diff --git a/Modules/MitkMapperExt/vtkMitkOpenGLVolumeTextureMapper3D.cpp b/Modules/MitkMapperExt/vtkMitkOpenGLVolumeTextureMapper3D.cpp index c79bf8c19f..e224d4c8d6 100644 --- a/Modules/MitkMapperExt/vtkMitkOpenGLVolumeTextureMapper3D.cpp +++ b/Modules/MitkMapperExt/vtkMitkOpenGLVolumeTextureMapper3D.cpp @@ -1,2407 +1,2407 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifdef _OPENMP #include #endif #include "vtkWindows.h" #include "vtkMitkOpenGLVolumeTextureMapper3D.h" #include "mitkCommon.h" #define GPU_INFO MITK_INFO("mapper.vr") #define GPU_WARN MITK_WARN("mapper.vr") #include "vtkImageData.h" #include "vtkMatrix4x4.h" #include "vtkDataArray.h" #include "vtkObjectFactory.h" #include "vtkPlane.h" #include "vtkPlaneCollection.h" #include "vtkPointData.h" #include "vtkRenderWindow.h" #include "vtkRenderer.h" #include "vtkTimerLog.h" #include "vtkVolumeProperty.h" #include "vtkTransform.h" #include "vtkLightCollection.h" #include "vtkLight.h" #include "vtkCamera.h" #include "vtkMath.h" #include "vtkOpenGLExtensionManager.h" #include "vtkgl.h" #include "vtkOpenGLRenderWindow.h" #define myGL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0 #define myGL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72 #define myGL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 const char *vtkMitkVolumeTextureMapper3D_FourDependentShadeFP = "!!ARBfp1.0\n" //# We need some temporary variables "TEMP index, normal, finalColor;\n" "TEMP temp,temp1, temp2, temp3,temp4; \n" "TEMP sampleColor;\n" "TEMP ndotl, ndoth, ndotv; \n" "TEMP lightInfo, lightResult;\n" //# We are going to use the first //# texture coordinate "ATTRIB tex0 = fragment.texcoord[0];\n" //# This is the lighting information "PARAM lightDirection = program.local[0];\n" "PARAM halfwayVector = program.local[1];\n" "PARAM coefficient = program.local[2];\n" "PARAM lightDiffColor = program.local[3]; \n" "PARAM lightSpecColor = program.local[4]; \n" "PARAM viewVector = program.local[5];\n" "PARAM constants = program.local[6];\n" //# This is our output color "OUTPUT out = result.color;\n" //# Look up the gradient direction //# in the third volume "TEX temp2, tex0, texture[0], 3D;\n" //# This normal is stored 0 to 1, change to -1 to 1 //# by multiplying by 2.0 then adding -1.0. "MAD normal, temp2, constants.x, constants.y;\n" "DP3 temp4, normal, normal;\n" "RSQ temp, temp4.x;\n" "MUL normal, normal, temp;\n" //"RCP temp4,temp.x;\n" //"MUL temp2.w,temp2.w,temp4.x;\n" //"MUL_SAT temp2.w,temp2.w,6.0;\n" "TEX sampleColor, tex0, texture[1], 3D;\n" //# Take the dot product of the light //# direction and the normal "DP3 ndotl, normal, lightDirection;\n" //# Take the dot product of the halfway //# vector and the normal "DP3 ndoth, normal, halfwayVector;\n" "DP3 ndotv, normal, viewVector;\n" //# flip if necessary for two sided lighting "MUL temp3, ndotl, constants.y; \n" "CMP ndotl, ndotv, ndotl, temp3;\n" "MUL temp3, ndoth, constants.y; \n" "CMP ndoth, ndotv, ndoth, temp3;\n" //# put the pieces together for a LIT operation "MOV lightInfo.x, ndotl.x; \n" "MOV lightInfo.y, ndoth.x; \n" "MOV lightInfo.w, coefficient.w; \n" //# compute the lighting "LIT lightResult, lightInfo;\n" //# COLOR FIX "MUL lightResult, lightResult, 4.0;\n" //# This is the ambient contribution "MUL finalColor, coefficient.x, sampleColor;\n" //# This is the diffuse contribution "MUL temp3, lightDiffColor, sampleColor;\n" "MUL temp3, temp3, lightResult.y;\n" "ADD finalColor, finalColor, temp3;\n" //# This is th specular contribution "MUL temp3, lightSpecColor, lightResult.z; \n" //# Add specular into result so far, and replace //# with the original alpha. "ADD out, finalColor, temp3;\n" "MOV out.w, temp2.w;\n" "END\n"; const char *vtkMitkVolumeTextureMapper3D_OneComponentShadeFP = "!!ARBfp1.0\n" //# This is the fragment program for one //# component data with shading //# We need some temporary variables "TEMP index, normal, finalColor;\n" "TEMP temp,temp1, temp2, temp3,temp4; \n" "TEMP sampleColor;\n" "TEMP ndotl, ndoth, ndotv; \n" "TEMP lightInfo, lightResult;\n" //# We are going to use the first //# texture coordinate "ATTRIB tex0 = fragment.texcoord[0];\n" //# This is the lighting information "PARAM lightDirection = program.local[0];\n" "PARAM halfwayVector = program.local[1];\n" "PARAM coefficient = program.local[2];\n" "PARAM lightDiffColor = program.local[3]; \n" "PARAM lightSpecColor = program.local[4]; \n" "PARAM viewVector = program.local[5];\n" "PARAM constants = program.local[6];\n" //# This is our output color "OUTPUT out = result.color;\n" //# Look up the gradient direction //# in the third volume "TEX temp2, tex0, texture[0], 3D;\n" // Gradient Compution //# Look up the scalar value / gradient //# magnitude in the first volume //"TEX temp1, tex0, texture[0], 3D;\n" /* "ADD temp3,tex0,{-0.005,0,0};\n" "TEX temp2,temp3, texture[0], 3D;\n" //"ADD temp3,tex0,{ 0.005,0,0};\n" //"TEX temp1,temp3, texture[0], 3D;\n" "SUB normal.x,temp2.y,temp1.y;\n" "ADD temp3,tex0,{0,-0.005,0};\n" "TEX temp2,temp3, texture[0], 3D;\n" //"ADD temp3,tex0,{0, 0.005,0};\n" //"TEX temp1,temp3, texture[0], 3D;\n" "SUB normal.y,temp2.y,temp1.y;\n" "ADD temp3,tex0,{0,0,-0.005};\n" "TEX temp2,temp3, texture[0], 3D;\n" //"ADD temp3,tex0,{0,0, 0.005};\n" //"TEX temp1,temp3, texture[0], 3D;\n" "SUB normal.z,temp2.y,temp1.y;\n" */ //"MOV normal,{1,1,1};\n" "MOV index.x,temp2.a;\n" //# This normal is stored 0 to 1, change to -1 to 1 //# by multiplying by 2.0 then adding -1.0. "MAD normal, temp2, constants.x, constants.y;\n" //# Swizzle this to use (a,r) as texture //# coordinates //"SWZ index, temp1, a, r, 1, 1;\n" //# Use this coordinate to look up a //# final color in the third texture //# (this is a 2D texture) "DP3 temp4, normal, normal;\n" "RSQ temp, temp4.x;\n" "RCP temp4,temp.x;\n" "MUL normal, normal, temp;\n" "MOV index.y, temp4.x;\n" "TEX sampleColor, index, texture[1], 2D;\n" //"MUL sampleColor.w,sampleColor.w,temp4.x;\n" //# Take the dot product of the light //# direction and the normal "DP3 ndotl, normal, lightDirection;\n" //# Take the dot product of the halfway //# vector and the normal "DP3 ndoth, normal, halfwayVector;\n" "DP3 ndotv, normal, viewVector;\n" //# flip if necessary for two sided lighting "MUL temp3, ndotl, constants.y; \n" "CMP ndotl, ndotv, ndotl, temp3;\n" "MUL temp3, ndoth, constants.y; \n" "CMP ndoth, ndotv, ndoth, temp3;\n" //# put the pieces together for a LIT operation "MOV lightInfo.x, ndotl.x; \n" "MOV lightInfo.y, ndoth.x; \n" "MOV lightInfo.w, coefficient.w; \n" //# compute the lighting "LIT lightResult, lightInfo;\n" //# COLOR FIX "MUL lightResult, lightResult, 4.0;\n" //# This is the ambient contribution "MUL finalColor, coefficient.x, sampleColor;\n" //# This is the diffuse contribution "MUL temp3, lightDiffColor, sampleColor;\n" "MUL temp3, temp3, lightResult.y;\n" "ADD finalColor, finalColor, temp3;\n" //# This is th specular contribution "MUL temp3, lightSpecColor, lightResult.z; \n" //# Add specular into result so far, and replace //# with the original alpha. "ADD out, finalColor, temp3;\n" "MOV out.w, sampleColor.w;\n" "END\n"; //#ifndef VTK_IMPLEMENT_MESA_CXX vtkStandardNewMacro(vtkMitkOpenGLVolumeTextureMapper3D); //#endif vtkMitkOpenGLVolumeTextureMapper3D::vtkMitkOpenGLVolumeTextureMapper3D() { //GPU_INFO << "vtkMitkOpenGLVolumeTextureMapper3D"; this->Initialized = 0; this->Volume1Index = 0; this->Volume2Index = 0; this->Volume3Index = 0; this->ColorLookupIndex = 0; this->AlphaLookupIndex = 0; this->RenderWindow = NULL; this->SupportsCompressedTexture = false; prgOneComponentShade = 0; prgRGBAShade = 0; } vtkMitkOpenGLVolumeTextureMapper3D::~vtkMitkOpenGLVolumeTextureMapper3D() { //GPU_INFO << "~vtkMitkOpenGLVolumeTextureMapper3D"; if(prgOneComponentShade) vtkgl::DeleteProgramsARB( 1, &prgOneComponentShade ); if(prgRGBAShade) vtkgl::DeleteProgramsARB( 1, &prgRGBAShade ); } // Release the graphics resources used by this texture. void vtkMitkOpenGLVolumeTextureMapper3D::ReleaseGraphicsResources(vtkWindow *renWin) { //GPU_INFO << "ReleaseGraphicsResources"; if (( this->Volume1Index || this->Volume2Index || this->Volume3Index || this->ColorLookupIndex) && renWin) { static_cast(renWin)->MakeCurrent(); #ifdef GL_VERSION_1_1 // free any textures this->DeleteTextureIndex( &this->Volume1Index ); this->DeleteTextureIndex( &this->Volume2Index ); this->DeleteTextureIndex( &this->Volume3Index ); this->DeleteTextureIndex( &this->ColorLookupIndex ); this->DeleteTextureIndex( &this->AlphaLookupIndex ); #endif } this->Volume1Index = 0; this->Volume2Index = 0; this->Volume3Index = 0; this->ColorLookupIndex = 0; this->RenderWindow = NULL; this->SupportsCompressedTexture=false; this->SupportsNonPowerOfTwoTextures=false; this->Modified(); } // Release the graphics resources used by this texture. void vtkMitkOpenGLVolumeTextureMapper3D::ReleaseGraphicsResources(mitk::BaseRenderer* renderer) { //GPU_INFO << "ReleaseGraphicsResources"; vtkWindow * renWin = renderer->GetVtkRenderer()->GetRenderWindow(); if (( this->Volume1Index || this->Volume2Index || this->Volume3Index || this->ColorLookupIndex) && renWin) { static_cast(renWin)->MakeCurrent(); #ifdef GL_VERSION_1_1 // free any textures this->DeleteTextureIndex( &this->Volume1Index ); this->DeleteTextureIndex( &this->Volume2Index ); this->DeleteTextureIndex( &this->Volume3Index ); this->DeleteTextureIndex( &this->ColorLookupIndex ); this->DeleteTextureIndex( &this->AlphaLookupIndex ); #endif } this->Volume1Index = 0; this->Volume2Index = 0; this->Volume3Index = 0; this->ColorLookupIndex = 0; this->RenderWindow = NULL; this->SupportsCompressedTexture=false; this->SupportsNonPowerOfTwoTextures=false; this->Modified(); } void vtkMitkOpenGLVolumeTextureMapper3D::Render(vtkRenderer *ren, vtkVolume *vol) { //GPU_INFO << "Render"; ren->GetRenderWindow()->MakeCurrent(); if ( !this->Initialized ) { //this->Initialize(); this->Initialize(ren); } if ( !this->RenderPossible ) { vtkErrorMacro( "required extensions not supported" ); return; } vtkMatrix4x4 *matrix = vtkMatrix4x4::New(); vtkPlaneCollection *clipPlanes; vtkPlane *plane; int numClipPlanes = 0; double planeEquation[4]; // build transformation vol->GetMatrix(matrix); matrix->Transpose(); glPushAttrib(GL_ENABLE_BIT | GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_POLYGON_BIT | GL_TEXTURE_BIT); int i; // Use the OpenGL clip planes clipPlanes = this->ClippingPlanes; if ( clipPlanes ) { numClipPlanes = clipPlanes->GetNumberOfItems(); if (numClipPlanes > 6) { vtkErrorMacro(<< "OpenGL guarantees only 6 additional clipping planes"); } for (i = 0; i < numClipPlanes; i++) { glEnable(static_cast(GL_CLIP_PLANE0+i)); plane = static_cast(clipPlanes->GetItemAsObject(i)); planeEquation[0] = plane->GetNormal()[0]; planeEquation[1] = plane->GetNormal()[1]; planeEquation[2] = plane->GetNormal()[2]; planeEquation[3] = -(planeEquation[0]*plane->GetOrigin()[0]+ planeEquation[1]*plane->GetOrigin()[1]+ planeEquation[2]*plane->GetOrigin()[2]); glClipPlane(static_cast(GL_CLIP_PLANE0+i),planeEquation); } } // insert model transformation glMatrixMode( GL_MODELVIEW ); glPushMatrix(); glMultMatrixd(matrix->Element[0]); glColor4f( 1.0, 1.0, 1.0, 1.0 ); // Turn lighting off - the polygon textures already have illumination glDisable( GL_LIGHTING ); vtkGraphicErrorMacro(ren->GetRenderWindow(),"Before actual render method"); this->RenderFP(ren,vol); // pop transformation matrix glMatrixMode( GL_MODELVIEW ); glPopMatrix(); matrix->Delete(); glPopAttrib(); } void vtkMitkOpenGLVolumeTextureMapper3D::RenderFP(vtkRenderer *ren, vtkVolume *vol) { //GPU_INFO << "RenderFP"; /* glAlphaFunc (GL_GREATER, static_cast(1.0/255.0)); glEnable (GL_ALPHA_TEST); */ glEnable( GL_BLEND ); glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA ); int components = this->GetInput()->GetNumberOfScalarComponents(); switch ( components ) { case 1: this->RenderOneIndependentShadeFP(ren,vol); break; case 4: this->RenderRGBAShadeFP(ren,vol); break; } vtkgl::ActiveTexture( vtkgl::TEXTURE2); glDisable( GL_TEXTURE_2D ); glDisable( vtkgl::TEXTURE_3D ); vtkgl::ActiveTexture( vtkgl::TEXTURE1); glDisable( GL_TEXTURE_2D ); glDisable( vtkgl::TEXTURE_3D ); vtkgl::ActiveTexture( vtkgl::TEXTURE0); glDisable( GL_TEXTURE_2D ); glDisable( vtkgl::TEXTURE_3D ); glDisable( GL_BLEND ); } void vtkMitkOpenGLVolumeTextureMapper3D::DeleteTextureIndex( GLuint *index ) { //GPU_INFO << "DeleteTextureIndex"; if (glIsTexture(*index)) { GLuint tempIndex; tempIndex = *index; glDeleteTextures(1, &tempIndex); *index = 0; } } void vtkMitkOpenGLVolumeTextureMapper3D::CreateTextureIndex( GLuint *index ) { //GPU_INFO << "CreateTextureIndex"; GLuint tempIndex=0; glGenTextures(1, &tempIndex); *index = static_cast(tempIndex); } void vtkMitkOpenGLVolumeTextureMapper3D::RenderPolygons( vtkRenderer *ren, vtkVolume *vol, int stages[4] ) { //GPU_INFO << "RenderPolygons"; vtkRenderWindow *renWin = ren->GetRenderWindow(); if ( renWin->CheckAbortStatus() ) { return; } double bounds[27][6]; float distance2[27]; int numIterations; int i, j, k; // No cropping case - render the whole thing if ( !this->Cropping ) { // Use the input data bounds - we'll take care of the volume's // matrix during rendering this->GetInput()->GetBounds(bounds[0]); numIterations = 1; } // Simple cropping case - render the subvolume else if ( this->CroppingRegionFlags == 0x2000 ) { this->GetCroppingRegionPlanes(bounds[0]); numIterations = 1; } // Complex cropping case - render each region in back-to-front order else { // Get the camera position double camPos[4]; ren->GetActiveCamera()->GetPosition(camPos); double volBounds[6]; this->GetInput()->GetBounds(volBounds); // Pass camera through inverse volume matrix // so that we are in the same coordinate system vtkMatrix4x4 *volMatrix = vtkMatrix4x4::New(); vol->GetMatrix( volMatrix ); camPos[3] = 1.0; volMatrix->Invert(); volMatrix->MultiplyPoint( camPos, camPos ); volMatrix->Delete(); if ( camPos[3] ) { camPos[0] /= camPos[3]; camPos[1] /= camPos[3]; camPos[2] /= camPos[3]; } // These are the region limits for x (first four), y (next four) and // z (last four). The first region limit is the lower bound for // that axis, the next two are the region planes along that axis, and // the final one in the upper bound for that axis. float limit[12]; for ( i = 0; i < 3; i++ ) { limit[i*4 ] = volBounds[i*2]; limit[i*4+1] = this->CroppingRegionPlanes[i*2]; limit[i*4+2] = this->CroppingRegionPlanes[i*2+1]; limit[i*4+3] = volBounds[i*2+1]; } // For each of the 27 possible regions, find out if it is enabled, // and if so, compute the bounds and the distance from the camera // to the center of the region. int numRegions = 0; int region; for ( region = 0; region < 27; region++ ) { int regionFlag = 1<CroppingRegionFlags & regionFlag ) { // what is the coordinate in the 3x3x3 grid int loc[3]; loc[0] = region%3; loc[1] = (region/3)%3; loc[2] = (region/9)%3; // compute the bounds and center float center[3]; for ( i = 0; i < 3; i++ ) { bounds[numRegions][i*2 ] = limit[4*i+loc[i]]; bounds[numRegions][i*2+1] = limit[4*i+loc[i]+1]; center[i] = (bounds[numRegions][i*2 ] + bounds[numRegions][i*2+1])/2.0; } // compute the distance squared to the center distance2[numRegions] = (camPos[0]-center[0])*(camPos[0]-center[0]) + (camPos[1]-center[1])*(camPos[1]-center[1]) + (camPos[2]-center[2])*(camPos[2]-center[2]); // we've added one region numRegions++; } } // Do a quick bubble sort on distance for ( i = 1; i < numRegions; i++ ) { for ( j = i; j > 0 && distance2[j] > distance2[j-1]; j-- ) { float tmpBounds[6]; float tmpDistance2; for ( k = 0; k < 6; k++ ) { tmpBounds[k] = bounds[j][k]; } tmpDistance2 = distance2[j]; for ( k = 0; k < 6; k++ ) { bounds[j][k] = bounds[j-1][k]; } distance2[j] = distance2[j-1]; for ( k = 0; k < 6; k++ ) { bounds[j-1][k] = tmpBounds[k]; } distance2[j-1] = tmpDistance2; } } numIterations = numRegions; } // loop over all regions we need to render for ( int loop = 0; loop < numIterations; loop++ ) { // Compute the set of polygons for this region // according to the bounds this->ComputePolygons( ren, vol, bounds[loop] ); // Loop over the polygons for ( i = 0; i < this->NumberOfPolygons; i++ ) { if ( renWin->CheckAbortStatus() ) { return; } float *ptr = this->PolygonBuffer + 36*i; glBegin( GL_TRIANGLE_FAN ); for ( j = 0; j < 6; j++ ) { if ( ptr[0] < 0.0 ) { break; } for ( k = 0; k < 4; k++ ) { if ( stages[k] ) { vtkgl::MultiTexCoord3fv( vtkgl::TEXTURE0 + k, ptr ); } } glVertex3fv( ptr+3 ); ptr += 6; } glEnd(); } } } // This method moves the scalars from the input volume into volume1 (and // possibly volume2) which are the 3D texture maps used for rendering. // // In the case where our volume is a power of two, the copy is done // directly. If we need to resample, then trilinear interpolation is used. // // A shift/scale is applied to the input scalar value to produce an 8 bit // value for the texture volume. // // When the input data is one component, the scalar value is placed in the // second component of the two component volume1. The first component is // filled in later with the gradient magnitude. // // When the input data is two component non-independent, the first component // of the input data is placed in the first component of volume1, and the // second component of the input data is placed in the third component of // volume1. Volume1 has three components - the second is filled in later with // the gradient magnitude. // // When the input data is four component non-independent, the first three // components of the input data are placed in volume1 (which has three // components), and the fourth component is placed in the second component // of volume2. The first component of volume2 is later filled in with the // gradient magnitude. template class ScalarGradientCompute { T *dataPtr; unsigned char *tmpPtr; unsigned char *tmpPtr2; int sizeX; int sizeY; int sizeZ; int sizeXY; int sizeXm1; int sizeYm1; int sizeZm1; int fullX; int fullY; int fullZ; int fullXY; int currentChunkStart; int currentChunkEnd; int offZ; float offset; float scale; public: ScalarGradientCompute( T *_dataPtr,unsigned char *_tmpPtr,unsigned char *_tmpPtr2,int _sizeX,int _sizeY,int _sizeZ,int _fullX,int _fullY,int _fullZ,float _offset,float _scale) { dataPtr=_dataPtr; tmpPtr=_tmpPtr; tmpPtr2=_tmpPtr2; sizeX=_sizeX; sizeY=_sizeY; sizeZ=_sizeZ; fullX=_fullX; fullY=_fullY; fullZ=_fullZ; offset=_offset; scale=_scale; sizeXY=sizeX*sizeY; sizeXm1=sizeX-1; sizeYm1=sizeY-1; sizeZm1=sizeZ-1; fullXY=fullX*fullY; } inline float sample(int x,int y,int z) { return float(dataPtr[ x + y * sizeX + z * sizeXY ]); } inline void fill(int x,int y,int z) { int doff = x + y * fullX + (z-offZ) * fullXY; tmpPtr[doff*4+0]= 0; tmpPtr[doff*4+1]= 0; tmpPtr[doff*4+2]= 0; tmpPtr[doff*4+3]= 0; /* tmpPtr2[doff*3+0]= 0; tmpPtr2[doff*3+1]= 0; tmpPtr2[doff*3+2]= 0; */ } inline int clamp(int x) { if(x<0) x=0; else if(x>255) x=255; return x; } inline void write(int x,int y,int z,float grayValue,float gx,float gy,float gz) { /* gx /= aspect[0]; gy /= aspect[1]; gz /= aspect[2]; */ // Compute the gradient magnitude int iGrayValue = static_cast( (grayValue + offset) * scale + 0.5f ); gx *= scale; gy *= scale; gz *= scale; float t = sqrtf( gx*gx + gy*gy + gz*gz ); if ( t > 0.01f ) { if( t < 2.0f ) { float fac = 2.0f/t; gx *= fac; gy *= fac; gz *= fac; } else if( t > 255.0f) { float fac = 255.0f/t; gx *= fac; gy *= fac; gz *= fac; } } else { gx=gy=gz=0.0f; } int nx = static_cast(0.5f*gx+127.5f); int ny = static_cast(0.5f*gy+127.5f); int nz = static_cast(0.5f*gz+127.5f); int doff = x + y * fullX + (z-offZ) * fullXY; //tmpPtr[doff*2+0]= 0; tmpPtr[doff*4+0]= clamp(nx); tmpPtr[doff*4+1]= clamp(ny); tmpPtr[doff*4+2]= clamp(nz); tmpPtr[doff*4+3]= clamp(iGrayValue); /* if( z == fullZ/2 ) if( y == fullY/2 ) MITK_INFO << x << " " << y << " " << z << " : " << iGrayValue << " : " << iGradient; */ } inline void compute(int x,int y,int z) { float grayValue = sample(x,y,z); float gx,gy,gz; gx = sample(x+1,y,z) - sample(x-1,y,z); gy = sample(x,y+1,z) - sample(x,y-1,z); gz = sample(x,y,z+1) - sample(x,y,z-1); write( x, y, z, grayValue, gx, gy, gz ); } inline void computeClamp(int x,int y,int z) { float grayValue = sample(x,y,z); float gx,gy,gz; if(x==0) gx = 2.0f * ( sample(x+1,y,z) - grayValue ); else if(x==sizeXm1) gx = 2.0f * ( grayValue - sample(x-1,y,z) ); else gx = sample(x+1,y,z) - sample(x-1,y,z); if(y==0) gy = 2.0f * ( sample(x,y+1,z) - grayValue ); else if(y==sizeYm1) gy = 2.0f * ( grayValue - sample(x,y-1,z) ); else gy = sample(x,y+1,z) - sample(x,y-1,z); if(z==0) gz = 2.0f * ( sample(x,y,z+1) - grayValue ); else if(z==sizeZm1) gz = 2.0f * ( grayValue - sample(x,y,z-1) ); else gz = sample(x,y,z+1) - sample(x,y,z-1); write( x, y, z, grayValue, gx, gy, gz ); } inline void compute1D(int y,int z) { int x; x=0; computeClamp(x,y,z); x++; while(x=sizeZ) fill2D(z); else compute2D(z); } } }; template void vtkVolumeTextureMapper3DComputeScalars( T *dataPtr, vtkMitkVolumeTextureMapper3D *me, float offset, float scale, GLuint volume1, GLuint /*volume2*/) { //T *inPtr; // unsigned char *outPtr, *outPtr2; // int i, j, k; // int idx; int inputDimensions[3]; double inputSpacing[3]; vtkImageData *input = me->GetInput(); input->GetDimensions( inputDimensions ); input->GetSpacing( inputSpacing ); int outputDimensions[3]; float outputSpacing[3]; me->GetVolumeDimensions( outputDimensions ); me->GetVolumeSpacing( outputSpacing ); // int components = input->GetNumberOfScalarComponents(); // double wx, wy, wz; // double fx, fy, fz; // int x, y, z; //double sampleRate[3]; //sampleRate[0] = outputSpacing[0] / static_cast(inputSpacing[0]); //sampleRate[1] = outputSpacing[1] / static_cast(inputSpacing[1]); //sampleRate[2] = outputSpacing[2] / static_cast(inputSpacing[2]); int fullX = outputDimensions[0]; int fullY = outputDimensions[1]; int fullZ = outputDimensions[2]; int sizeX = inputDimensions[0]; int sizeY = inputDimensions[1]; int sizeZ = inputDimensions[2]; int chunkSize = 64; if(fullZ < chunkSize) chunkSize=fullZ; int numChunks = ( fullZ + (chunkSize-1) ) / chunkSize; //inPtr = dataPtr; unsigned char *tmpPtr = new unsigned char[fullX*fullY*chunkSize*4]; unsigned char *tmpPtr2 = 0;//new unsigned char[fullX*fullY*chunkSize*3]; // For each Chunk { ScalarGradientCompute sgc(dataPtr,tmpPtr,tmpPtr2,sizeX,sizeY,sizeZ,fullX,fullY,fullZ,offset,scale); int currentChunk = 0; while(currentChunk < numChunks) { // MITK_INFO << "processing chunk " << currentChunk; int currentChunkStart = currentChunk * chunkSize; int currentChunkEnd = currentChunkStart + chunkSize - 1 ; if( currentChunkEnd > (fullZ-1) ) currentChunkEnd = (fullZ-1); int currentChunkSize = currentChunkEnd - currentChunkStart + 1; sgc.fillSlices( currentChunkStart , currentChunkEnd ); glBindTexture(vtkgl::TEXTURE_3D, volume1); vtkgl::TexSubImage3D(vtkgl::TEXTURE_3D,0,0,0,currentChunkStart,fullX,fullY,currentChunkSize,GL_RGBA,GL_UNSIGNED_BYTE,tmpPtr); /* glBindTexture(vtkgl::TEXTURE_3D, volume2); vtkgl::TexSubImage3D(vtkgl::TEXTURE_3D,0,0,0,currentChunkStart,fullX,fullY,currentChunkSize,GL_RGB,GL_UNSIGNED_BYTE,tmpPtr2); */ currentChunk ++; } } delete tmpPtr; // delete tmpPtr2; } class RGBACompute { unsigned char *dataPtr; unsigned char *tmpPtr; unsigned char *tmpPtr2; int sizeX; int sizeY; int sizeZ; int sizeXY; int sizeXm1; int sizeYm1; int sizeZm1; int fullX; int fullY; int fullZ; int fullXY; - int currentChunkStart; - int currentChunkEnd; + //int currentChunkStart; + //int currentChunkEnd; int offZ; public: RGBACompute( unsigned char *_dataPtr,unsigned char *_tmpPtr,unsigned char *_tmpPtr2,int _sizeX,int _sizeY,int _sizeZ,int _fullX,int _fullY,int _fullZ) { dataPtr=_dataPtr; tmpPtr=_tmpPtr; tmpPtr2=_tmpPtr2; sizeX=_sizeX; sizeY=_sizeY; sizeZ=_sizeZ; fullX=_fullX; fullY=_fullY; fullZ=_fullZ; sizeXY=sizeX*sizeY; sizeXm1=sizeX-1; sizeYm1=sizeY-1; sizeZm1=sizeZ-1; fullXY=fullX*fullY; } inline int sample(int x,int y,int z) { return dataPtr[ ( x + y * sizeX + z * sizeXY ) * 4 +3 ]; } inline void fill(int x,int y,int z) { int doff = x + y * fullX + (z-offZ) * fullXY; tmpPtr[doff*4+0]= 0; tmpPtr[doff*4+1]= 0; tmpPtr[doff*4+2]= 0; tmpPtr[doff*4+3]= 0; tmpPtr2[doff*3+0]= 0; tmpPtr2[doff*3+1]= 0; tmpPtr2[doff*3+2]= 0; } inline int clamp(int x) { if(x<0) x=0; else if(x>255) x=255; return x; } inline void write(int x,int y,int z,int iGrayValue,int gx,int gy,int gz) { /* gx /= aspect[0]; gy /= aspect[1]; gz /= aspect[2]; */ int nx = static_cast(0.5f*gx+127.5f); int ny = static_cast(0.5f*gy+127.5f); int nz = static_cast(0.5f*gz+127.5f); int doff = x + y * fullX + (z-offZ) * fullXY; //tmpPtr[doff*2+0]= 0; tmpPtr[doff*4+0]= clamp(nx); tmpPtr[doff*4+1]= clamp(ny); tmpPtr[doff*4+2]= clamp(nz); tmpPtr[doff*4+3]= clamp(iGrayValue); int soff = x + y * sizeX + z * sizeXY; tmpPtr2[doff*3+0]= dataPtr[soff*4+0]; tmpPtr2[doff*3+1]= dataPtr[soff*4+1]; tmpPtr2[doff*3+2]= dataPtr[soff*4+2]; /* if( z == fullZ/2 ) if( y == fullY/2 ) MITK_INFO << x << " " << y << " " << z << " : " << iGrayValue << " : " << iGradient; */ } inline void compute(int x,int y,int z) { int grayValue = sample(x,y,z); int gx,gy,gz; gx = sample(x+1,y,z) - sample(x-1,y,z); gy = sample(x,y+1,z) - sample(x,y-1,z); gz = sample(x,y,z+1) - sample(x,y,z-1); write( x, y, z, grayValue, gx, gy, gz ); } inline void computeClamp(int x,int y,int z) { int grayValue = sample(x,y,z); int gx,gy,gz; if(x==0) gx = 2 * ( sample(x+1,y,z) - grayValue ); else if(x==sizeXm1) gx = 2 * ( grayValue - sample(x-1,y,z) ); else gx = sample(x+1,y,z) - sample(x-1,y,z); if(y==0) gy = 2 * ( sample(x,y+1,z) - grayValue ); else if(y==sizeYm1) gy = 2 * ( grayValue - sample(x,y-1,z) ); else gy = sample(x,y+1,z) - sample(x,y-1,z); if(z==0) gz = 2 * ( sample(x,y,z+1) - grayValue ); else if(z==sizeZm1) gz = 2 * ( grayValue - sample(x,y,z-1) ); else gz = sample(x,y,z+1) - sample(x,y,z-1); write( x, y, z, grayValue, gx, gy, gz ); } inline void compute1D(int y,int z) { int x=0; computeClamp(x,y,z); x++; while(x=sizeZ) fill2D(z); else compute2D(z); } } }; void vtkVolumeTextureMapper3DComputeRGBA( unsigned char *dataPtr, vtkMitkVolumeTextureMapper3D *me, GLuint volume1, GLuint volume2) { //unsigned char *inPtr; // unsigned char *outPtr, *outPtr2; // int i, j, k; // int idx; int inputDimensions[3]; double inputSpacing[3]; vtkImageData *input = me->GetInput(); input->GetDimensions( inputDimensions ); input->GetSpacing( inputSpacing ); int outputDimensions[3]; float outputSpacing[3]; me->GetVolumeDimensions( outputDimensions ); me->GetVolumeSpacing( outputSpacing ); int components = input->GetNumberOfScalarComponents(); MITK_INFO << "components are " << components; // double wx, wy, wz; // double fx, fy, fz; // int x, y, z; //double sampleRate[3]; //sampleRate[0] = outputSpacing[0] / static_cast(inputSpacing[0]); //sampleRate[1] = outputSpacing[1] / static_cast(inputSpacing[1]); //sampleRate[2] = outputSpacing[2] / static_cast(inputSpacing[2]); int fullX = outputDimensions[0]; int fullY = outputDimensions[1]; int fullZ = outputDimensions[2]; int sizeX = inputDimensions[0]; int sizeY = inputDimensions[1]; int sizeZ = inputDimensions[2]; int chunkSize = 64; if(fullZ < chunkSize) chunkSize=fullZ; int numChunks = ( fullZ + (chunkSize-1) ) / chunkSize; //inPtr = dataPtr; unsigned char *tmpPtr = new unsigned char[fullX*fullY*chunkSize*4]; unsigned char *tmpPtr2 = new unsigned char[fullX*fullY*chunkSize*3]; // For each Chunk { RGBACompute sgc(dataPtr,tmpPtr,tmpPtr2,sizeX,sizeY,sizeZ,fullX,fullY,fullZ); int currentChunk = 0; while(currentChunk < numChunks) { // MITK_INFO << "processing chunk " << currentChunk; int currentChunkStart = currentChunk * chunkSize; int currentChunkEnd = currentChunkStart + chunkSize - 1 ; if( currentChunkEnd > (fullZ-1) ) currentChunkEnd = (fullZ-1); int currentChunkSize = currentChunkEnd - currentChunkStart + 1; sgc.fillSlices( currentChunkStart , currentChunkEnd ); glBindTexture(vtkgl::TEXTURE_3D, volume1); vtkgl::TexSubImage3D(vtkgl::TEXTURE_3D,0,0,0,currentChunkStart,fullX,fullY,currentChunkSize,GL_RGBA,GL_UNSIGNED_BYTE,tmpPtr); glBindTexture(vtkgl::TEXTURE_3D, volume2); vtkgl::TexSubImage3D(vtkgl::TEXTURE_3D,0,0,0,currentChunkStart,fullX,fullY,currentChunkSize,GL_RGB,GL_UNSIGNED_BYTE,tmpPtr2); currentChunk ++; } } delete tmpPtr; delete tmpPtr2; } //----------------------------------------------------------------------------- void vtkMitkOpenGLVolumeTextureMapper3D::ComputeVolumeDimensions() { // Get the image data vtkImageData *input = this->GetInput(); // How big does the Volume need to be? int dim[3]; input->GetDimensions(dim); int powerOfTwoDim[3]; if(this->SupportsNonPowerOfTwoTextures) { for ( int i = 0; i < 3; i++ ) powerOfTwoDim[i]=(dim[i]+1)&~1; // MITK_INFO << "using non-power-two even textures (" << (1.0-double(dim[0]*dim[1]*dim[2])/double(powerOfTwoDim[0]*powerOfTwoDim[1]*powerOfTwoDim[2])) * 100.0 << "% memory wasted)"; } else { for ( int i = 0; i < 3; i++ ) { powerOfTwoDim[i] = 4; while ( powerOfTwoDim[i] < dim[i] ) powerOfTwoDim[i] *= 2; } MITK_WARN << "using power-two textures (" << (1.0-double(dim[0]*dim[1]*dim[2])/double(powerOfTwoDim[0]*powerOfTwoDim[1]*powerOfTwoDim[2])) * 100.0 << "% memory wasted)"; } // Save the volume size this->VolumeDimensions[0] = powerOfTwoDim[0]; this->VolumeDimensions[1] = powerOfTwoDim[1]; this->VolumeDimensions[2] = powerOfTwoDim[2]; // What is the spacing? double spacing[3]; input->GetSpacing(spacing); // Compute the new spacing this->VolumeSpacing[0] = ( dim[0] -1.01)*spacing[0] / static_cast(this->VolumeDimensions[0]-1); this->VolumeSpacing[1] = ( dim[1] -1.01)*spacing[1] / static_cast(this->VolumeDimensions[1]-1); this->VolumeSpacing[2] = ((dim[2])-1.01)*spacing[2] / static_cast(this->VolumeDimensions[2]-1); } //----------------------------------------------------------------------------- bool vtkMitkOpenGLVolumeTextureMapper3D::UpdateVolumes(vtkVolume *vtkNotUsed(vol)) { // Get the image data vtkImageData *input = this->GetInput(); // input->Update(); //VTK6_TODO bool needUpdate = false; // Has the volume changed in some way? if ( this->SavedTextureInput != input || this->SavedTextureMTime.GetMTime() < input->GetMTime() ) needUpdate = true; // Do we have any volume on the gpu already? if(!this->Volume1Index) needUpdate = true; if(!needUpdate) return true; ComputeVolumeDimensions(); int components = input->GetNumberOfScalarComponents(); // Find the scalar range double scalarRange[2]; input->GetPointData()->GetScalars()->GetRange(scalarRange, components-1); // Is the difference between max and min less than 4096? If so, and if // the data is not of float or double type, use a simple offset mapping. // If the difference between max and min is 4096 or greater, or the data // is of type float or double, we must use an offset / scaling mapping. // In this case, the array size will be 4096 - we need to figure out the // offset and scale factor. float offset; float scale; int arraySizeNeeded; int scalarType = input->GetScalarType(); if ( scalarType == VTK_FLOAT || scalarType == VTK_DOUBLE || scalarRange[1] - scalarRange[0] > 255 ) { arraySizeNeeded = 256; offset = -scalarRange[0]; scale = 255.0 / (scalarRange[1] - scalarRange[0]); } else { arraySizeNeeded = static_cast(scalarRange[1] - scalarRange[0] + 1); offset = -scalarRange[0]; scale = 1.0; } this->ColorTableSize = arraySizeNeeded; this->ColorTableOffset = offset; this->ColorTableScale = scale; // Allocating volume on gpu { // Deleting old textures this->DeleteTextureIndex(&this->Volume1Index); this->DeleteTextureIndex(&this->Volume2Index); this->DeleteTextureIndex(&this->Volume3Index); this->CreateTextureIndex(&this->Volume1Index); //this->CreateTextureIndex(&this->Volume2Index); int dim[3]; this->GetVolumeDimensions(dim); vtkgl::ActiveTexture( vtkgl::TEXTURE0 ); MITK_INFO << "allocating volume on gpu"; GLint gradientScalarTextureFormat = GL_RGBA8; if(this->UseCompressedTexture && SupportsCompressedTexture) gradientScalarTextureFormat = myGL_COMPRESSED_RGBA_S3TC_DXT5_EXT; glBindTexture(vtkgl::TEXTURE_3D, this->Volume1Index); vtkgl::TexImage3D(vtkgl::TEXTURE_3D,0,gradientScalarTextureFormat,dim[0],dim[1],dim[2],0,GL_RGBA,GL_UNSIGNED_BYTE,0); this->Setup3DTextureParameters( true ); } // Transfer the input volume to the RGBA volume void *dataPtr = input->GetScalarPointer(); switch ( scalarType ) { vtkTemplateMacro( vtkVolumeTextureMapper3DComputeScalars( static_cast(dataPtr), this, offset, scale, this->Volume1Index, this->Volume2Index)); } this->SavedTextureInput = input; this->SavedTextureMTime.Modified(); return true; } //----------------------------------------------------------------------------- bool vtkMitkOpenGLVolumeTextureMapper3D::UpdateVolumesRGBA(vtkVolume *vtkNotUsed(vol)) { // Get the image data vtkImageData *input = this->GetInput(); // input->Update(); //VTK6_TODO bool needUpdate = false; // Has the volume changed in some way? if ( this->SavedTextureInput != input || this->SavedTextureMTime.GetMTime() < input->GetMTime() ) needUpdate = true; // Do we have any volume on the gpu already? if(!this->Volume1Index) needUpdate = true; if(!needUpdate) return true; MITK_INFO << "updating rgba volume"; ComputeVolumeDimensions(); // Allocating volume on gpu { // Deleting old textures this->DeleteTextureIndex(&this->Volume1Index); this->DeleteTextureIndex(&this->Volume2Index); this->DeleteTextureIndex(&this->Volume3Index); this->CreateTextureIndex(&this->Volume1Index); this->CreateTextureIndex(&this->Volume2Index); int dim[3]; this->GetVolumeDimensions(dim); MITK_INFO << "allocating volume on gpu"; GLint gradientScalarTextureFormat = GL_RGBA8; GLint colorTextureFormat = GL_RGB8; if(this->UseCompressedTexture && SupportsCompressedTexture) { gradientScalarTextureFormat = myGL_COMPRESSED_RGBA_S3TC_DXT5_EXT; colorTextureFormat = myGL_COMPRESSED_RGB_S3TC_DXT1_EXT; } vtkgl::ActiveTexture( vtkgl::TEXTURE0 ); glBindTexture(vtkgl::TEXTURE_3D, this->Volume1Index); vtkgl::TexImage3D(vtkgl::TEXTURE_3D,0,gradientScalarTextureFormat,dim[0],dim[1],dim[2],0,GL_RGBA,GL_UNSIGNED_BYTE,0); this->Setup3DTextureParameters( true ); glBindTexture(vtkgl::TEXTURE_3D, this->Volume2Index); vtkgl::TexImage3D(vtkgl::TEXTURE_3D,0,colorTextureFormat,dim[0],dim[1],dim[2],0,GL_RGB,GL_UNSIGNED_BYTE,0); this->Setup3DTextureParameters( true ); } // Transfer the input volume to the RGBA volume unsigned char *dataPtr = (unsigned char*)input->GetScalarPointer(); vtkVolumeTextureMapper3DComputeRGBA( dataPtr, this, this->Volume1Index, this->Volume2Index); this->SavedTextureInput = input; this->SavedTextureMTime.Modified(); return true; } void vtkMitkOpenGLVolumeTextureMapper3D::Setup3DTextureParameters( bool linear ) { //GPU_INFO << "Setup3DTextureParameters"; if( linear ) { glTexParameterf( vtkgl::TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); glTexParameterf( vtkgl::TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } else { glTexParameterf( vtkgl::TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_NEAREST ); glTexParameterf( vtkgl::TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_NEAREST ); } glTexParameterf( vtkgl::TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP ); glTexParameterf( vtkgl::TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP ); } void vtkMitkOpenGLVolumeTextureMapper3D::SetupOneIndependentTextures( vtkRenderer *vtkNotUsed(ren), vtkVolume *vol ) { // Update the volume containing the 2 byte scalar / gradient magnitude this->UpdateVolumes( vol ); // Update the dependent 2D color table mapping scalar value and // gradient magnitude to RGBA if ( this->UpdateColorLookup( vol ) || !this->ColorLookupIndex ) { this->DeleteTextureIndex( &this->ColorLookupIndex ); this->DeleteTextureIndex( &this->AlphaLookupIndex ); this->CreateTextureIndex( &this->ColorLookupIndex ); vtkgl::ActiveTexture( vtkgl::TEXTURE1 ); glBindTexture(GL_TEXTURE_2D, this->ColorLookupIndex); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP ); //MITK_INFO << "uploading transferfunction"; GLint colorLookupTextureFormat = GL_RGBA8; if(this->UseCompressedTexture && SupportsCompressedTexture) colorLookupTextureFormat = myGL_COMPRESSED_RGBA_S3TC_DXT5_EXT; glTexImage2D( GL_TEXTURE_2D, 0,colorLookupTextureFormat, 256, 256, 0, GL_RGBA, GL_UNSIGNED_BYTE, this->ColorLookup ); } } void vtkMitkOpenGLVolumeTextureMapper3D::SetupRGBATextures( vtkRenderer *vtkNotUsed(ren), vtkVolume *vol ) { MITK_INFO << "SetupFourDependentTextures"; this->UpdateVolumesRGBA(vol); /* vtkgl::ActiveTexture( vtkgl::TEXTURE0 ); glDisable( GL_TEXTURE_2D ); glEnable( vtkgl::TEXTURE_3D ); vtkgl::ActiveTexture( vtkgl::TEXTURE1 ); glDisable( GL_TEXTURE_2D ); glEnable( vtkgl::TEXTURE_3D ); vtkgl::ActiveTexture( vtkgl::TEXTURE2 ); glDisable( GL_TEXTURE_2D ); glEnable( vtkgl::TEXTURE_3D ); // Update the volume containing the 3 byte scalars / gradient magnitude if ( this->UpdateVolumes( vol ) || !this->Volume1Index || !this->Volume2Index || !this->Volume3Index ) { int dim[3]; this->GetVolumeDimensions(dim); vtkgl::ActiveTexture( vtkgl::TEXTURE0 ); glBindTexture(vtkgl::TEXTURE_3D,0); this->DeleteTextureIndex(&this->Volume1Index); this->CreateTextureIndex(&this->Volume1Index); glBindTexture(vtkgl::TEXTURE_3D, this->Volume1Index); vtkgl::TexImage3D(vtkgl::TEXTURE_3D,0,this->InternalRGB,dim[0],dim[1], dim[2],0,GL_RGB,GL_UNSIGNED_BYTE,this->Volume1); vtkgl::ActiveTexture( vtkgl::TEXTURE1 ); glBindTexture(vtkgl::TEXTURE_3D,0); this->DeleteTextureIndex(&this->Volume2Index); this->CreateTextureIndex(&this->Volume2Index); glBindTexture(vtkgl::TEXTURE_3D, this->Volume2Index); vtkgl::TexImage3D(vtkgl::TEXTURE_3D,0,this->InternalLA,dim[0],dim[1], dim[2],0,GL_LUMINANCE_ALPHA,GL_UNSIGNED_BYTE, this->Volume2); vtkgl::ActiveTexture( vtkgl::TEXTURE2 ); glBindTexture(vtkgl::TEXTURE_3D,0); this->DeleteTextureIndex(&this->Volume3Index); this->CreateTextureIndex(&this->Volume3Index); glBindTexture(vtkgl::TEXTURE_3D, this->Volume3Index); vtkgl::TexImage3D(vtkgl::TEXTURE_3D,0,this->InternalRGB,dim[0],dim[1], dim[2],0,GL_RGB,GL_UNSIGNED_BYTE,this->Volume3); } vtkgl::ActiveTexture( vtkgl::TEXTURE0 ); glBindTexture(vtkgl::TEXTURE_3D, this->Volume1Index); this->Setup3DTextureParameters( true ); vtkgl::ActiveTexture( vtkgl::TEXTURE1 ); glBindTexture(vtkgl::TEXTURE_3D, this->Volume2Index); this->Setup3DTextureParameters( true ); vtkgl::ActiveTexture( vtkgl::TEXTURE2 ); glBindTexture(vtkgl::TEXTURE_3D_EXT, this->Volume3Index); this->Setup3DTextureParameters( true ); vtkgl::ActiveTexture( vtkgl::TEXTURE3 ); glEnable( GL_TEXTURE_2D ); glDisable( vtkgl::TEXTURE_3D ); // Update the dependent 2D table mapping scalar value and // gradient magnitude to opacity if ( this->UpdateColorLookup( vol ) || !this->AlphaLookupIndex ) { this->DeleteTextureIndex(&this->ColorLookupIndex); vtkgl::ActiveTexture( vtkgl::TEXTURE3 ); glBindTexture(GL_TEXTURE_2D,0); this->DeleteTextureIndex(&this->AlphaLookupIndex); this->CreateTextureIndex(&this->AlphaLookupIndex); glBindTexture(GL_TEXTURE_2D, this->AlphaLookupIndex); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP ); //MITK_INFO << "uploading transferfunction"; glTexImage2D(GL_TEXTURE_2D,0,this->InternalAlpha, 256, 256, 0, GL_ALPHA, GL_UNSIGNED_BYTE, this->AlphaLookup ); } vtkgl::ActiveTexture( vtkgl::TEXTURE3 ); glBindTexture(GL_TEXTURE_2D, this->AlphaLookupIndex); */ } void vtkMitkOpenGLVolumeTextureMapper3D::RenderOneIndependentShadeFP( vtkRenderer *ren, vtkVolume *vol ) { //GPU_INFO << "RenderOneIndependentShadeFP"; this->SetupOneIndependentTextures( ren, vol ); glEnable( vtkgl::FRAGMENT_PROGRAM_ARB ); vtkgl::BindProgramARB( vtkgl::FRAGMENT_PROGRAM_ARB, prgOneComponentShade ); this->SetupProgramLocalsForShadingFP( ren, vol ); // Bind Textures { vtkgl::ActiveTexture( vtkgl::TEXTURE0 ); glDisable( GL_TEXTURE_2D ); glEnable( vtkgl::TEXTURE_3D ); glBindTexture(vtkgl::TEXTURE_3D, this->Volume1Index); vtkgl::ActiveTexture( vtkgl::TEXTURE1 ); glEnable( GL_TEXTURE_2D ); glDisable( vtkgl::TEXTURE_3D ); glBindTexture(GL_TEXTURE_2D, this->ColorLookupIndex); vtkgl::ActiveTexture( vtkgl::TEXTURE2 ); glDisable( GL_TEXTURE_2D ); glEnable( vtkgl::TEXTURE_3D ); glBindTexture(vtkgl::TEXTURE_3D, this->Volume2Index); } int stages[4] = {1,1,1,0}; this->RenderPolygons( ren, vol, stages ); glDisable( vtkgl::FRAGMENT_PROGRAM_ARB ); } void vtkMitkOpenGLVolumeTextureMapper3D::RenderRGBAShadeFP( vtkRenderer *ren, vtkVolume *vol ) { this->SetupRGBATextures(ren, vol); glEnable( vtkgl::FRAGMENT_PROGRAM_ARB ); vtkgl::BindProgramARB( vtkgl::FRAGMENT_PROGRAM_ARB, prgRGBAShade ); this->SetupProgramLocalsForShadingFP( ren, vol ); // Bind Textures { vtkgl::ActiveTexture( vtkgl::TEXTURE0 ); glDisable( GL_TEXTURE_2D ); glEnable( vtkgl::TEXTURE_3D ); glBindTexture(vtkgl::TEXTURE_3D, this->Volume1Index); vtkgl::ActiveTexture( vtkgl::TEXTURE1 ); glDisable( GL_TEXTURE_2D ); glEnable( vtkgl::TEXTURE_3D ); glBindTexture(vtkgl::TEXTURE_3D, this->Volume2Index); } int stages[4] = {1,1,1,0}; this->RenderPolygons( ren, vol, stages ); glDisable( vtkgl::FRAGMENT_PROGRAM_ARB ); } void vtkMitkOpenGLVolumeTextureMapper3D::GetLightInformation( vtkRenderer *ren, vtkVolume *vol, GLfloat lightDirection[2][4], GLfloat lightDiffuseColor[2][4], GLfloat lightSpecularColor[2][4], GLfloat halfwayVector[2][4], GLfloat ambientColor[4] ) { //GPU_INFO << "GetLightInformation"; float ambient = vol->GetProperty()->GetAmbient(); float diffuse = vol->GetProperty()->GetDiffuse(); float specular = vol->GetProperty()->GetSpecular(); vtkTransform *volumeTransform = vtkTransform::New(); volumeTransform->SetMatrix( vol->GetMatrix() ); volumeTransform->Inverse(); vtkLightCollection *lights = ren->GetLights(); lights->InitTraversal(); vtkLight *light[2]; light[0] = lights->GetNextItem(); light[1] = lights->GetNextItem(); int lightIndex = 0; double cameraPosition[3]; double cameraFocalPoint[3]; ren->GetActiveCamera()->GetPosition( cameraPosition ); ren->GetActiveCamera()->GetFocalPoint( cameraFocalPoint ); double viewDirection[3]; volumeTransform->TransformPoint( cameraPosition, cameraPosition ); volumeTransform->TransformPoint( cameraFocalPoint, cameraFocalPoint ); viewDirection[0] = cameraFocalPoint[0] - cameraPosition[0]; viewDirection[1] = cameraFocalPoint[1] - cameraPosition[1]; viewDirection[2] = cameraFocalPoint[2] - cameraPosition[2]; vtkMath::Normalize( viewDirection ); ambientColor[0] = 0.0; ambientColor[1] = 0.0; ambientColor[2] = 0.0; ambientColor[3] = 0.0; for ( lightIndex = 0; lightIndex < 2; lightIndex++ ) { float dir[3] = {0,0,0}; float half[3] = {0,0,0}; if ( light[lightIndex] == NULL || light[lightIndex]->GetSwitch() == 0 ) { lightDiffuseColor[lightIndex][0] = 0.0; lightDiffuseColor[lightIndex][1] = 0.0; lightDiffuseColor[lightIndex][2] = 0.0; lightDiffuseColor[lightIndex][3] = 0.0; lightSpecularColor[lightIndex][0] = 0.0; lightSpecularColor[lightIndex][1] = 0.0; lightSpecularColor[lightIndex][2] = 0.0; lightSpecularColor[lightIndex][3] = 0.0; } else { float lightIntensity = light[lightIndex]->GetIntensity(); double lightColor[3]; light[lightIndex]->GetDiffuseColor( lightColor ); double lightPosition[3]; double lightFocalPoint[3]; light[lightIndex]->GetTransformedPosition( lightPosition ); light[lightIndex]->GetTransformedFocalPoint( lightFocalPoint ); volumeTransform->TransformPoint( lightPosition, lightPosition ); volumeTransform->TransformPoint( lightFocalPoint, lightFocalPoint ); dir[0] = lightPosition[0] - lightFocalPoint[0]; dir[1] = lightPosition[1] - lightFocalPoint[1]; dir[2] = lightPosition[2] - lightFocalPoint[2]; vtkMath::Normalize( dir ); lightDiffuseColor[lightIndex][0] = lightColor[0]*diffuse*lightIntensity; lightDiffuseColor[lightIndex][1] = lightColor[1]*diffuse*lightIntensity; lightDiffuseColor[lightIndex][2] = lightColor[2]*diffuse*lightIntensity; lightDiffuseColor[lightIndex][3] = 1.0; lightSpecularColor[lightIndex][0]= lightColor[0]*specular*lightIntensity; lightSpecularColor[lightIndex][1]= lightColor[1]*specular*lightIntensity; lightSpecularColor[lightIndex][2]= lightColor[2]*specular*lightIntensity; lightSpecularColor[lightIndex][3] = 0.0; half[0] = dir[0] - viewDirection[0]; half[1] = dir[1] - viewDirection[1]; half[2] = dir[2] - viewDirection[2]; vtkMath::Normalize( half ); ambientColor[0] += ambient*lightColor[0]; ambientColor[1] += ambient*lightColor[1]; ambientColor[2] += ambient*lightColor[2]; } lightDirection[lightIndex][0] = (dir[0]+1.0)/2.0; lightDirection[lightIndex][1] = (dir[1]+1.0)/2.0; lightDirection[lightIndex][2] = (dir[2]+1.0)/2.0; lightDirection[lightIndex][3] = 0.0; halfwayVector[lightIndex][0] = (half[0]+1.0)/2.0; halfwayVector[lightIndex][1] = (half[1]+1.0)/2.0; halfwayVector[lightIndex][2] = (half[2]+1.0)/2.0; halfwayVector[lightIndex][3] = 0.0; } volumeTransform->Delete(); } void vtkMitkOpenGLVolumeTextureMapper3D::SetupProgramLocalsForShadingFP( vtkRenderer *ren, vtkVolume *vol ) { //GPU_INFO << "SetupProgramLocalsForShadingFP"; GLfloat lightDirection[2][4]; GLfloat lightDiffuseColor[2][4]; GLfloat lightSpecularColor[2][4]; GLfloat halfwayVector[2][4]; GLfloat ambientColor[4]; float ambient = vol->GetProperty()->GetAmbient(); float diffuse = vol->GetProperty()->GetDiffuse(); float specular = vol->GetProperty()->GetSpecular(); float specularPower = vol->GetProperty()->GetSpecularPower(); vtkTransform *volumeTransform = vtkTransform::New(); volumeTransform->SetMatrix( vol->GetMatrix() ); volumeTransform->Inverse(); vtkLightCollection *lights = ren->GetLights(); lights->InitTraversal(); vtkLight *light[2]; light[0] = lights->GetNextItem(); light[1] = lights->GetNextItem(); int lightIndex = 0; double cameraPosition[3]; double cameraFocalPoint[3]; ren->GetActiveCamera()->GetPosition( cameraPosition ); ren->GetActiveCamera()->GetFocalPoint( cameraFocalPoint ); volumeTransform->TransformPoint( cameraPosition, cameraPosition ); volumeTransform->TransformPoint( cameraFocalPoint, cameraFocalPoint ); double viewDirection[4]; viewDirection[0] = cameraFocalPoint[0] - cameraPosition[0]; viewDirection[1] = cameraFocalPoint[1] - cameraPosition[1]; viewDirection[2] = cameraFocalPoint[2] - cameraPosition[2]; viewDirection[3] = 0.0; vtkMath::Normalize( viewDirection ); ambientColor[0] = 0.0; ambientColor[1] = 0.0; ambientColor[2] = 0.0; ambientColor[3] = 0.0; for ( lightIndex = 0; lightIndex < 2; lightIndex++ ) { float dir[3] = {0,0,0}; float half[3] = {0,0,0}; if ( light[lightIndex] == NULL || light[lightIndex]->GetSwitch() == 0 ) { lightDiffuseColor[lightIndex][0] = 0.0; lightDiffuseColor[lightIndex][1] = 0.0; lightDiffuseColor[lightIndex][2] = 0.0; lightDiffuseColor[lightIndex][3] = 0.0; lightSpecularColor[lightIndex][0] = 0.0; lightSpecularColor[lightIndex][1] = 0.0; lightSpecularColor[lightIndex][2] = 0.0; lightSpecularColor[lightIndex][3] = 0.0; } else { float lightIntensity = light[lightIndex]->GetIntensity(); double lightColor[3]; light[lightIndex]->GetDiffuseColor( lightColor ); double lightPosition[3]; double lightFocalPoint[3]; light[lightIndex]->GetTransformedPosition( lightPosition ); light[lightIndex]->GetTransformedFocalPoint( lightFocalPoint ); volumeTransform->TransformPoint( lightPosition, lightPosition ); volumeTransform->TransformPoint( lightFocalPoint, lightFocalPoint ); dir[0] = lightPosition[0] - lightFocalPoint[0]; dir[1] = lightPosition[1] - lightFocalPoint[1]; dir[2] = lightPosition[2] - lightFocalPoint[2]; vtkMath::Normalize( dir ); lightDiffuseColor[lightIndex][0] = lightColor[0]*diffuse*lightIntensity; lightDiffuseColor[lightIndex][1] = lightColor[1]*diffuse*lightIntensity; lightDiffuseColor[lightIndex][2] = lightColor[2]*diffuse*lightIntensity; lightDiffuseColor[lightIndex][3] = 0.0; lightSpecularColor[lightIndex][0]= lightColor[0]*specular*lightIntensity; lightSpecularColor[lightIndex][1]= lightColor[1]*specular*lightIntensity; lightSpecularColor[lightIndex][2]= lightColor[2]*specular*lightIntensity; lightSpecularColor[lightIndex][3] = 0.0; half[0] = dir[0] - viewDirection[0]; half[1] = dir[1] - viewDirection[1]; half[2] = dir[2] - viewDirection[2]; vtkMath::Normalize( half ); ambientColor[0] += ambient*lightColor[0]; ambientColor[1] += ambient*lightColor[1]; ambientColor[2] += ambient*lightColor[2]; } lightDirection[lightIndex][0] = dir[0]; lightDirection[lightIndex][1] = dir[1]; lightDirection[lightIndex][2] = dir[2]; lightDirection[lightIndex][3] = 0.0; halfwayVector[lightIndex][0] = half[0]; halfwayVector[lightIndex][1] = half[1]; halfwayVector[lightIndex][2] = half[2]; halfwayVector[lightIndex][3] = 0.0; } volumeTransform->Delete(); vtkgl::ProgramLocalParameter4fARB( vtkgl::FRAGMENT_PROGRAM_ARB, 0, lightDirection[0][0], lightDirection[0][1], lightDirection[0][2], lightDirection[0][3] ); vtkgl::ProgramLocalParameter4fARB( vtkgl::FRAGMENT_PROGRAM_ARB, 1, halfwayVector[0][0], halfwayVector[0][1], halfwayVector[0][2], halfwayVector[0][3] ); vtkgl::ProgramLocalParameter4fARB( vtkgl::FRAGMENT_PROGRAM_ARB, 2, ambient, diffuse, specular, specularPower ); vtkgl::ProgramLocalParameter4fARB( vtkgl::FRAGMENT_PROGRAM_ARB, 3, lightDiffuseColor[0][0], lightDiffuseColor[0][1], lightDiffuseColor[0][2], lightDiffuseColor[0][3] ); vtkgl::ProgramLocalParameter4fARB( vtkgl::FRAGMENT_PROGRAM_ARB, 4, lightSpecularColor[0][0], lightSpecularColor[0][1], lightSpecularColor[0][2], lightSpecularColor[0][3] ); vtkgl::ProgramLocalParameter4fARB( vtkgl::FRAGMENT_PROGRAM_ARB, 5, viewDirection[0], viewDirection[1], viewDirection[2], viewDirection[3] ); vtkgl::ProgramLocalParameter4fARB( vtkgl::FRAGMENT_PROGRAM_ARB, 6, 2.0, -1.0, 0.0, 0.0 ); } int vtkMitkOpenGLVolumeTextureMapper3D::IsRenderSupported( vtkRenderer *renderer, vtkVolumeProperty* /*property*/ ) { //GPU_INFO << "IsRenderSupported"; if ( !this->Initialized ) { //this->Initialize(); this->Initialize(renderer); } if ( !this->RenderPossible ) { MITK_WARN<<"vtkMitkOpenGLVolumeTextureMapper3D::IsRenderSupported Rendering not possible"; return 0; } if ( !this->GetInput() ) { MITK_WARN<<"vtkMitkOpenGLVolumeTextureMapper3D::IsRenderSupported No input available"; return 0; } return 1; } void vtkMitkOpenGLVolumeTextureMapper3D::Initialize(vtkRenderer *renderer) { //GPU_INFO << "Initialize"; this->Initialized = 1; // vtkOpenGLExtensionManager * extensions = vtkOpenGLExtensionManager::New(); //extensions->SetRenderWindow(NULL); // set render window to the current one. vtkOpenGLExtensionManager *extensions=static_cast(renderer->GetRenderWindow())->GetExtensionManager(); int supports_texture3D=extensions->ExtensionSupported( "GL_VERSION_1_2" ); if(supports_texture3D) { extensions->LoadExtension("GL_VERSION_1_2"); } else { supports_texture3D=extensions->ExtensionSupported( "GL_EXT_texture3D" ); if(supports_texture3D) { extensions->LoadCorePromotedExtension("GL_EXT_texture3D"); } } int supports_multitexture=extensions->ExtensionSupported( "GL_VERSION_1_3" ); if(supports_multitexture) { extensions->LoadExtension("GL_VERSION_1_3"); } else { supports_multitexture= extensions->ExtensionSupported("GL_ARB_multitexture"); if(supports_multitexture) { extensions->LoadCorePromotedExtension("GL_ARB_multitexture"); } } this->SupportsCompressedTexture=extensions->ExtensionSupported("GL_VERSION_1_3")==1; if(!this->SupportsCompressedTexture) { this->SupportsCompressedTexture= extensions->ExtensionSupported("GL_ARB_texture_compression")==1; if(this->SupportsCompressedTexture) { extensions->LoadCorePromotedExtension("GL_ARB_texture_compression"); } } //GPU_INFO(this->SupportsCompressedTexture) << "supporting compressed textures"; this->SupportsNonPowerOfTwoTextures= extensions->ExtensionSupported("GL_VERSION_2_0") || extensions->ExtensionSupported("GL_ARB_texture_non_power_of_two"); //GPU_INFO << "np2: " << (this->SupportsNonPowerOfTwoTextures?1:0); int supports_GL_ARB_fragment_program = extensions->ExtensionSupported( "GL_ARB_fragment_program" ); if(supports_GL_ARB_fragment_program) { extensions->LoadExtension( "GL_ARB_fragment_program" ); } int supports_GL_ARB_vertex_program = extensions->ExtensionSupported( "GL_ARB_vertex_program" ); if(supports_GL_ARB_vertex_program) { extensions->LoadExtension( "GL_ARB_vertex_program" ); } RenderPossible = 0; if ( supports_texture3D && supports_multitexture && supports_GL_ARB_fragment_program && supports_GL_ARB_vertex_program && vtkgl::TexImage3D && vtkgl::ActiveTexture && vtkgl::MultiTexCoord3fv && vtkgl::GenProgramsARB && vtkgl::DeleteProgramsARB && vtkgl::BindProgramARB && vtkgl::ProgramStringARB && vtkgl::ProgramLocalParameter4fARB ) { RenderPossible = 1; } else { std::string errString = "no gpu-acceleration possible cause following extensions/methods are missing or unsupported:"; if(!supports_texture3D) errString += " EXT_TEXTURE3D"; if(!supports_multitexture) errString += " EXT_MULTITEXTURE"; if(!supports_GL_ARB_fragment_program) errString += " ARB_FRAGMENT_PROGRAM"; if(!supports_GL_ARB_vertex_program) errString += " ARB_VERTEX_PROGRAM"; if(!vtkgl::TexImage3D) errString += " glTexImage3D"; if(!vtkgl::ActiveTexture) errString += " glActiveTexture"; if(!vtkgl::MultiTexCoord3fv) errString += " glMultiTexCoord3fv"; if(!vtkgl::GenProgramsARB) errString += " glGenProgramsARB"; if(!vtkgl::DeleteProgramsARB) errString += " glDeleteProgramsARB"; if(!vtkgl::BindProgramARB) errString += " glBindProgramARB"; if(!vtkgl::ProgramStringARB) errString += " glProgramStringARB"; if(!vtkgl::ProgramLocalParameter4fARB) errString += " glProgramLocalParameter4fARB"; GPU_WARN << errString; }; if(RenderPossible) { vtkgl::GenProgramsARB( 1, &prgOneComponentShade ); vtkgl::BindProgramARB( vtkgl::FRAGMENT_PROGRAM_ARB, prgOneComponentShade ); vtkgl::ProgramStringARB( vtkgl::FRAGMENT_PROGRAM_ARB, vtkgl::PROGRAM_FORMAT_ASCII_ARB, static_cast(strlen(vtkMitkVolumeTextureMapper3D_OneComponentShadeFP)), vtkMitkVolumeTextureMapper3D_OneComponentShadeFP ); vtkgl::GenProgramsARB( 1, &prgRGBAShade ); vtkgl::BindProgramARB( vtkgl::FRAGMENT_PROGRAM_ARB, prgRGBAShade ); vtkgl::ProgramStringARB( vtkgl::FRAGMENT_PROGRAM_ARB, vtkgl::PROGRAM_FORMAT_ASCII_ARB, static_cast(strlen(vtkMitkVolumeTextureMapper3D_FourDependentShadeFP)), vtkMitkVolumeTextureMapper3D_FourDependentShadeFP ); } } // ---------------------------------------------------------------------------- // Print the vtkMitkOpenGLVolumeTextureMapper3D void vtkMitkOpenGLVolumeTextureMapper3D::PrintSelf(ostream& os, vtkIndent indent) { // vtkOpenGLExtensionManager * extensions = vtkOpenGLExtensionManager::New(); // extensions->SetRenderWindow(NULL); // set render window to current render window os << indent << "Initialized " << this->Initialized << endl; /* if ( this->Initialized ) { os << indent << "Supports GL_VERSION_1_2:" << extensions->ExtensionSupported( "GL_VERSION_1_2" ) << endl; os << indent << "Supports GL_EXT_texture3D:" << extensions->ExtensionSupported( "GL_EXT_texture3D" ) << endl; os << indent << "Supports GL_VERSION_1_3:" << extensions->ExtensionSupported( "GL_VERSION_1_3" ) << endl; os << indent << "Supports GL_ARB_multitexture: " << extensions->ExtensionSupported( "GL_ARB_multitexture" ) << endl; os << indent << "Supports GL_NV_texture_shader2: " << extensions->ExtensionSupported( "GL_NV_texture_shader2" ) << endl; os << indent << "Supports GL_NV_register_combiners2: " << extensions->ExtensionSupported( "GL_NV_register_combiners2" ) << endl; os << indent << "Supports GL_ATI_fragment_shader: " << extensions->ExtensionSupported( "GL_ATI_fragment_shader" ) << endl; os << indent << "Supports GL_ARB_fragment_program: " << extensions->ExtensionSupported( "GL_ARB_fragment_program" ) << endl; os << indent << "Supports GL_ARB_texture_compression: " << extensions->ExtensionSupported( "GL_ARB_texture_compression" ) << endl; os << indent << "Supports GL_VERSION_2_0:" << extensions->ExtensionSupported( "GL_VERSION_2_0" ) << endl; os << indent << "Supports GL_ARB_texture_non_power_of_two:" << extensions->ExtensionSupported( "GL_ARB_texture_non_power_of_two" ) << endl; } extensions->Delete(); */ if(this->RenderWindow!=0) { vtkOpenGLExtensionManager *extensions= static_cast(this->RenderWindow)->GetExtensionManager(); if ( this->Initialized ) { os << indent << "Supports GL_VERSION_1_2:" << extensions->ExtensionSupported( "GL_VERSION_1_2" ) << endl; os << indent << "Supports GL_EXT_texture3D:" << extensions->ExtensionSupported( "GL_EXT_texture3D" ) << endl; os << indent << "Supports GL_VERSION_1_3:" << extensions->ExtensionSupported( "GL_VERSION_1_3" ) << endl; os << indent << "Supports GL_ARB_multitexture: " << extensions->ExtensionSupported( "GL_ARB_multitexture" ) << endl; os << indent << "Supports GL_NV_texture_shader2: " << extensions->ExtensionSupported( "GL_NV_texture_shader2" ) << endl; os << indent << "Supports GL_NV_register_combiners2: " << extensions->ExtensionSupported( "GL_NV_register_combiners2" ) << endl; os << indent << "Supports GL_ATI_fragment_shader: " << extensions->ExtensionSupported( "GL_ATI_fragment_shader" ) << endl; os << indent << "Supports GL_ARB_fragment_program: " << extensions->ExtensionSupported( "GL_ARB_fragment_program" ) << endl; os << indent << "Supports GL_ARB_texture_compression: " << extensions->ExtensionSupported( "GL_ARB_texture_compression" ) << endl; os << indent << "Supports GL_VERSION_2_0:" << extensions->ExtensionSupported( "GL_VERSION_2_0" ) << endl; os << indent << "Supports GL_ARB_texture_non_power_of_two:" << extensions->ExtensionSupported( "GL_ARB_texture_non_power_of_two" ) << endl; } } this->Superclass::PrintSelf(os,indent); }