diff --git a/Modules/ImageStatistics/images/mitkimagestatisticshotspottestcase5.jpg b/Modules/ImageStatistics/images/mitkimagestatisticshotspottestcase5.jpg index 128e4d54bc..fd87113725 100644 Binary files a/Modules/ImageStatistics/images/mitkimagestatisticshotspottestcase5.jpg and b/Modules/ImageStatistics/images/mitkimagestatisticshotspottestcase5.jpg differ diff --git a/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp b/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp index 1b0139279a..2a5f0a9485 100644 --- a/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp +++ b/Modules/ImageStatistics/mitkImageStatisticsCalculator.cpp @@ -1,1928 +1,1930 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include "mitkImageStatisticsCalculator.h" #include "mitkImageAccessByItk.h" #include "mitkImageCast.h" #include "mitkExtractImageFilter.h" #include "mitkImageTimeSelector.h" #include "mitkITKImageImport.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define DEBUG_HOTSPOTSEARCH #define _USE_MATH_DEFINES #include #if ( ( VTK_MAJOR_VERSION <= 5 ) && ( VTK_MINOR_VERSION<=8) ) #include "mitkvtkLassoStencilSource.h" #else #include "vtkLassoStencilSource.h" #endif namespace mitk { ImageStatisticsCalculator::ImageStatisticsCalculator() : m_MaskingMode( MASKING_MODE_NONE ), m_MaskingModeChanged( false ), m_IgnorePixelValue(0.0), m_DoIgnorePixelValue(false), m_IgnorePixelValueChanged(false), m_PlanarFigureAxis (0), m_PlanarFigureSlice (0), m_PlanarFigureCoordinate0 (0), m_PlanarFigureCoordinate1 (0), m_HotspotRadiusInMM(6.2035049089940), // radius of a 1cm3 sphere in mm m_CalculateHotspot(false), m_HotspotRadiusInMMChanged(false), m_HotspotMustBeCompletelyInsideImage(true) { m_EmptyHistogram = HistogramType::New(); m_EmptyHistogram->SetMeasurementVectorSize(1); HistogramType::SizeType histogramSize(1); histogramSize.Fill( 256 ); m_EmptyHistogram->Initialize( histogramSize ); m_EmptyStatistics.Reset(); } ImageStatisticsCalculator::~ImageStatisticsCalculator() { } ImageStatisticsCalculator::Statistics::Statistics(bool withHotspotStatistics) : Label(0), N(0), Min(0.0), Max(0.0), Median(0.0), Mean(0.0), Sigma(0.0), RMS(0.0), MaxIndex(0), MinIndex(0), HotspotIndex(0), m_HotspotStatistics(withHotspotStatistics ? new Statistics(false) : NULL) { } ImageStatisticsCalculator::Statistics::Statistics(const Statistics& other) : Label(other.Label), N(other.N), Min(other.Min), Max(other.Max), Median(other.Median), Mean(other.Mean), Sigma(other.Sigma), RMS(other.RMS), MaxIndex(other.MaxIndex), MinIndex(other.MinIndex), HotspotIndex(other.HotspotIndex), m_HotspotStatistics(NULL) { if (other.m_HotspotStatistics) { this->m_HotspotStatistics = new Statistics(false); *this->m_HotspotStatistics = *other.m_HotspotStatistics; } } bool ImageStatisticsCalculator::Statistics::HasHotspotStatistics() const { return m_HotspotStatistics != NULL; } void ImageStatisticsCalculator::Statistics::SetHasHotspotStatistics(bool hasHotspotStatistics) { m_HasHotspotStatistics = hasHotspotStatistics; } ImageStatisticsCalculator::Statistics::~Statistics() { delete m_HotspotStatistics; } void ImageStatisticsCalculator::Statistics::Reset(unsigned int dimension) { Label = 0; N = 0; Min = 0.0; Max = 0.0; Median = 0.0; Mean = 0.0; Sigma = 0.0; RMS = 0.0; MaxIndex.set_size(dimension); MinIndex.set_size(dimension); HotspotIndex.set_size(dimension); for(int i = 0; i < dimension; ++i) { MaxIndex[i] = 0; MinIndex[i] = 0; HotspotIndex[i] = 0; } if (m_HotspotStatistics != NULL) { m_HotspotStatistics->Reset(); } } const ImageStatisticsCalculator::Statistics& ImageStatisticsCalculator::Statistics::GetHotspotStatistics() const { if (m_HotspotStatistics) { return *m_HotspotStatistics; } else { throw std::logic_error("Object has no hostspot statistics, see HasHotspotStatistics()"); } } ImageStatisticsCalculator::Statistics& ImageStatisticsCalculator::Statistics::GetHotspotStatistics() { if (m_HotspotStatistics) { return *m_HotspotStatistics; } else { throw std::logic_error("Object has no hostspot statistics, see HasHotspotStatistics()"); } } ImageStatisticsCalculator::Statistics& ImageStatisticsCalculator::Statistics::operator=(ImageStatisticsCalculator::Statistics const& other) { if (this == &other) return *this; this->Label = other.Label; this->N = other.N; this->Min = other.Min; this->Max = other.Max; this->Mean = other.Mean; this->Median = other.Median; this->Variance = other.Variance; this->Sigma = other.Sigma; this->RMS = other.RMS; this->MinIndex = other.MinIndex; this->MaxIndex = other.MaxIndex; this->HotspotIndex = other.HotspotIndex; delete this->m_HotspotStatistics; this->m_HotspotStatistics = NULL; if (other.m_HotspotStatistics) { this->m_HotspotStatistics = new Statistics(false); *this->m_HotspotStatistics = *other.m_HotspotStatistics; } return *this; } void ImageStatisticsCalculator::SetImage( const mitk::Image *image ) { if ( m_Image != image ) { m_Image = image; this->Modified(); unsigned int numberOfTimeSteps = image->GetTimeSteps(); // Initialize vectors to time-size of this image m_ImageHistogramVector.resize( numberOfTimeSteps ); m_MaskedImageHistogramVector.resize( numberOfTimeSteps ); m_PlanarFigureHistogramVector.resize( numberOfTimeSteps ); m_ImageStatisticsVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsVector.resize( numberOfTimeSteps ); m_ImageStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsTimeStampVector.resize( numberOfTimeSteps ); m_ImageStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); m_MaskedImageStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); m_PlanarFigureStatisticsCalculationTriggerVector.resize( numberOfTimeSteps ); for ( unsigned int t = 0; t < image->GetTimeSteps(); ++t ) { m_ImageStatisticsTimeStampVector[t].Modified(); m_ImageStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetImageMask( const mitk::Image *imageMask ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_Image->GetTimeSteps() != imageMask->GetTimeSteps() ) { itkExceptionMacro( << "Image and image mask need to have equal number of time steps!" ); } if ( m_ImageMask != imageMask ) { m_ImageMask = imageMask; this->Modified(); for ( unsigned int t = 0; t < m_Image->GetTimeSteps(); ++t ) { m_MaskedImageStatisticsTimeStampVector[t].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetPlanarFigure( mitk::PlanarFigure *planarFigure ) { if ( m_Image.IsNull() ) { itkExceptionMacro( << "Image needs to be set first!" ); } if ( m_PlanarFigure != planarFigure ) { m_PlanarFigure = planarFigure; this->Modified(); for ( unsigned int t = 0; t < m_Image->GetTimeSteps(); ++t ) { m_PlanarFigureStatisticsTimeStampVector[t].Modified(); m_PlanarFigureStatisticsCalculationTriggerVector[t] = true; } } } void ImageStatisticsCalculator::SetMaskingMode( unsigned int mode ) { if ( m_MaskingMode != mode ) { m_MaskingMode = mode; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToNone() { if ( m_MaskingMode != MASKING_MODE_NONE ) { m_MaskingMode = MASKING_MODE_NONE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToImage() { if ( m_MaskingMode != MASKING_MODE_IMAGE ) { m_MaskingMode = MASKING_MODE_IMAGE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetMaskingModeToPlanarFigure() { if ( m_MaskingMode != MASKING_MODE_PLANARFIGURE ) { m_MaskingMode = MASKING_MODE_PLANARFIGURE; m_MaskingModeChanged = true; this->Modified(); } } void ImageStatisticsCalculator::SetIgnorePixelValue(double value) { if ( m_IgnorePixelValue != value ) { m_IgnorePixelValue = value; if(m_DoIgnorePixelValue) { m_IgnorePixelValueChanged = true; } this->Modified(); } } double ImageStatisticsCalculator::GetIgnorePixelValue() { return m_IgnorePixelValue; } void ImageStatisticsCalculator::SetDoIgnorePixelValue(bool value) { if ( m_DoIgnorePixelValue != value ) { m_DoIgnorePixelValue = value; m_IgnorePixelValueChanged = true; this->Modified(); } } bool ImageStatisticsCalculator::GetDoIgnorePixelValue() { return m_DoIgnorePixelValue; } void ImageStatisticsCalculator::SetHotspotRadiusInMM(double value) { if ( m_HotspotRadiusInMM != value ) { m_HotspotRadiusInMM = value; if(m_CalculateHotspot) { m_HotspotRadiusInMMChanged = true; MITK_INFO <<"Hotspot radius changed, new convolution required"; } this->Modified(); } } double ImageStatisticsCalculator::GetHotspotRadiusInMM() { return m_HotspotRadiusInMM; } void ImageStatisticsCalculator::SetCalculateHotspot(bool on) { if ( m_CalculateHotspot != on ) { m_CalculateHotspot = on; m_HotspotRadiusInMMChanged = true; MITK_INFO <<"Hotspot calculation changed, new convolution required"; this->Modified(); } } bool ImageStatisticsCalculator::IsHotspotCalculated() { return m_CalculateHotspot; } void ImageStatisticsCalculator::SetHotspotMustBeCompletlyInsideImage(bool hotspotMustBeCompletelyInsideImage) { m_HotspotMustBeCompletelyInsideImage = hotspotMustBeCompletelyInsideImage; } bool ImageStatisticsCalculator::GetHotspotMustBeCompletlyInsideImage() const { return m_HotspotMustBeCompletelyInsideImage; } bool ImageStatisticsCalculator::ComputeStatistics( unsigned int timeStep ) { if (m_Image.IsNull() ) { mitkThrow() << "Image not set!"; } if (!m_Image->IsInitialized()) { mitkThrow() << "Image not initialized!"; } if ( m_Image->GetReferenceCount() == 1 ) { // Image no longer valid; we are the only ones to still hold a reference on it return false; } if ( timeStep >= m_Image->GetTimeSteps() ) { throw std::runtime_error( "Error: invalid time step!" ); } // If a mask was set but we are the only ones to still hold a reference on // it, delete it. if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() == 1) ) { m_ImageMask = NULL; } // Check if statistics is already up-to-date unsigned long imageMTime = m_ImageStatisticsTimeStampVector[timeStep].GetMTime(); unsigned long maskedImageMTime = m_MaskedImageStatisticsTimeStampVector[timeStep].GetMTime(); unsigned long planarFigureMTime = m_PlanarFigureStatisticsTimeStampVector[timeStep].GetMTime(); bool imageStatisticsCalculationTrigger = m_ImageStatisticsCalculationTriggerVector[timeStep]; bool maskedImageStatisticsCalculationTrigger = m_MaskedImageStatisticsCalculationTriggerVector[timeStep]; bool planarFigureStatisticsCalculationTrigger = m_PlanarFigureStatisticsCalculationTriggerVector[timeStep]; if ( !m_IgnorePixelValueChanged && !m_HotspotRadiusInMMChanged && ((m_MaskingMode != MASKING_MODE_NONE) || (imageMTime > m_Image->GetMTime() && !imageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_IMAGE) || (maskedImageMTime > m_ImageMask->GetMTime() && !maskedImageStatisticsCalculationTrigger)) && ((m_MaskingMode != MASKING_MODE_PLANARFIGURE) || (planarFigureMTime > m_PlanarFigure->GetMTime() && !planarFigureStatisticsCalculationTrigger)) ) { // Statistics is up to date! if ( m_MaskingModeChanged ) { m_MaskingModeChanged = false; } else { return false; } } // Reset state changed flag m_MaskingModeChanged = false; m_IgnorePixelValueChanged = false; // Depending on masking mode, extract and/or generate the required image // and mask data from the user input this->ExtractImageAndMask( timeStep ); StatisticsContainer *statisticsContainer; HistogramContainer *histogramContainer; switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: if(!m_DoIgnorePixelValue) { statisticsContainer = &m_ImageStatisticsVector[timeStep]; histogramContainer = &m_ImageHistogramVector[timeStep]; m_ImageStatisticsTimeStampVector[timeStep].Modified(); m_ImageStatisticsCalculationTriggerVector[timeStep] = false; } else { statisticsContainer = &m_MaskedImageStatisticsVector[timeStep]; histogramContainer = &m_MaskedImageHistogramVector[timeStep]; m_MaskedImageStatisticsTimeStampVector[timeStep].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[timeStep] = false; } break; case MASKING_MODE_IMAGE: statisticsContainer = &m_MaskedImageStatisticsVector[timeStep]; histogramContainer = &m_MaskedImageHistogramVector[timeStep]; m_MaskedImageStatisticsTimeStampVector[timeStep].Modified(); m_MaskedImageStatisticsCalculationTriggerVector[timeStep] = false; break; case MASKING_MODE_PLANARFIGURE: statisticsContainer = &m_PlanarFigureStatisticsVector[timeStep]; histogramContainer = &m_PlanarFigureHistogramVector[timeStep]; m_PlanarFigureStatisticsTimeStampVector[timeStep].Modified(); m_PlanarFigureStatisticsCalculationTriggerVector[timeStep] = false; break; } // Calculate statistics and histogram(s) if ( m_InternalImage->GetDimension() == 3 ) { if ( m_MaskingMode == MASKING_MODE_NONE && !m_DoIgnorePixelValue ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 3, statisticsContainer, histogramContainer ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 3, m_InternalImageMask3D.GetPointer(), statisticsContainer, histogramContainer ); } } else if ( m_InternalImage->GetDimension() == 2 ) { if ( m_MaskingMode == MASKING_MODE_NONE && !m_DoIgnorePixelValue ) { AccessFixedDimensionByItk_2( m_InternalImage, InternalCalculateStatisticsUnmasked, 2, statisticsContainer, histogramContainer ); } else { AccessFixedDimensionByItk_3( m_InternalImage, InternalCalculateStatisticsMasked, 2, m_InternalImageMask2D.GetPointer(), statisticsContainer, histogramContainer ); } } else { MITK_ERROR << "ImageStatistics: Image dimension not supported!"; } // Release unused image smart pointers to free memory m_InternalImage = mitk::Image::ConstPointer(); m_InternalImageMask3D = MaskImage3DType::Pointer(); m_InternalImageMask2D = MaskImage2DType::Pointer(); return true; } const ImageStatisticsCalculator::HistogramType * ImageStatisticsCalculator::GetHistogram( unsigned int timeStep, unsigned int label ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return NULL; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageHistogramVector[timeStep][label]; return m_ImageHistogramVector[timeStep][label]; } case MASKING_MODE_IMAGE: return m_MaskedImageHistogramVector[timeStep][label]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogramVector[timeStep][label]; } } const ImageStatisticsCalculator::HistogramContainer & ImageStatisticsCalculator::GetHistogramVector( unsigned int timeStep ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyHistogramContainer; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageHistogramVector[timeStep]; return m_ImageHistogramVector[timeStep]; } case MASKING_MODE_IMAGE: return m_MaskedImageHistogramVector[timeStep]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureHistogramVector[timeStep]; } } const ImageStatisticsCalculator::Statistics & ImageStatisticsCalculator::GetStatistics( unsigned int timeStep, unsigned int label ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyStatistics; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageStatisticsVector[timeStep][label]; return m_ImageStatisticsVector[timeStep][label]; } case MASKING_MODE_IMAGE: return m_MaskedImageStatisticsVector[timeStep][label]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatisticsVector[timeStep][label]; } } const ImageStatisticsCalculator::StatisticsContainer & ImageStatisticsCalculator::GetStatisticsVector( unsigned int timeStep ) const { if ( m_Image.IsNull() || (timeStep >= m_Image->GetTimeSteps()) ) { return m_EmptyStatisticsContainer; } switch ( m_MaskingMode ) { case MASKING_MODE_NONE: default: { if(m_DoIgnorePixelValue) return m_MaskedImageStatisticsVector[timeStep]; return m_ImageStatisticsVector[timeStep]; } case MASKING_MODE_IMAGE: return m_MaskedImageStatisticsVector[timeStep]; case MASKING_MODE_PLANARFIGURE: return m_PlanarFigureStatisticsVector[timeStep]; } } void ImageStatisticsCalculator::ExtractImageAndMask( unsigned int timeStep ) { if ( m_Image.IsNull() ) { throw std::runtime_error( "Error: image empty!" ); } if ( timeStep >= m_Image->GetTimeSteps() ) { throw std::runtime_error( "Error: invalid time step!" ); } ImageTimeSelector::Pointer imageTimeSelector = ImageTimeSelector::New(); imageTimeSelector->SetInput( m_Image ); imageTimeSelector->SetTimeNr( timeStep ); imageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceImage = imageTimeSelector->GetOutput(); switch ( m_MaskingMode ) { case MASKING_MODE_NONE: { m_InternalImage = timeSliceImage; m_InternalImageMask2D = NULL; m_InternalImageMask3D = NULL; if(m_DoIgnorePixelValue) { if( m_InternalImage->GetDimension() == 3 ) { CastToItkImage( timeSliceImage, m_InternalImageMask3D ); m_InternalImageMask3D->FillBuffer(1); } if( m_InternalImage->GetDimension() == 2 ) { CastToItkImage( timeSliceImage, m_InternalImageMask2D ); m_InternalImageMask2D->FillBuffer(1); } } break; } case MASKING_MODE_IMAGE: { if ( m_ImageMask.IsNotNull() && (m_ImageMask->GetReferenceCount() > 1) ) { if ( timeStep < m_ImageMask->GetTimeSteps() ) { ImageTimeSelector::Pointer maskedImageTimeSelector = ImageTimeSelector::New(); maskedImageTimeSelector->SetInput( m_ImageMask ); maskedImageTimeSelector->SetTimeNr( timeStep ); maskedImageTimeSelector->UpdateLargestPossibleRegion(); mitk::Image *timeSliceMaskedImage = maskedImageTimeSelector->GetOutput(); m_InternalImage = timeSliceImage; CastToItkImage( timeSliceMaskedImage, m_InternalImageMask3D ); } else { throw std::runtime_error( "Error: image mask has not enough time steps!" ); } } else { throw std::runtime_error( "Error: image mask empty!" ); } break; } case MASKING_MODE_PLANARFIGURE: { m_InternalImageMask2D = NULL; if ( m_PlanarFigure.IsNull() ) { throw std::runtime_error( "Error: planar figure empty!" ); } if ( !m_PlanarFigure->IsClosed() ) { throw std::runtime_error( "Masking not possible for non-closed figures" ); } const Geometry3D *imageGeometry = timeSliceImage->GetGeometry(); if ( imageGeometry == NULL ) { throw std::runtime_error( "Image geometry invalid!" ); } const Geometry2D *planarFigureGeometry2D = m_PlanarFigure->GetGeometry2D(); if ( planarFigureGeometry2D == NULL ) { throw std::runtime_error( "Planar-Figure not yet initialized!" ); } const PlaneGeometry *planarFigureGeometry = dynamic_cast< const PlaneGeometry * >( planarFigureGeometry2D ); if ( planarFigureGeometry == NULL ) { throw std::runtime_error( "Non-planar planar figures not supported!" ); } // Find principal direction of PlanarFigure in input image unsigned int axis; if ( !this->GetPrincipalAxis( imageGeometry, planarFigureGeometry->GetNormal(), axis ) ) { throw std::runtime_error( "Non-aligned planar figures not supported!" ); } m_PlanarFigureAxis = axis; // Find slice number corresponding to PlanarFigure in input image MaskImage3DType::IndexType index; imageGeometry->WorldToIndex( planarFigureGeometry->GetOrigin(), index ); unsigned int slice = index[axis]; m_PlanarFigureSlice = slice; // Extract slice with given position and direction from image unsigned int dimension = timeSliceImage->GetDimension(); if (dimension != 2) { ExtractImageFilter::Pointer imageExtractor = ExtractImageFilter::New(); imageExtractor->SetInput( timeSliceImage ); imageExtractor->SetSliceDimension( axis ); imageExtractor->SetSliceIndex( slice ); imageExtractor->Update(); m_InternalImage = imageExtractor->GetOutput(); } else { m_InternalImage = timeSliceImage; } // Compute mask from PlanarFigure AccessFixedDimensionByItk_1( m_InternalImage, InternalCalculateMaskFromPlanarFigure, 2, axis ); } } if(m_DoIgnorePixelValue) { if ( m_InternalImage->GetDimension() == 3 ) { AccessFixedDimensionByItk_1( m_InternalImage, InternalMaskIgnoredPixels, 3, m_InternalImageMask3D.GetPointer() ); } else if ( m_InternalImage->GetDimension() == 2 ) { AccessFixedDimensionByItk_1( m_InternalImage, InternalMaskIgnoredPixels, 2, m_InternalImageMask2D.GetPointer() ); } } MITK_DEBUG << "Update of convolution image required?\n m_CalculateHotspot: " << m_CalculateHotspot << "\n m_HotspotSearchConvolutionImage: " << (void*) m_HotspotSearchConvolutionImage.GetPointer() << "\n m_ImageStatisticsCalculationTriggerVector["<GetMTime() << "\n ImageStatistics::MTime: " << this->GetMTime() << "\n m_Image->GetMTime(): " << m_Image->GetMTime(); if( m_CalculateHotspot && ( m_HotspotSearchConvolutionImage.IsNull() || m_Image->GetMTime() > this->GetMTime() || m_HotspotRadiusInMMChanged == true ) ) { MITK_DEBUG <<" --> Update required."; if ( m_InternalImage->GetDimension() == 3 ) { AccessFixedDimensionByItk( m_InternalImage, InternalUpdateConvolutionImage, 3 ); } else if ( m_InternalImage->GetDimension() == 2 ) { AccessFixedDimensionByItk( m_InternalImage, InternalUpdateConvolutionImage, 2 ); } } else { MITK_DEBUG <<" --> Update required."; } } bool ImageStatisticsCalculator::GetPrincipalAxis( const Geometry3D *geometry, Vector3D vector, unsigned int &axis ) { vector.Normalize(); for ( unsigned int i = 0; i < 3; ++i ) { Vector3D axisVector = geometry->GetAxisVector( i ); axisVector.Normalize(); if ( fabs( fabs( axisVector * vector ) - 1.0) < mitk::eps ) { axis = i; return true; } } return false; } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateStatisticsUnmasked( const itk::Image< TPixel, VImageDimension > *image, StatisticsContainer *statisticsContainer, HistogramContainer* histogramContainer ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef typename ImageType::IndexType IndexType; typedef itk::Statistics::ScalarImageToHistogramGenerator< ImageType > HistogramGeneratorType; statisticsContainer->clear(); histogramContainer->clear(); // Progress listening... typedef itk::SimpleMemberCommand< ImageStatisticsCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &ImageStatisticsCalculator::UnmaskedStatisticsProgressUpdate ); // Issue 100 artificial progress events since ScalarIMageToHistogramGenerator // does not (yet?) support progress reporting this->InvokeEvent( itk::StartEvent() ); for ( unsigned int i = 0; i < 100; ++i ) { this->UnmaskedStatisticsProgressUpdate(); } // Calculate statistics (separate filter) typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( image ); unsigned long observerTag = statisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); statisticsFilter->Update(); statisticsFilter->RemoveObserver( observerTag ); this->InvokeEvent( itk::EndEvent() ); // Calculate minimum and maximum typedef itk::MinimumMaximumImageCalculator< ImageType > MinMaxFilterType; typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New(); minMaxFilter->SetImage( image ); unsigned long observerTag2 = minMaxFilter->AddObserver( itk::ProgressEvent(), progressListener ); minMaxFilter->Compute(); minMaxFilter->RemoveObserver( observerTag2 ); this->InvokeEvent( itk::EndEvent() ); Statistics statistics; statistics.Reset(); statistics.SetLabel(1); statistics.SetN(image->GetBufferedRegion().GetNumberOfPixels()); statistics.SetMin(statisticsFilter->GetMinimum()); statistics.SetMax(statisticsFilter->GetMaximum()); statistics.SetMean(statisticsFilter->GetMean()); statistics.SetMedian(0.0); statistics.SetSigma(statisticsFilter->GetSigma()); statistics.SetRMS(sqrt( statistics.GetMean() * statistics.GetMean() + statistics.GetSigma() * statistics.GetSigma() )); statistics.GetMinIndex().set_size(image->GetImageDimension()); statistics.GetMaxIndex().set_size(image->GetImageDimension()); vnl_vector tmpMaxIndex; vnl_vector tmpMinIndex; tmpMaxIndex.set_size(image->GetImageDimension() ); tmpMinIndex.set_size(image->GetImageDimension() ); for (unsigned int i=0; iGetIndexOfMaximum()[i]; tmpMinIndex[i] = minMaxFilter->GetIndexOfMinimum()[i]; } statistics.SetMinIndex(tmpMaxIndex); statistics.SetMinIndex(tmpMinIndex); if( IsHotspotCalculated() && VImageDimension == 3 ) { typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typename MaskImageType::Pointer nullMask; bool isHotspotDefined(false); Statistics hotspotStatistics = this->CalculateHotspotStatistics(image, nullMask.GetPointer(), m_HotspotRadiusInMM, isHotspotDefined, NULL); if (isHotspotDefined) { statistics.SetHasHotspotStatistics(true); statistics.GetHotspotStatistics() = hotspotStatistics; } else { statistics.SetHasHotspotStatistics(false); } if(statistics.GetHotspotStatistics().HasHotspotStatistics() ) { MITK_DEBUG << "Hotspot statistics available"; statistics.SetHotspotIndex(hotspotStatistics.GetHotspotIndex()); } else { MITK_ERROR << "No hotspot statistics available!"; } } statisticsContainer->push_back( statistics ); // Calculate histogram typename HistogramGeneratorType::Pointer histogramGenerator = HistogramGeneratorType::New(); histogramGenerator->SetInput( image ); histogramGenerator->SetMarginalScale( 100 ); histogramGenerator->SetNumberOfBins( 768 ); histogramGenerator->SetHistogramMin( statistics.GetMin() ); histogramGenerator->SetHistogramMax( statistics.GetMax() ); histogramGenerator->Compute(); histogramContainer->push_back( histogramGenerator->GetOutput() ); } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalMaskIgnoredPixels( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; itk::ImageRegionIterator itmask(maskImage, maskImage->GetLargestPossibleRegion()); itk::ImageRegionConstIterator itimage(image, image->GetLargestPossibleRegion()); itmask.GoToBegin(); itimage.GoToBegin(); while( !itmask.IsAtEnd() ) { if(m_IgnorePixelValue == itimage.Get()) { itmask.Set(0); } ++itmask; ++itimage; } } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateStatisticsMasked( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage, StatisticsContainer* statisticsContainer, HistogramContainer* histogramContainer ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef typename ImageType::IndexType IndexType; typedef typename ImageType::PointType PointType; typedef typename ImageType::SpacingType SpacingType; typedef itk::LabelStatisticsImageFilter< ImageType, MaskImageType > LabelStatisticsFilterType; typedef itk::ChangeInformationImageFilter< MaskImageType > ChangeInformationFilterType; typedef itk::ExtractImageFilter< ImageType, ImageType > ExtractImageFilterType; statisticsContainer->clear(); histogramContainer->clear(); // Make sure that mask is set if ( maskImage == NULL ) { itkExceptionMacro( << "Mask image needs to be set!" ); } // Make sure that spacing of mask and image are the same SpacingType imageSpacing = image->GetSpacing(); SpacingType maskSpacing = maskImage->GetSpacing(); PointType zeroPoint; zeroPoint.Fill( 0.0 ); if ( (zeroPoint + imageSpacing).SquaredEuclideanDistanceTo( (zeroPoint + maskSpacing) ) > mitk::eps ) { itkExceptionMacro( << "Mask needs to have same spacing as image! (Image spacing: " << imageSpacing << "; Mask spacing: " << maskSpacing << ")" ); } // Make sure that orientation of mask and image are the same typedef typename ImageType::DirectionType DirectionType; DirectionType imageDirection = image->GetDirection(); DirectionType maskDirection = maskImage->GetDirection(); for( int i = 0; i < imageDirection.ColumnDimensions; ++i ) { for( int j = 0; j < imageDirection.ColumnDimensions; ++j ) { double differenceDirection = imageDirection[i][j] - maskDirection[i][j]; if ( fabs( differenceDirection ) > mitk::eps ) { itkExceptionMacro( << "Mask needs to have same direction as image! (Image direction: " << imageDirection << "; Mask direction: " << maskDirection << ")" ); } } } // Make sure that the voxels of mask and image are correctly "aligned", i.e., voxel boundaries are the same in both images PointType imageOrigin = image->GetOrigin(); PointType maskOrigin = maskImage->GetOrigin(); long offset[ImageType::ImageDimension]; typedef itk::ContinuousIndex ContinousIndexType; ContinousIndexType maskOriginContinousIndex, imageOriginContinousIndex; image->TransformPhysicalPointToContinuousIndex(maskOrigin, maskOriginContinousIndex); image->TransformPhysicalPointToContinuousIndex(imageOrigin, imageOriginContinousIndex); for ( unsigned int i = 0; i < ImageType::ImageDimension; ++i ) { double misalignment = maskOriginContinousIndex[i] - floor( maskOriginContinousIndex[i] + 0.5 ); if ( fabs( misalignment ) > mitk::eps ) { itkExceptionMacro( << "Pixels/voxels of mask and image are not sufficiently aligned! (Misalignment: " << misalignment << ")" ); } double indexCoordDistance = maskOriginContinousIndex[i] - imageOriginContinousIndex[i]; offset[i] = (int) indexCoordDistance + image->GetBufferedRegion().GetIndex()[i]; } // Adapt the origin and region (index/size) of the mask so that the origin of both are the same typename ChangeInformationFilterType::Pointer adaptMaskFilter; adaptMaskFilter = ChangeInformationFilterType::New(); adaptMaskFilter->ChangeOriginOn(); adaptMaskFilter->ChangeRegionOn(); adaptMaskFilter->SetInput( maskImage ); adaptMaskFilter->SetOutputOrigin( image->GetOrigin() ); adaptMaskFilter->SetOutputOffset( offset ); adaptMaskFilter->Update(); typename MaskImageType::Pointer adaptedMaskImage = adaptMaskFilter->GetOutput(); // Make sure that mask region is contained within image region if ( !image->GetLargestPossibleRegion().IsInside( adaptedMaskImage->GetLargestPossibleRegion() ) ) { itkExceptionMacro( << "Mask region needs to be inside of image region! (Image region: " << image->GetLargestPossibleRegion() << "; Mask region: " << adaptedMaskImage->GetLargestPossibleRegion() << ")" ); } // If mask region is smaller than image region, extract the sub-sampled region from the original image typename ImageType::SizeType imageSize = image->GetBufferedRegion().GetSize(); typename ImageType::SizeType maskSize = maskImage->GetBufferedRegion().GetSize(); bool maskSmallerImage = false; for ( unsigned int i = 0; i < ImageType::ImageDimension; ++i ) { if ( maskSize[i] < imageSize[i] ) { maskSmallerImage = true; } } typename ImageType::ConstPointer adaptedImage; if ( maskSmallerImage ) { typename ExtractImageFilterType::Pointer extractImageFilter = ExtractImageFilterType::New(); extractImageFilter->SetInput( image ); extractImageFilter->SetExtractionRegion( adaptedMaskImage->GetBufferedRegion() ); extractImageFilter->Update(); adaptedImage = extractImageFilter->GetOutput(); } else { adaptedImage = image; } // Initialize Filter typedef itk::StatisticsImageFilter< ImageType > StatisticsFilterType; typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New(); statisticsFilter->SetInput( adaptedImage ); statisticsFilter->Update(); int numberOfBins = ( m_DoIgnorePixelValue && (m_MaskingMode == MASKING_MODE_NONE) ) ? 768 : 384; typename LabelStatisticsFilterType::Pointer labelStatisticsFilter; labelStatisticsFilter = LabelStatisticsFilterType::New(); labelStatisticsFilter->SetInput( adaptedImage ); labelStatisticsFilter->SetLabelInput( adaptedMaskImage ); labelStatisticsFilter->UseHistogramsOn(); labelStatisticsFilter->SetHistogramParameters( numberOfBins, statisticsFilter->GetMinimum(), statisticsFilter->GetMaximum() ); // Add progress listening typedef itk::SimpleMemberCommand< ImageStatisticsCalculator > ITKCommandType; ITKCommandType::Pointer progressListener; progressListener = ITKCommandType::New(); progressListener->SetCallbackFunction( this, &ImageStatisticsCalculator::MaskedStatisticsProgressUpdate ); unsigned long observerTag = labelStatisticsFilter->AddObserver( itk::ProgressEvent(), progressListener ); // Execute filter this->InvokeEvent( itk::StartEvent() ); // Make sure that only the mask region is considered (otherwise, if the mask region is smaller // than the image region, the Update() would result in an exception). labelStatisticsFilter->GetOutput()->SetRequestedRegion( adaptedMaskImage->GetLargestPossibleRegion() ); // Execute the filter labelStatisticsFilter->Update(); this->InvokeEvent( itk::EndEvent() ); labelStatisticsFilter->RemoveObserver( observerTag ); // Find all relevant labels of mask (other than 0) std::list< int > relevantLabels; bool maskNonEmpty = false; unsigned int i; for ( i = 1; i < 4096; ++i ) { if ( labelStatisticsFilter->HasLabel( i ) ) { relevantLabels.push_back( i ); maskNonEmpty = true; } } if ( maskNonEmpty ) { std::list< int >::iterator it; for ( it = relevantLabels.begin(), i = 0; it != relevantLabels.end(); ++it, ++i ) { Statistics statistics; // restore previous code histogramContainer->push_back( HistogramType::ConstPointer( labelStatisticsFilter->GetHistogram( (*it) ) ) ); statistics.SetLabel (*it); statistics.SetN(labelStatisticsFilter->GetCount( *it )); statistics.SetMin(labelStatisticsFilter->GetMinimum( *it )); statistics.SetMax(labelStatisticsFilter->GetMaximum( *it )); statistics.SetMean(labelStatisticsFilter->GetMean( *it )); statistics.SetMedian(labelStatisticsFilter->GetMedian( *it )); statistics.SetSigma(labelStatisticsFilter->GetSigma( *it )); statistics.SetRMS(sqrt( statistics.GetMean() * statistics.GetMean() + statistics.GetSigma() * statistics.GetSigma() )); // restrict image to mask area for min/max index calculation typedef itk::MaskImageFilter< ImageType, MaskImageType, ImageType > MaskImageFilterType; typename MaskImageFilterType::Pointer masker = MaskImageFilterType::New(); masker->SetOutsideValue( (statistics.GetMin()+statistics.GetMax())/2 ); masker->SetInput1(adaptedImage); masker->SetInput2(adaptedMaskImage); masker->Update(); // get index of minimum and maximum typedef itk::MinimumMaximumImageCalculator< ImageType > MinMaxFilterType; typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New(); minMaxFilter->SetImage( masker->GetOutput() ); unsigned long observerTag2 = minMaxFilter->AddObserver( itk::ProgressEvent(), progressListener ); minMaxFilter->Compute(); minMaxFilter->RemoveObserver( observerTag2 ); this->InvokeEvent( itk::EndEvent() ); typename MinMaxFilterType::IndexType tempMaxIndex = minMaxFilter->GetIndexOfMaximum(); typename MinMaxFilterType::IndexType tempMinIndex = minMaxFilter->GetIndexOfMinimum(); // FIX BUG 14644 //If a PlanarFigure is used for segmentation the //adaptedImage is a single slice (2D). Adding the // 3. dimension. vnl_vector maxIndex; vnl_vector minIndex; maxIndex.set_size(m_Image->GetDimension()); minIndex.set_size(m_Image->GetDimension()); if (m_MaskingMode == MASKING_MODE_PLANARFIGURE && m_Image->GetDimension()==3) { maxIndex[m_PlanarFigureCoordinate0] = tempMaxIndex[0]; maxIndex[m_PlanarFigureCoordinate1] = tempMaxIndex[1]; maxIndex[m_PlanarFigureAxis] = m_PlanarFigureSlice; minIndex[m_PlanarFigureCoordinate0] = tempMinIndex[0] ; minIndex[m_PlanarFigureCoordinate1] = tempMinIndex[1]; minIndex[m_PlanarFigureAxis] = m_PlanarFigureSlice; } else { for (unsigned int i = 0; ipush_back( statistics ); } } else { histogramContainer->push_back( HistogramType::ConstPointer( m_EmptyHistogram ) ); statisticsContainer->push_back( Statistics() ); } } template ImageStatisticsCalculator::ImageExtrema ImageStatisticsCalculator::CalculateExtremaWorld( const itk::Image *inputImage, itk::Image *maskImage, double neccessaryDistanceToImageBorderInMM, unsigned int label) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typedef itk::ImageRegionConstIteratorWithIndex MaskImageIteratorType; typedef itk::ImageRegionConstIteratorWithIndex InputImageIndexIteratorType; ImageType::SpacingType spacing = inputImage->GetSpacing(); ImageExtrema minMax; minMax.Defined = false; minMax.MaxIndex.set_size(VImageDimension); minMax.MaxIndex.set_size(VImageDimension); ImageType::RegionType allowedExtremaRegion = inputImage->GetLargestPossibleRegion(); bool keepDistanceToImageBorders( neccessaryDistanceToImageBorderInMM > 0 ); if (keepDistanceToImageBorders) { long distanceInPixels[VImageDimension]; for(int dimension = 0; dimension < VImageDimension; ++dimension) { - // We add 0.5 because voxels are center-based: for example with a radius of 2.2 and a spacing of 1 two indices are enough - // because 2.2 / 1 + 0.5 = 2.7 => 2. But with a radius of 2.7 we need 3 indices because 2.7 / 1 + 0.5 = 3.2 => 3 + // To confirm that the whole hotspot is inside the image we have to keep a specific distance to the image-borders, which is as long as + // the radius. To get the amount of indices we divide the radius by spacing and add 0.5 because voxels are center based: + // For example with a radius of 2.2 and a spacing of 1 two indices are enough because 2.2 / 1 + 0.5 = 2.7 => 2. + // But with a radius of 2.7 we need 3 indices because 2.7 / 1 + 0.5 = 3.2 => 3 distanceInPixels[dimension] = int( neccessaryDistanceToImageBorderInMM / spacing[dimension] + 0.5); } allowedExtremaRegion.ShrinkByRadius(distanceInPixels); } InputImageIndexIteratorType imageIndexIt(inputImage, allowedExtremaRegion); float maxValue = itk::NumericTraits::min(); float minValue = itk::NumericTraits::max(); typename ImageType::IndexType maxIndex; typename ImageType::IndexType minIndex; for(int i = 0; i < VImageDimension; ++i) { maxIndex[i] = 0; minIndex[i] = 0; } if (maskImage != NULL) { MaskImageIteratorType maskIt(maskImage, allowedExtremaRegion); typename ImageType::IndexType imageIndex; typename ImageType::PointType worldPosition; typename ImageType::IndexType maskIndex; for(imageIndexIt.GoToBegin(); !imageIndexIt.IsAtEnd(); ++imageIndexIt) { imageIndex = imageIndexIt.GetIndex(); inputImage->TransformIndexToPhysicalPoint(imageIndex, worldPosition); maskImage->TransformPhysicalPointToIndex(worldPosition, maskIndex); maskIt.SetIndex( maskIndex ); if(maskIt.Get() == label) { double value = imageIndexIt.Get(); minMax.Defined = true; //Calculate minimum, maximum and corresponding index-values if( value > maxValue ) { maxIndex = imageIndexIt.GetIndex(); maxValue = value; } if(value < minValue ) { minIndex = imageIndexIt.GetIndex(); minValue = value; } } } } else { for(imageIndexIt.GoToBegin(); !imageIndexIt.IsAtEnd(); ++imageIndexIt) { double value = imageIndexIt.Get(); minMax.Defined = true; //Calculate minimum, maximum and corresponding index-values if( value > maxValue ) { maxIndex = imageIndexIt.GetIndex(); maxValue = value; } if(value < minValue ) { minIndex = imageIndexIt.GetIndex(); minValue = value; } } } minMax.MaxIndex.set_size(VImageDimension); minMax.MinIndex.set_size(VImageDimension); for(unsigned int i = 0; i < minMax.MaxIndex.size(); ++i) { minMax.MaxIndex[i] = maxIndex[i]; } for(unsigned int i = 0; i < minMax.MinIndex.size(); ++i) { minMax.MinIndex[i] = minIndex[i]; } minMax.Max = maxValue; minMax.Min = minValue; return minMax; } template itk::Size ImageStatisticsCalculator ::CalculateConvolutionKernelSize(double spacing[VImageDimension], double radiusInMM) { typedef itk::Image< float, VImageDimension > KernelImageType; typedef typename KernelImageType::SizeType SizeType; SizeType maskSize; for(unsigned int i = 0; i < VImageDimension; ++i) { maskSize[i] = ::ceil( 2.0 * radiusInMM / spacing[i] ); // We always want an uneven size to have a clear center point in the convolution mask if(maskSize[i] % 2 == 0 ) { ++maskSize[i]; } } return maskSize; } template itk::SmartPointer< itk::Image > ImageStatisticsCalculator ::GenerateHotspotSearchConvolutionKernel(double spacing[VImageDimension], double radiusInMM) { std::stringstream ss; for (unsigned int i = 0; i < VImageDimension; ++i) { ss << spacing[i]; if (i < VImageDimension -1) ss << ","; } MITK_DEBUG << "Update convolution kernel for spacing (" << ss.str() << ") and radius " << radiusInMM << "mm"; double radiusInMMSquared = radiusInMM * radiusInMM; typedef itk::Image< float, VImageDimension > KernelImageType; typename KernelImageType::Pointer convolutionKernel = KernelImageType::New(); // Calculate size and allocate mask image typedef typename KernelImageType::IndexType IndexType; IndexType maskIndex; maskIndex.Fill(0); typedef typename KernelImageType::SizeType SizeType; SizeType maskSize = this->CalculateConvolutionKernelSize(spacing, radiusInMM); Point3D convolutionMaskCenter; convolutionMaskCenter.Fill(0.0); for(unsigned int i = 0; i < VImageDimension; ++i) { convolutionMaskCenter[i] = 0.5 * (double)(maskSize[i]-1); } typedef typename KernelImageType::RegionType RegionType; RegionType maskRegion; maskRegion.SetSize(maskSize); maskRegion.SetIndex(maskIndex); convolutionKernel->SetRegions(maskRegion); convolutionKernel->SetSpacing(spacing); convolutionKernel->Allocate(); // Fill mask image values by subsampling the image grid typedef itk::ImageRegionIteratorWithIndex MaskIteratorType; MaskIteratorType maskIt(convolutionKernel,maskRegion); int numberOfSubVoxelsPerDimension = 2; // per dimension! int numberOfSubVoxels = ::pow( static_cast(numberOfSubVoxelsPerDimension), static_cast(VImageDimension) ); double subVoxelSize = 1.0 / (double)numberOfSubVoxelsPerDimension; double valueOfOneSubVoxel = 1.0 / (double)numberOfSubVoxels; double maskValue = 0.0; Point3D subVoxelPosition; double distanceSquared = 0.0; typedef itk::ContinuousIndex ContinuousIndexType; for(maskIt.GoToBegin(); !maskIt.IsAtEnd(); ++maskIt) { ContinuousIndexType indexPoint(maskIt.GetIndex()); Point3D voxelPosition; for (unsigned int dimension = 0; dimension < VImageDimension; ++dimension) { voxelPosition[dimension] = indexPoint[dimension]; } maskValue = 0.0; Vector3D subVoxelOffset; subVoxelOffset.Fill(0.0); // iterate sub-voxels by iterating all possible offsets for (subVoxelOffset[0] = -0.5 + subVoxelSize / 2.0; subVoxelOffset[0] < +0.5; subVoxelOffset[0] += subVoxelSize) { for (subVoxelOffset[1] = -0.5 + subVoxelSize / 2.0; subVoxelOffset[1] < +0.5; subVoxelOffset[1] += subVoxelSize) { for (subVoxelOffset[2] = -0.5 + subVoxelSize / 2.0; subVoxelOffset[2] < +0.5; subVoxelOffset[2] += subVoxelSize) { subVoxelPosition = voxelPosition + subVoxelOffset; // this COULD be integrated into the for-loops if neccessary (add voxelPosition to initializer and end condition) distanceSquared = (subVoxelPosition[0]-convolutionMaskCenter[0]) / spacing[0] * (subVoxelPosition[0]-convolutionMaskCenter[0]) / spacing[0] + (subVoxelPosition[1]-convolutionMaskCenter[1]) / spacing[1] * (subVoxelPosition[1]-convolutionMaskCenter[1]) / spacing[1] + (subVoxelPosition[2]-convolutionMaskCenter[2]) / spacing[2] * (subVoxelPosition[2]-convolutionMaskCenter[2]) / spacing[2]; if (distanceSquared <= radiusInMMSquared) { maskValue += valueOfOneSubVoxel; } } } } maskIt.Set( maskValue ); } return convolutionKernel; } template void ImageStatisticsCalculator::InternalUpdateConvolutionImage( itk::Image* inputImage ) { double spacing[VImageDimension]; for (unsigned int dimension = 0; dimension < VImageDimension; ++dimension) { spacing[dimension] = inputImage->GetSpacing()[dimension]; } // update convolution kernel typedef itk::Image< float, VImageDimension > KernelImageType; typename KernelImageType::Pointer convolutionKernel = this->GenerateHotspotSearchConvolutionKernel(spacing, m_HotspotRadiusInMM); // update convolution image typedef itk::Image< TPixel, VImageDimension > InputImageType; typedef itk::Image< TPixel, VImageDimension > ConvolutionImageType; typedef itk::FFTConvolutionImageFilter ConvolutionFilterType; typedef itk::ConstantBoundaryCondition BoundaryConditionType; BoundaryConditionType boundaryCondition; boundaryCondition.SetConstant(0.0); typename ConvolutionFilterType::Pointer convolutionFilter = ConvolutionFilterType::New(); convolutionFilter->SetBoundaryCondition(&boundaryCondition); convolutionFilter->SetInput(inputImage); convolutionFilter->SetKernelImage(convolutionKernel); convolutionFilter->SetNormalize(true); MITK_DEBUG << "Update Convolution image for hotspot search"; convolutionFilter->UpdateLargestPossibleRegion(); // typename ConvolutionImageType::Pointer convolutionImage = convolutionFilter->GetOutput(); convolutionImage->SetSpacing( inputImage->GetSpacing() ); // only workaround because convolution filter seems to ignore spacing of input image m_HotspotSearchConvolutionImage = convolutionImage.GetPointer(); m_HotspotRadiusInMMChanged = false; } template < typename TPixel, unsigned int VImageDimension> void ImageStatisticsCalculator ::FillHotspotMaskPixels( itk::Image* maskImage, itk::Point sphereCenter, double sphereRadiusInMM) { typedef itk::Image< TPixel, VImageDimension > MaskImageType; typedef itk::ImageRegionIteratorWithIndex MaskImageIteratorType; MaskImageIteratorType maskIt(maskImage, maskImage->GetLargestPossibleRegion()); typename MaskImageType::IndexType maskIndex; typename MaskImageType::PointType worldPosition; for(maskIt.GoToBegin(); !maskIt.IsAtEnd(); ++maskIt) { maskIndex = maskIt.GetIndex(); maskImage->TransformIndexToPhysicalPoint(maskIndex, worldPosition); maskIt.Set( worldPosition.EuclideanDistanceTo(sphereCenter) <= sphereRadiusInMM ? 1 : 0 ); } } template < typename TPixel, unsigned int VImageDimension> ImageStatisticsCalculator::Statistics ImageStatisticsCalculator::CalculateHotspotStatistics( const itk::Image* inputImage, itk::Image* maskImage, double radiusInMM, bool& isHotspotDefined, unsigned int label) { // get convolution image (updated in InternalUpdateConvolutionImage()) typedef itk::Image< TPixel, VImageDimension > ConvolutionImageType; typedef itk::Image< float, VImageDimension > KernelImageType; typedef itk::Image< unsigned short, VImageDimension > MaskImageType; typename ConvolutionImageType::Pointer convolutionImage = dynamic_cast(m_HotspotSearchConvolutionImage.GetPointer()); if (convolutionImage.IsNull()) { MITK_ERROR << "Empty convolution image in CalculateHotspotStatistics(). We should never reach this state (logic error)."; throw std::logic_error("Empty convolution image in CalculateHotspotStatistics()"); } // find maximum in convolution image, given the current mask double requiredDistanceToBorder = m_HotspotMustBeCompletelyInsideImage ? m_HotspotRadiusInMM : -1.0; ImageExtrema pi = CalculateExtremaWorld(convolutionImage.GetPointer(), maskImage, requiredDistanceToBorder, label); isHotspotDefined = pi.Defined; // return value! if (!isHotspotDefined) { m_EmptyStatistics.Reset(VImageDimension); MITK_ERROR << "No origin of hotspot-sphere was calculated!"; return m_EmptyStatistics; } else { double spacing[VImageDimension]; for (unsigned int dimension = 0; dimension < VImageDimension; ++dimension) { spacing[dimension] = inputImage->GetSpacing()[dimension]; } typedef typename ConvolutionImageType::SizeType SizeType; SizeType maskSize = this->CalculateConvolutionKernelSize(spacing, radiusInMM); typedef typename ConvolutionImageType::IndexType IndexType; IndexType maskIndex; maskIndex.Fill(0); for (unsigned int dimension = 0; dimension < VImageDimension; ++dimension) { maskIndex[dimension] = pi.MaxIndex[dimension] - (maskSize[dimension]-1)/2; // maskSize is always odd (size of 5 --> shift -2 required if (maskIndex[dimension] < 0) { maskIndex[dimension] = 0; } if (maskIndex[dimension] + maskSize[dimension] > inputImage->GetRequestedRegion().GetSize()[dimension] ) { maskSize[dimension] = inputImage->GetRequestedRegion().GetSize()[dimension] - maskIndex[dimension]; } } MITK_DEBUG << "Hotspot statistics mask corrected as region of size ["<CopyInformation( inputImage ); // type not optimal, but image grid is good typedef typename ConvolutionImageType::RegionType RegionType; RegionType hotspotMaskRegion; IndexType mi; mi.Fill(0); hotspotMaskRegion.SetIndex( mi ); hotspotMaskRegion.SetSize( maskSize ); hotspotMaskITK->SetRegions( hotspotMaskRegion ); hotspotMaskITK->Allocate(); typename ConvolutionImageType::PointType maskOrigin; inputImage->TransformIndexToPhysicalPoint(maskIndex,maskOrigin); MITK_DEBUG << "Mask origin at: " << maskOrigin; hotspotMaskITK->SetOrigin(maskOrigin); IndexType maskCenterIndex; for (unsigned int d =0; d< VImageDimension;++d) maskCenterIndex[d]=pi.MaxIndex[d]; typename ConvolutionImageType::PointType maskCenter; inputImage->TransformIndexToPhysicalPoint(maskCenterIndex,maskCenter); MITK_DEBUG << "Mask center in input image: " << maskCenter; this->FillHotspotMaskPixels(hotspotMaskITK.GetPointer(), maskCenter, radiusInMM); Image::Pointer hotspotMaskMITK = ImportItkImage( hotspotMaskITK ); Image::Pointer hotspotInputMITK = ImportItkImage( inputImage ); // use second instance of ImageStatisticsCalculator to calculate hotspot statistics ImageStatisticsCalculator::Pointer calculator = ImageStatisticsCalculator::New(); calculator->SetImage( hotspotInputMITK ); calculator->SetMaskingModeToImage(); calculator->SetImageMask( hotspotMaskMITK ); calculator->SetCalculateHotspot( false ); calculator->ComputeStatistics(0); // timestep 0, because inputImage already IS the image of timestep N (from perspective of ImageStatisticsCalculator caller) Statistics hotspotStatistics = calculator->GetStatistics(0); hotspotStatistics.SetHotspotIndex(pi.MaxIndex); hotspotStatistics.SetMean(pi.Max); return hotspotStatistics; } } template < typename TPixel, unsigned int VImageDimension > void ImageStatisticsCalculator::InternalCalculateMaskFromPlanarFigure( const itk::Image< TPixel, VImageDimension > *image, unsigned int axis ) { typedef itk::Image< TPixel, VImageDimension > ImageType; typedef itk::CastImageFilter< ImageType, MaskImage2DType > CastFilterType; // Generate mask image as new image with same header as input image and // initialize with 1. typename CastFilterType::Pointer castFilter = CastFilterType::New(); castFilter->SetInput( image ); castFilter->Update(); castFilter->GetOutput()->FillBuffer( 1 ); // all PolylinePoints of the PlanarFigure are stored in a vtkPoints object. // These points are used by the vtkLassoStencilSource to create // a vtkImageStencil. const mitk::Geometry2D *planarFigureGeometry2D = m_PlanarFigure->GetGeometry2D(); const typename PlanarFigure::PolyLineType planarFigurePolyline = m_PlanarFigure->GetPolyLine( 0 ); const mitk::Geometry3D *imageGeometry3D = m_Image->GetGeometry( 0 ); // Determine x- and y-dimensions depending on principal axis int i0, i1; switch ( axis ) { case 0: i0 = 1; i1 = 2; break; case 1: i0 = 0; i1 = 2; break; case 2: default: i0 = 0; i1 = 1; break; } m_PlanarFigureCoordinate0= i0; m_PlanarFigureCoordinate1= i1; // store the polyline contour as vtkPoints object bool outOfBounds = false; vtkSmartPointer points = vtkSmartPointer::New(); typename PlanarFigure::PolyLineType::const_iterator it; for ( it = planarFigurePolyline.begin(); it != planarFigurePolyline.end(); ++it ) { Point3D point3D; // Convert 2D point back to the local index coordinates of the selected // image planarFigureGeometry2D->Map( it->Point, point3D ); // Polygons (partially) outside of the image bounds can not be processed // further due to a bug in vtkPolyDataToImageStencil if ( !imageGeometry3D->IsInside( point3D ) ) { outOfBounds = true; } imageGeometry3D->WorldToIndex( point3D, point3D ); points->InsertNextPoint( point3D[i0], point3D[i1], 0 ); } // mark a malformed 2D planar figure ( i.e. area = 0 ) as out of bounds // this can happen when all control points of a rectangle lie on the same line = two of the three extents are zero double bounds[6] = {0, 0, 0, 0, 0, 0}; points->GetBounds( bounds ); bool extent_x = (fabs(bounds[0] - bounds[1])) < mitk::eps; bool extent_y = (fabs(bounds[2] - bounds[3])) < mitk::eps; bool extent_z = (fabs(bounds[4] - bounds[5])) < mitk::eps; // throw an exception if a closed planar figure is deformed, i.e. has only one non-zero extent if ( m_PlanarFigure->IsClosed() && ((extent_x && extent_y) || (extent_x && extent_z) || (extent_y && extent_z))) { mitkThrow() << "Figure has a zero area and cannot be used for masking."; } if ( outOfBounds ) { throw std::runtime_error( "Figure at least partially outside of image bounds!" ); } // create a vtkLassoStencilSource and set the points of the Polygon vtkSmartPointer lassoStencil = vtkSmartPointer::New(); lassoStencil->SetShapeToPolygon(); lassoStencil->SetPoints( points ); // Export from ITK to VTK (to use a VTK filter) typedef itk::VTKImageImport< MaskImage2DType > ImageImportType; typedef itk::VTKImageExport< MaskImage2DType > ImageExportType; typename ImageExportType::Pointer itkExporter = ImageExportType::New(); itkExporter->SetInput( castFilter->GetOutput() ); vtkSmartPointer vtkImporter = vtkSmartPointer::New(); this->ConnectPipelines( itkExporter, vtkImporter ); // Apply the generated image stencil to the input image vtkSmartPointer imageStencilFilter = vtkSmartPointer::New(); imageStencilFilter->SetInputConnection( vtkImporter->GetOutputPort() ); imageStencilFilter->SetStencil( lassoStencil->GetOutput() ); imageStencilFilter->ReverseStencilOff(); imageStencilFilter->SetBackgroundValue( 0 ); imageStencilFilter->Update(); // Export from VTK back to ITK vtkSmartPointer vtkExporter = vtkImageExport::New(); // TODO: this is WRONG, should be vtkSmartPointer::New(), but bug # 14455 vtkExporter->SetInputConnection( imageStencilFilter->GetOutputPort() ); vtkExporter->Update(); typename ImageImportType::Pointer itkImporter = ImageImportType::New(); this->ConnectPipelines( vtkExporter, itkImporter ); itkImporter->Update(); // Store mask m_InternalImageMask2D = itkImporter->GetOutput(); } void ImageStatisticsCalculator::UnmaskedStatisticsProgressUpdate() { // Need to throw away every second progress event to reach a final count of // 100 since two consecutive filters are used in this case static int updateCounter = 0; if ( updateCounter++ % 2 == 0 ) { this->InvokeEvent( itk::ProgressEvent() ); } } void ImageStatisticsCalculator::MaskedStatisticsProgressUpdate() { this->InvokeEvent( itk::ProgressEvent() ); } } diff --git a/Modules/ImageStatistics/mitkImageStatisticsCalculator.h b/Modules/ImageStatistics/mitkImageStatisticsCalculator.h index b9c8cf0be1..6bbc8554b5 100644 --- a/Modules/ImageStatistics/mitkImageStatisticsCalculator.h +++ b/Modules/ImageStatistics/mitkImageStatisticsCalculator.h @@ -1,541 +1,541 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef mitkImageStatisticsCalculator_h #define mitkImageStatisticsCalculator_h #include "mitkImage.h" #include "mitkPlanarFigure.h" #ifndef __itkHistogram_h #include #endif #include #include #include "ImageStatisticsExports.h" // just a helper to unclutter our code // to be replaced with references to m_Member (when deprecated public members in Statistics are removed) #define mitkSetGetConstMacro(name, type) \ virtual type Get##name() const \ { \ return this->name; \ } \ \ virtual void Set##name(const type _arg) \ { \ if ( this->name != _arg ) \ { \ this->name = _arg; \ } \ } namespace mitk { /** * \brief Class for calculating statistics and histogram for an (optionally * masked) image. * * Images can be masked by either a label image (of the same dimensions as * the original image) or by a closed mitk::PlanarFigure, e.g. a circle or * polygon. When masking with a planar figure, the slice corresponding to the * plane containing the figure is extracted and then clipped with contour * defined by the figure. Planar figures need to be aligned along the main axes * of the image (axial, sagittal, coronal). Planar figures on arbitrary * rotated planes are not supported. * * For each operating mode (no masking, masking by image, masking by planar * figure), the calculated statistics and histogram are cached so that, when * switching back and forth between operation modes without modifying mask or * image, the information doesn't need to be recalculated. * * The class also has the possibility to calculate the location and separate * statistics for a region called "hotspot". The hotspot is a sphere of * user-defined size and its location is chosen in a way that the average * pixel value within the sphere is maximized. * * \warning Hotspot calculation does not work in case of 2D-images! * * Note: currently time-resolved and multi-channel pictures are not properly * supported. * * \section HotspotStatistics_caption Calculation of hotspot statistics * * Since calculation of hotspot location and statistics is not * straight-forward, the following paragraphs will describe it in more detail. * * Note: Calculation of hotspot statistics is optional and set to off by default. * Multilabel-masks are supported. * * \subsection HotspotStatistics_description Hotspot Definition * * The hotspot of an image is motivated from PET readings. It is defined * as a spherical region of fixed size which maximizes the average pixel value * within the region. The following image illustrates the concept: the * colored areas are different image intensities and the hotspot is located * in the hottest region of the image. * * Note: Only hotspots are calculated for which the whole hotspot-sphere is * inside the image by default. This behaviour can be changed by setting - * m_HotspotMustBeCompletelyInsideImage to false. + * m_HotspotMustBeCompletelyInsideImage to false by calling SetHotspotMustBeCompletlyInsideImage(). * * \image html hotspotexample.JPG * * \subsection HotspotStatistics_calculation Hotspot Calculation * * Since only the size of the hotspot is known initially, we need to calculate * two aspects (both implemented in CalculateHotspotStatistics() ): * - the hotspot location * - statistics of the pixels within the hotspot. * * Finding the hotspot location requires to calculate the average value at each * position. This is done by convolution of the image with a sperical kernel * image which reflects partial volumes (important in the case of low-resolution * PET images). * * Once the hotspot location is known, calculating the actual statistics is a * simple task which is implemented in CalculateHotspotStatistics() using a second * instance of the ImageStatisticsCalculator. * * Step 1: Finding the hotspot by image convolution * * As described above, we use image convolution with a rasterized sphere to * average the image at each position. To handle coarse resolutions, which would * normally force us to decide for partially contained voxels whether to count * them or not, we supersample the kernel image and use non-integer kernel values * (see GenerateHotspotSearchConvolutionKernel()), which reflect the volume part that is contained in the * sphere. For example, if three subvoxels are inside the sphere, the corresponding * kernel voxel gets a value of 0.75 (3 out of 4 subvoxels, see 2D example below). * * \image html convolutionkernelsupersampling.jpg * * Convolution itself is done by means of the itkFFTConvolutionImageFilter. * To find the hotspot location, we simply iterate the averaged image and find a * maximum location (see CalculateExtremaWorld()). In case of images with multiple * maxima the method returns value and corresponding index of the extrema that is * found by the iterator first. * * Step 2: Computation of hotspot statistics * * Once the hotspot location is found, statistics for the region are calculated * by simply iterating the input image and regarding all pixel centers inside the * hotspot-sphere for statistics. * * \subsection HotspotStatistics_tests Tests * * To check the correctness of the hotspot calculation, a special class - * (\ref hotspottestdoc mitkImageStatisticsHotspotTest) has been created, which generates images with + * (\ref hotspottestdoc) has been created, which generates images with * known hotspot location and statistics. A number of unit tests use this class * to first generate an image of known properites and then verify that * ImageStatisticsCalculator is able to reproduce the known statistics. * */ class ImageStatistics_EXPORT ImageStatisticsCalculator : public itk::Object { public: /** \brief Enum for possible masking modi. */ enum { MASKING_MODE_NONE = 0, MASKING_MODE_IMAGE = 1, MASKING_MODE_PLANARFIGURE = 2 }; typedef itk::Statistics::Histogram HistogramType; typedef HistogramType::ConstIterator HistogramConstIteratorType; /** \brief Class for common statistics, includig hotspot properties. */ class ImageStatistics_EXPORT Statistics { public: Statistics(bool withHotspotStatistics = true); Statistics(const Statistics& other); virtual ~Statistics(); Statistics& operator=(Statistics const& stats); const Statistics& GetHotspotStatistics() const; // real statistics Statistics& GetHotspotStatistics(); // real statistics bool HasHotspotStatistics() const; void SetHasHotspotStatistics(bool hasHotspotStatistics); // set a flag. if set, return empty hotspotstatistics object void Reset(unsigned int dimension = 2); mitkSetGetConstMacro(Label, unsigned int) mitkSetGetConstMacro(N, unsigned int) mitkSetGetConstMacro(Min, double) mitkSetGetConstMacro(Max, double) mitkSetGetConstMacro(Mean, double) mitkSetGetConstMacro(Median, double) mitkSetGetConstMacro(Variance, double) mitkSetGetConstMacro(Sigma, double) mitkSetGetConstMacro(RMS, double) mitkSetGetConstMacro(MinIndex, vnl_vector) mitkSetGetConstMacro(MaxIndex, vnl_vector) mitkSetGetConstMacro(HotspotIndex, vnl_vector) public: // this section is all deprecated. Get/Set methods should be used // \deprecated Public member Label is deprecated. Use get-/set-functions instead DEPRECATED(unsigned int Label); // \deprecated Public member N is deprecated. Use get-/set-functions instead DEPRECATED(unsigned int N); // \deprecated Public member Min is deprecated. Use get-/set-functions instead DEPRECATED(double Min); // \deprecated Public member Max is deprecated. Use get-/set-functions instead DEPRECATED(double Max); // \deprecated Public member Mean is deprecated. Use get-/set-functions instead DEPRECATED(double Mean); // \deprecated Public member Median is deprecated. Use get-/set-functions instead DEPRECATED(double Median); // \deprecated Public member Variance is deprecated. Use get-/set-functions instead DEPRECATED(double Variance); // \deprecated Public member Sigma is deprecated. Use get-/set-functions instead DEPRECATED(double Sigma); // \deprecated Public member RMS is deprecated. Use get-/set-functions instead DEPRECATED(double RMS); // \deprecated Public member MinIndex is deprecated. Use get-/set-functions instead DEPRECATED(vnl_vector MinIndex); // \deprecated Public member MaxIndex is deprecated. Use get-/set-functions instead DEPRECATED(vnl_vector MaxIndex); private: Statistics* m_HotspotStatistics; bool m_HasHotspotStatistics; vnl_vector HotspotIndex; //< index of hotspotsphere origin }; typedef std::vector< HistogramType::ConstPointer > HistogramContainer; typedef std::vector< Statistics > StatisticsContainer; mitkClassMacro( ImageStatisticsCalculator, itk::Object ); itkNewMacro( ImageStatisticsCalculator ); /** \brief Set image from which to compute statistics. */ void SetImage( const mitk::Image *image ); /** \brief Set image for masking. */ void SetImageMask( const mitk::Image *imageMask ); /** \brief Set planar figure for masking. */ void SetPlanarFigure( mitk::PlanarFigure *planarFigure ); /** \brief Set/Get operation mode for masking */ void SetMaskingMode( unsigned int mode ); /** \brief Set/Get operation mode for masking */ itkGetMacro( MaskingMode, unsigned int ); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToNone(); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToImage(); /** \brief Set/Get operation mode for masking */ void SetMaskingModeToPlanarFigure(); /** \brief Set a pixel value for pixels that will be ignored in the statistics */ void SetIgnorePixelValue(double value); /** \brief Get the pixel value for pixels that will be ignored in the statistics */ double GetIgnorePixelValue(); /** \brief Set whether a pixel value should be ignored in the statistics */ void SetDoIgnorePixelValue(bool doit); /** \brief Get whether a pixel value will be ignored in the statistics */ bool GetDoIgnorePixelValue(); /** \brief Sets the radius for the hotspot */ void SetHotspotRadiusInMM (double hotspotRadiusInMM); /** \brief Returns the radius of the hotspot */ double GetHotspotRadiusInMM(); /** \brief Sets whether the hotspot should be calculated */ void SetCalculateHotspot(bool calculateHotspot); /** \brief Returns true whether the hotspot should be calculated, otherwise false */ bool IsHotspotCalculated(); /** \brief Sets flag whether hotspot is completly inside the image.*/ void SetHotspotMustBeCompletlyInsideImage(bool hotspotIsCompletlyInsideImage); /** \brief Returns true if hotspot has to be completly inside the image. */ bool GetHotspotMustBeCompletlyInsideImage() const; /** \brief Compute statistics (together with histogram) for the current * masking mode. * * Computation is not executed if statistics is already up to date. In this * case, false is returned; otherwise, true.*/ virtual bool ComputeStatistics( unsigned int timeStep = 0 ); /** \brief Retrieve the histogram depending on the current masking mode. * * \param label The label for which to retrieve the histogram in multi-label situations (ascending order). */ const HistogramType *GetHistogram( unsigned int timeStep = 0, unsigned int label = 0 ) const; /** \brief Retrieve the histogram depending on the current masking mode (for all image labels. */ const HistogramContainer &GetHistogramVector( unsigned int timeStep = 0 ) const; /** \brief Retrieve statistics depending on the current masking mode. * * \param label The label for which to retrieve the statistics in multi-label situations (ascending order). */ const Statistics &GetStatistics( unsigned int timeStep = 0, unsigned int label = 0 ) const; /** \brief Retrieve statistics depending on the current masking mode (for all image labels). */ const StatisticsContainer &GetStatisticsVector( unsigned int timeStep = 0 ) const; protected: typedef std::vector< HistogramContainer > HistogramVector; typedef std::vector< StatisticsContainer > StatisticsVector; typedef std::vector< itk::TimeStamp > TimeStampVectorType; typedef std::vector< bool > BoolVectorType; typedef itk::Image< unsigned short, 3 > MaskImage3DType; typedef itk::Image< unsigned short, 2 > MaskImage2DType; ImageStatisticsCalculator(); virtual ~ImageStatisticsCalculator(); /** \brief Depending on the masking mode, the image and mask from which to * calculate statistics is extracted from the original input image and mask * data. * * For example, a when using a PlanarFigure as mask, the 2D image slice * corresponding to the PlanarFigure will be extracted from the original * image. If masking is disabled, the original image is simply passed * through. */ void ExtractImageAndMask( unsigned int timeStep = 0 ); /** \brief If the passed vector matches any of the three principal axes * of the passed geometry, the integer value corresponding to the axis * is set and true is returned. */ bool GetPrincipalAxis( const Geometry3D *geometry, Vector3D vector, unsigned int &axis ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateStatisticsUnmasked( const itk::Image< TPixel, VImageDimension > *image, StatisticsContainer* statisticsContainer, HistogramContainer *histogramContainer ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateStatisticsMasked( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage, StatisticsContainer* statisticsContainer, HistogramContainer* histogramContainer ); template < typename TPixel, unsigned int VImageDimension > void InternalCalculateMaskFromPlanarFigure( const itk::Image< TPixel, VImageDimension > *image, unsigned int axis ); template < typename TPixel, unsigned int VImageDimension > void InternalMaskIgnoredPixels( const itk::Image< TPixel, VImageDimension > *image, itk::Image< unsigned short, VImageDimension > *maskImage ); class ImageExtrema { public: bool Defined; double Max; double Min; vnl_vector MaxIndex; vnl_vector MinIndex; ImageExtrema() :Max(itk::NumericTraits::min()) ,Min(itk::NumericTraits::max()) ,Defined(false) { } }; /** \brief Calculates minimum, maximum, mean value and their * corresponding indices in a given ROI. As input the function * needs an image and a mask. Returns an ImageExtrema object. */ template ImageExtrema CalculateExtremaWorld( const itk::Image *inputImage, itk::Image *maskImage, double neccessaryDistanceToImageBorderInMM, unsigned int label); /** \brief Calculates the hotspot statistics depending on * masking mode. Hotspot statistics are calculated for a * hotspot which is completly located inside the image by default. */ template < typename TPixel, unsigned int VImageDimension> Statistics CalculateHotspotStatistics( const itk::Image *inputImage, itk::Image *maskImage, double radiusInMM, bool& isHotspotDefined, unsigned int label); /** Connection from ITK to VTK */ template void ConnectPipelines(ITK_Exporter exporter, vtkSmartPointer importer) { importer->SetUpdateInformationCallback(exporter->GetUpdateInformationCallback()); importer->SetPipelineModifiedCallback(exporter->GetPipelineModifiedCallback()); importer->SetWholeExtentCallback(exporter->GetWholeExtentCallback()); importer->SetSpacingCallback(exporter->GetSpacingCallback()); importer->SetOriginCallback(exporter->GetOriginCallback()); importer->SetScalarTypeCallback(exporter->GetScalarTypeCallback()); importer->SetNumberOfComponentsCallback(exporter->GetNumberOfComponentsCallback()); importer->SetPropagateUpdateExtentCallback(exporter->GetPropagateUpdateExtentCallback()); importer->SetUpdateDataCallback(exporter->GetUpdateDataCallback()); importer->SetDataExtentCallback(exporter->GetDataExtentCallback()); importer->SetBufferPointerCallback(exporter->GetBufferPointerCallback()); importer->SetCallbackUserData(exporter->GetCallbackUserData()); } /** Connection from VTK to ITK */ template void ConnectPipelines(vtkSmartPointer exporter, ITK_Importer importer) { importer->SetUpdateInformationCallback(exporter->GetUpdateInformationCallback()); importer->SetPipelineModifiedCallback(exporter->GetPipelineModifiedCallback()); importer->SetWholeExtentCallback(exporter->GetWholeExtentCallback()); importer->SetSpacingCallback(exporter->GetSpacingCallback()); importer->SetOriginCallback(exporter->GetOriginCallback()); importer->SetScalarTypeCallback(exporter->GetScalarTypeCallback()); importer->SetNumberOfComponentsCallback(exporter->GetNumberOfComponentsCallback()); importer->SetPropagateUpdateExtentCallback(exporter->GetPropagateUpdateExtentCallback()); importer->SetUpdateDataCallback(exporter->GetUpdateDataCallback()); importer->SetDataExtentCallback(exporter->GetDataExtentCallback()); importer->SetBufferPointerCallback(exporter->GetBufferPointerCallback()); importer->SetCallbackUserData(exporter->GetCallbackUserData()); } void UnmaskedStatisticsProgressUpdate(); void MaskedStatisticsProgressUpdate(); /** \brief Returns size of convolution kernel depending on spacing and radius. */ template itk::Size CalculateConvolutionKernelSize(double spacing[VImageDimension], double radiusInMM); /** \brief Generates image of kernel which is needed for convolution. */ template itk::SmartPointer< itk::Image > GenerateHotspotSearchConvolutionKernel(double spacing[VImageDimension], double radiusInMM); /** \brief Convolves image with spherical kernel image. Used for hotspot calculation. */ template void InternalUpdateConvolutionImage( itk::Image* inputImage ); /** \brief Fills pixels of the spherical hotspot mask. */ template < typename TPixel, unsigned int VImageDimension> void FillHotspotMaskPixels( itk::Image* maskImage, itk::Point sphereCenter, double sphereRadiusInMM); /** m_Image contains the input image (e.g. 2D, 3D, 3D+t)*/ mitk::Image::ConstPointer m_Image; mitk::Image::ConstPointer m_ImageMask; mitk::PlanarFigure::Pointer m_PlanarFigure; HistogramVector m_ImageHistogramVector; HistogramVector m_MaskedImageHistogramVector; HistogramVector m_PlanarFigureHistogramVector; HistogramType::Pointer m_EmptyHistogram; HistogramContainer m_EmptyHistogramContainer; StatisticsVector m_ImageStatisticsVector; StatisticsVector m_MaskedImageStatisticsVector; StatisticsVector m_PlanarFigureStatisticsVector; StatisticsVector m_MaskedImageHotspotStatisticsVector; Statistics m_EmptyStatistics; StatisticsContainer m_EmptyStatisticsContainer; unsigned int m_MaskingMode; bool m_MaskingModeChanged; /** m_InternalImage contains a image volume at one time step (e.g. 2D, 3D)*/ mitk::Image::ConstPointer m_InternalImage; MaskImage3DType::Pointer m_InternalImageMask3D; MaskImage2DType::Pointer m_InternalImageMask2D; TimeStampVectorType m_ImageStatisticsTimeStampVector; TimeStampVectorType m_MaskedImageStatisticsTimeStampVector; TimeStampVectorType m_PlanarFigureStatisticsTimeStampVector; BoolVectorType m_ImageStatisticsCalculationTriggerVector; BoolVectorType m_MaskedImageStatisticsCalculationTriggerVector; BoolVectorType m_PlanarFigureStatisticsCalculationTriggerVector; double m_IgnorePixelValue; bool m_DoIgnorePixelValue; bool m_IgnorePixelValueChanged; itk::Object::Pointer m_HotspotSearchConvolutionImage; // itk::Image unsigned int m_PlanarFigureAxis; // Normal axis for PlanarFigure unsigned int m_PlanarFigureSlice; // Slice which contains PlanarFigure int m_PlanarFigureCoordinate0; // First plane-axis for PlanarFigure int m_PlanarFigureCoordinate1; // Second plane-axis for PlanarFigure double m_HotspotRadiusInMM; bool m_CalculateHotspot; bool m_HotspotRadiusInMMChanged; bool m_HotspotMustBeCompletelyInsideImage; }; } // namespace #endif diff --git a/Modules/ImageStatistics/mitkImageStatisticsHotspotTest.dox b/Modules/ImageStatistics/mitkImageStatisticsHotspotTest.dox index ba082225c3..cd3f3c9640 100644 --- a/Modules/ImageStatistics/mitkImageStatisticsHotspotTest.dox +++ b/Modules/ImageStatistics/mitkImageStatisticsHotspotTest.dox @@ -1,106 +1,105 @@ /** \defgroup hotspottestdoc mitkImageStatisticsHotspotTest \section hotspotCalculationTestCases Testcases - Every testcase has a defined hotspot, maximum and minimum includig their corresponding index-values and mean value. - The XML-files to each testcase is located in \ImageStatistics\Testing\Data. + To check the correctness of the hotspot calculation, this special class has been created, which + generates images with known hotspot location and statistics. A number of unit tests use this class to first generate + an image of known properties and then verify that \ref mitk::ImageStatisticsCalculator is able to reproduce the known statistics. + + Every testcase has a defined hotspot, maximum and minimum including their corresponding index-values and mean value. + The XML-files to each testcase is located in Modules/ImageStatistics/Testing/Data. The following cases describe situations of hotspot-calculation and their supposed results. Note: Below only the behaviour of maximum is mentioned mostly, but the other statistics (minimum and mean) behave in the same way like maximum. Testcase 1: No values outside of hotspot are used for statistic-calculation - This testcase excludes that pixelvalues are used for the statistic-calculation which are located outside the hotspot. + The purpose of this testcase is primarily to confirm the correct detection of the hotspot even if there is an global maximum + which is "hotter" than the mean value itself. On the other hand the test verifies that only voxels are used for statistic-calculation + which are located in the hotspot. Description: - Defined location of hotspot in image: left upper corner - Defined location of maximum in image: bottom right corner - - Segmenation is not available + - Segmentation is not available \image html mitkimagestatisticshotspottestcase1.jpg Assumed results: - - Hotspot is calcualted correctly in the left upper corner of the image + - Hotspot is calculated correctly in the left upper corner of the image - Defined maximum is not inside hotspot - A maximum inside the hotspot is calculated Testcase 2: Correct detection of hotspot - This testcase exclues that pixelvalues are used for statistics-calculation which are located outside of the segmentation. + In this testcase we want to make sure that when a segmentation is available the origin of the hotspot-sphere is located within it. The + image is so structured that there are two hot regions: One region inside and another one, which is hotter than the other region, outside the segmentation. + So we can assume that the segmentation is also considered when detecting the hotspot, even an actual hotspot outside the segmentation exists. Description: - Segmentation is available - Defined location of hotspot: inside segmentation - Defined location of maximum: inside hotspot - - Another "hotter" region outside of the segmenation + - Another "hotter" region outside of the segmentation \image html mitkimagestatisticshotspottestcase2.jpg Assumed results: - Defined hotspot is correctly calculated inside segmentation - Defined maximum is correctly calculated inside hotspot - "Hotter" region outside of segmentation is disregarded - Testcase 3: Correct calculation of statistics in hotspot, altough the whole hotspot is not inside segmenation + Testcase 3: Correct calculation of statistics in hotspot, although the whole hotspot is not inside segmentation - This testcase excludes that the whole hotspot has to be completly inside the segmentation for statistica-calculation. So it is - possible to calculate hotspot-statistics even if the region of interest is smaller than the hotspot itself. + The difficulty of calculating the hotspot statistics in testcase 3 is that the origin of the hotspot is close to the segmentation-borders. So + if the whole hotspot is not inside the segmentation (or even the segmentation is smaller than the hotspot itself) this test checks that + calculation of hotspot statistics is possible anyway. Description: - Segmentation is available - Defined location of hotspot: inside segmentation - Defined location of maximum: outside of segmentation, but inside of hotspot \image html mitkimagestatisticshotspottestcase3.jpg Assumed results: - Defined hotspot is correctly calculated inside segmentation - - Defined maximum is correctly calculated inside hotspot altough it is located outside of the segmentation + - Defined maximum is correctly calculated inside hotspot although it is located outside of the segmentation - Testcase 4: Hotspot is not completly inside image + Testcase 4 and 5: Hotspot must (not) be completely inside image - This testcase confirms that not the whole hotspot has to be inside the image. Only pixelvalues in the hotspot are considered - which are located inside the image. + Testcase 4 and 5 are very similar so we mention it at the same time: In testcase 4 the hotspot is not completely inside the image and just + voxels are considered for calculation which are located inside the image. But in testcase 5 the hotspot must be completely inside the image + even there is an possible hotspot-location at the borders of the image. Description: - Defined location of hotspot: At the border of the image - Defined location of maximum: Inside hotspot - - Segmenation is not available + - Segmentation is not available - \image html mitkimagestatisticshotspottestcase4.jpg + \image html mitkimagestatisticshotspottestcase5.jpg - Assumed result: + Assumed results in testcase 4: - Just the part of the hotspot, which is located in the image, is used for statistics-calculation - Defined statistics are calculated correctly - Testcase 5: Hotspot has to be inside image - - This testcase confirms that the whole hotspot has to be completly inside the image. If there is a possible hotspot-location for which - the whole hotspot would not be completly inside the image, it will be disregarded. - - Description: - - Defined location of hotspot: At the border of the image - - Defined location of maximum: Inside hotspot - - Segmenation is not available - - \image html mitkimagestatisticshotspottestcase5.jpg - - Assumed results: - - Defined hotspot and statistics are not calculated, because hotspot is not completly inside image + Assumed results in testcase 5: + - Defined hotspot and statistics are not calculated, because hotspot is not completely inside image - A hotspot, which is not as hot as the defined one but is inside the image, is calculated - Testcase 6: Multilabel mask + + Testcase 6: Multi label mask This testcase confirms that mitkImageStatisticsCalculator has the possibility to calculate hotspot statistics even if there are multiple regions of interest. Description: - Two defined regions of interest with defined statistics for each one. \image html mitkimagestatisticshotspottestcase6.jpg Assumed results: - In every region of interest there are correctly calculated hotspot-statistics */ \ No newline at end of file