every step of progress in the optimizer. // depending on the choosen transformation, we construct a vtktransform // that will be applied to the geometry of the moving image. // the values are delivered by mitkRigidRgistrationObserver.cpp void SetOptimizerValue( const itk::EventObject & ); /// this method is called whenever the combobox with the selectable transforms changes /// responsible for showing the selected transformparameters void TransformSelected( int transform ); /// this method is called whenever the combobox with the selectable metrics changes /// responsible for showing the selected metricparameters void MetricSelected( int metric ); /// this method is called whenever the combobox with the selectable optimizer changes /// responsible for showing the selected optimizerparameters void OptimizerSelected( int optimizer ); void LoadRigidRegistrationParameter(); void SaveRigidRegistrationParameter(); //void LoadRigidRegistrationTestParameter(); //void SaveRigidRegistrationTestParameter(); void DoLoadRigidRegistrationParameter(); void DoLoadRigidRegistrationPreset(std::string presetName); void DoSaveRigidRegistrationParameter(); void AddTransform(QmitkRigidRegistrationTransformsGUIBase* transform); void AddMetric(QmitkRigidRegistrationMetricsGUIBase* metric); void AddOptimizer(QmitkRigidRegistrationOptimizerGUIBase* optimizer); protected: Ui::QmitkRigidRegistrationSelector m_Controls; mitk::DataNode::Pointer m_FixedNode; mitk::DataNode::Pointer m_FixedMaskNode; mitk::DataNode::Pointer m_MovingNode; mitk::DataNode::Pointer m_MovingMaskNode; int m_FixedDimension; int m_MovingDimension; bool m_StopOptimization; mitk::RigidRegistrationPreset* m_Preset; mitk::Geometry3D::TransformType::Pointer m_GeometryItkPhysicalToWorldTransform; mitk::Geometry3D::TransformType::Pointer m_GeometryWorldToItkPhysicalTransform; mitk::Geometry3D* m_MovingGeometry; - mitk::AffineGeometryFrame3D::Pointer m_ImageGeometry; + mitk::Geometry3D::Pointer m_ImageGeometry; mitk::RigidRegistrationObserver::Pointer m_Observer; mitk::DataStorage::SetOfObjects::ConstPointer m_MovingNodeChildren; std::map m_ChildNodes; - std::map m_ChildNodes2; + std::map m_ChildNodes2; }; #endif