diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingDataHandler.h b/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingDataHandler.h index 33acc5063d..b7d3749d54 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingDataHandler.h +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/TrackingHandlers/mitkTrackingDataHandler.h @@ -1,382 +1,382 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _TrackingDataHandler #define _TrackingDataHandler #include #include #include #include #include #include #include #include namespace mitk { /** * \brief Abstract class for tracking handler. A tracking handler deals with determining the next progression direction of a streamline fiber. There are different handlers for tensor images, peak images, ... */ class MITKFIBERTRACKING_EXPORT TrackingDataHandler { public: enum MODE { DETERMINISTIC, PROBABILISTIC }; TrackingDataHandler(); virtual ~TrackingDataHandler(){} typedef itk::Statistics::MersenneTwisterRandomVariateGenerator ItkRngType; typedef boost::mt19937 BoostRngType; typedef itk::Image ItkUcharImgType; typedef itk::Image ItkShortImgType; typedef itk::Image ItkFloatImgType; typedef itk::Image ItkDoubleImgType; typedef vnl_vector_fixed< float, 3 > TrackingDirectionType; virtual TrackingDirectionType ProposeDirection(const itk::Point& pos, std::deque< TrackingDirectionType >& olddirs, itk::Index<3>& oldIndex) = 0; ///< predicts next progression direction at the given position virtual void InitForTracking() = 0; virtual itk::Vector GetSpacing() = 0; virtual itk::Point GetOrigin() = 0; virtual itk::Matrix GetDirection() = 0; virtual itk::ImageRegion<3> GetLargestPossibleRegion() = 0; virtual bool WorldToIndex(itk::Point& pos, itk::Index<3>& index) = 0; virtual void SetMode(MODE m) = 0; MODE GetMode(){ return m_Mode; } void SetInterpolate( bool interpolate ){ m_Interpolate = interpolate; } bool GetInterpolate() const { return m_Interpolate; } void SetAngularThreshold( float a ){ m_AngularThreshold = a; } void SetFlipX( bool f ){ m_FlipX = f; } void SetFlipY( bool f ){ m_FlipY = f; } void SetFlipZ( bool f ){ m_FlipZ = f; } void SetRandom( bool random ) { m_Random = random; if (!random) { m_Rng.seed(0); std::srand(0); m_RngItk->SetSeed(0); } else { m_Rng.seed(); m_RngItk->SetSeed(); std::srand(std::time(0)); } } double GetRandDouble(const double & a, const double & b) { return m_RngItk->GetUniformVariate(a, b); } -protected: - - float m_AngularThreshold; - bool m_Interpolate; - bool m_FlipX; - bool m_FlipY; - bool m_FlipZ; - MODE m_Mode; - BoostRngType m_Rng; - ItkRngType::Pointer m_RngItk; - bool m_NeedsDataInit; - bool m_Random; - - void DataModified() - { - m_NeedsDataInit = true; - } - template< class TPixelType > TPixelType GetImageValue(itk::Point itkP, itk::Image* image, vnl_vector_fixed& interpWeights){ // transform physical point to index coordinates itk::Index<3> idx; itk::ContinuousIndex< float, 3> cIdx; image->TransformPhysicalPointToIndex(itkP, idx); image->TransformPhysicalPointToContinuousIndex(itkP, cIdx); TPixelType pix = 0.0; if ( image->GetLargestPossibleRegion().IsInside(idx) ) { pix = image->GetPixel(idx); } else return pix; float frac_x = cIdx[0] - idx[0]; float frac_y = cIdx[1] - idx[1]; float frac_z = cIdx[2] - idx[2]; if (frac_x<0) { idx[0] -= 1; frac_x += 1; } if (frac_y<0) { idx[1] -= 1; frac_y += 1; } if (frac_z<0) { idx[2] -= 1; frac_z += 1; } frac_x = 1-frac_x; frac_y = 1-frac_y; frac_z = 1-frac_z; // int coordinates inside image? if (idx[0] >= 0 && idx[0] < image->GetLargestPossibleRegion().GetSize(0)-1 && idx[1] >= 0 && idx[1] < image->GetLargestPossibleRegion().GetSize(1)-1 && idx[2] >= 0 && idx[2] < image->GetLargestPossibleRegion().GetSize(2)-1) { // trilinear interpolation interpWeights[0] = ( frac_x)*( frac_y)*( frac_z); interpWeights[1] = (1-frac_x)*( frac_y)*( frac_z); interpWeights[2] = ( frac_x)*(1-frac_y)*( frac_z); interpWeights[3] = ( frac_x)*( frac_y)*(1-frac_z); interpWeights[4] = (1-frac_x)*(1-frac_y)*( frac_z); interpWeights[5] = ( frac_x)*(1-frac_y)*(1-frac_z); interpWeights[6] = (1-frac_x)*( frac_y)*(1-frac_z); interpWeights[7] = (1-frac_x)*(1-frac_y)*(1-frac_z); pix = image->GetPixel(idx) * interpWeights[0]; typename itk::Image::IndexType tmpIdx = idx; tmpIdx[0]++; pix += image->GetPixel(tmpIdx) * interpWeights[1]; tmpIdx = idx; tmpIdx[1]++; pix += image->GetPixel(tmpIdx) * interpWeights[2]; tmpIdx = idx; tmpIdx[2]++; pix += image->GetPixel(tmpIdx) * interpWeights[3]; tmpIdx = idx; tmpIdx[0]++; tmpIdx[1]++; pix += image->GetPixel(tmpIdx) * interpWeights[4]; tmpIdx = idx; tmpIdx[1]++; tmpIdx[2]++; pix += image->GetPixel(tmpIdx) * interpWeights[5]; tmpIdx = idx; tmpIdx[2]++; tmpIdx[0]++; pix += image->GetPixel(tmpIdx) * interpWeights[6]; tmpIdx = idx; tmpIdx[0]++; tmpIdx[1]++; tmpIdx[2]++; pix += image->GetPixel(tmpIdx) * interpWeights[7]; } if (pix!=pix) { pix = 0; MITK_WARN << "nan values in image!"; } return pix; } - template< class TPixelType > + template< class TPixelType, class TOutPixelType=TPixelType > TPixelType GetImageValue(itk::Point itkP, itk::Image* image, bool interpolate){ // transform physical point to index coordinates itk::Index<3> idx; itk::ContinuousIndex< float, 3> cIdx; image->TransformPhysicalPointToIndex(itkP, idx); image->TransformPhysicalPointToContinuousIndex(itkP, cIdx); - TPixelType pix = 0.0; + TOutPixelType pix = 0.0; if ( image->GetLargestPossibleRegion().IsInside(idx) ) { - pix = image->GetPixel(idx); + pix = (TOutPixelType)image->GetPixel(idx); if (!interpolate) return pix; } else return pix; float frac_x = cIdx[0] - idx[0]; float frac_y = cIdx[1] - idx[1]; float frac_z = cIdx[2] - idx[2]; if (frac_x<0) { idx[0] -= 1; frac_x += 1; } if (frac_y<0) { idx[1] -= 1; frac_y += 1; } if (frac_z<0) { idx[2] -= 1; frac_z += 1; } frac_x = 1-frac_x; frac_y = 1-frac_y; frac_z = 1-frac_z; // int coordinates inside image? if (idx[0] >= 0 && idx[0] < static_cast(image->GetLargestPossibleRegion().GetSize(0) - 1) && idx[1] >= 0 && idx[1] < static_cast(image->GetLargestPossibleRegion().GetSize(1) - 1) && idx[2] >= 0 && idx[2] < static_cast(image->GetLargestPossibleRegion().GetSize(2) - 1)) { // trilinear interpolation vnl_vector_fixed interpWeights; interpWeights[0] = ( frac_x)*( frac_y)*( frac_z); interpWeights[1] = (1-frac_x)*( frac_y)*( frac_z); interpWeights[2] = ( frac_x)*(1-frac_y)*( frac_z); interpWeights[3] = ( frac_x)*( frac_y)*(1-frac_z); interpWeights[4] = (1-frac_x)*(1-frac_y)*( frac_z); interpWeights[5] = ( frac_x)*(1-frac_y)*(1-frac_z); interpWeights[6] = (1-frac_x)*( frac_y)*(1-frac_z); interpWeights[7] = (1-frac_x)*(1-frac_y)*(1-frac_z); pix = image->GetPixel(idx) * interpWeights[0]; typename itk::Image::IndexType tmpIdx = idx; tmpIdx[0]++; - pix += image->GetPixel(tmpIdx) * interpWeights[1]; + pix += (TOutPixelType)image->GetPixel(tmpIdx) * interpWeights[1]; tmpIdx = idx; tmpIdx[1]++; - pix += image->GetPixel(tmpIdx) * interpWeights[2]; + pix += (TOutPixelType)image->GetPixel(tmpIdx) * interpWeights[2]; tmpIdx = idx; tmpIdx[2]++; - pix += image->GetPixel(tmpIdx) * interpWeights[3]; + pix += (TOutPixelType)image->GetPixel(tmpIdx) * interpWeights[3]; tmpIdx = idx; tmpIdx[0]++; tmpIdx[1]++; - pix += image->GetPixel(tmpIdx) * interpWeights[4]; + pix += (TOutPixelType)image->GetPixel(tmpIdx) * interpWeights[4]; tmpIdx = idx; tmpIdx[1]++; tmpIdx[2]++; - pix += image->GetPixel(tmpIdx) * interpWeights[5]; + pix += (TOutPixelType)image->GetPixel(tmpIdx) * interpWeights[5]; tmpIdx = idx; tmpIdx[2]++; tmpIdx[0]++; - pix += image->GetPixel(tmpIdx) * interpWeights[6]; + pix += (TOutPixelType)image->GetPixel(tmpIdx) * interpWeights[6]; tmpIdx = idx; tmpIdx[0]++; tmpIdx[1]++; tmpIdx[2]++; - pix += image->GetPixel(tmpIdx) * interpWeights[7]; + pix += (TOutPixelType)image->GetPixel(tmpIdx) * interpWeights[7]; } if (pix!=pix) { pix = 0; MITK_WARN << "nan values in image!"; } return pix; } template< class TPixelType, int components > itk::Vector< TPixelType, components > GetImageValue(itk::Point itkP, itk::Image, 3>* image, bool interpolate){ // transform physical point to index coordinates itk::Index<3> idx; itk::ContinuousIndex< float, 3> cIdx; image->TransformPhysicalPointToIndex(itkP, idx); image->TransformPhysicalPointToContinuousIndex(itkP, cIdx); itk::Vector< TPixelType, components > pix; pix.Fill(0.0); if ( image->GetLargestPossibleRegion().IsInside(idx) ) { pix = image->GetPixel(idx); if (!interpolate) return pix; } else return pix; float frac_x = cIdx[0] - idx[0]; float frac_y = cIdx[1] - idx[1]; float frac_z = cIdx[2] - idx[2]; if (frac_x<0) { idx[0] -= 1; frac_x += 1; } if (frac_y<0) { idx[1] -= 1; frac_y += 1; } if (frac_z<0) { idx[2] -= 1; frac_z += 1; } frac_x = 1-frac_x; frac_y = 1-frac_y; frac_z = 1-frac_z; // int coordinates inside image? if (idx[0] >= 0 && idx[0] < static_cast(image->GetLargestPossibleRegion().GetSize(0) - 1) && idx[1] >= 0 && idx[1] < static_cast(image->GetLargestPossibleRegion().GetSize(1) - 1) && idx[2] >= 0 && idx[2] < static_cast(image->GetLargestPossibleRegion().GetSize(2) - 1)) { // trilinear interpolation vnl_vector_fixed interpWeights; interpWeights[0] = ( frac_x)*( frac_y)*( frac_z); interpWeights[1] = (1-frac_x)*( frac_y)*( frac_z); interpWeights[2] = ( frac_x)*(1-frac_y)*( frac_z); interpWeights[3] = ( frac_x)*( frac_y)*(1-frac_z); interpWeights[4] = (1-frac_x)*(1-frac_y)*( frac_z); interpWeights[5] = ( frac_x)*(1-frac_y)*(1-frac_z); interpWeights[6] = (1-frac_x)*( frac_y)*(1-frac_z); interpWeights[7] = (1-frac_x)*(1-frac_y)*(1-frac_z); pix = image->GetPixel(idx) * interpWeights[0]; typename itk::Image, 3>::IndexType tmpIdx = idx; tmpIdx[0]++; pix += image->GetPixel(tmpIdx) * interpWeights[1]; tmpIdx = idx; tmpIdx[1]++; pix += image->GetPixel(tmpIdx) * interpWeights[2]; tmpIdx = idx; tmpIdx[2]++; pix += image->GetPixel(tmpIdx) * interpWeights[3]; tmpIdx = idx; tmpIdx[0]++; tmpIdx[1]++; pix += image->GetPixel(tmpIdx) * interpWeights[4]; tmpIdx = idx; tmpIdx[1]++; tmpIdx[2]++; pix += image->GetPixel(tmpIdx) * interpWeights[5]; tmpIdx = idx; tmpIdx[2]++; tmpIdx[0]++; pix += image->GetPixel(tmpIdx) * interpWeights[6]; tmpIdx = idx; tmpIdx[0]++; tmpIdx[1]++; tmpIdx[2]++; pix += image->GetPixel(tmpIdx) * interpWeights[7]; } if (pix!=pix) { pix.Fill(0.0); mitkThrow() << "nan values in image!"; } return pix; } +protected: + + float m_AngularThreshold; + bool m_Interpolate; + bool m_FlipX; + bool m_FlipY; + bool m_FlipZ; + MODE m_Mode; + BoostRngType m_Rng; + ItkRngType::Pointer m_RngItk; + bool m_NeedsDataInit; + bool m_Random; + + void DataModified() + { + m_NeedsDataInit = true; + } + }; } #endif diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkStreamlineTrackingFilter.cpp b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkStreamlineTrackingFilter.cpp index 0fa74575c4..1e23175c0a 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkStreamlineTrackingFilter.cpp +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkStreamlineTrackingFilter.cpp @@ -1,1101 +1,1108 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #include #include #include #include #include "itkStreamlineTrackingFilter.h" #include #include #include #include #include "itkPointShell.h" #include #include #include #include #include #include #define _USE_MATH_DEFINES #include namespace itk { StreamlineTrackingFilter ::StreamlineTrackingFilter() : m_PauseTracking(false) , m_AbortTracking(false) , m_BuildFibersFinished(false) , m_BuildFibersReady(0) , m_FiberPolyData(nullptr) , m_Points(nullptr) , m_Cells(nullptr) , m_StoppingRegions(nullptr) , m_TargetRegions(nullptr) , m_SeedImage(nullptr) , m_MaskImage(nullptr) , m_TissueImage(nullptr) , m_OutputProbabilityMap(nullptr) , m_AngularThresholdDeg(-1) , m_StepSizeVox(-1) , m_SamplingDistanceVox(-1) , m_AngularThreshold(-1) , m_StepSize(0) , m_MaxLength(10000) , m_MinTractLength(20.0) , m_MaxTractLength(400.0) , m_SeedsPerVoxel(1) , m_AvoidStop(true) , m_RandomSampling(false) , m_SamplingDistance(-1) , m_DeflectionMod(1.0) , m_OnlyForwardSamples(true) , m_UseStopVotes(true) , m_NumberOfSamples(30) , m_NumPreviousDirections(1) , m_WmLabel(3) // mrtrix 5ttseg labels , m_GmLabel(1) // mrtrix 5ttseg labels , m_SeedOnlyGm(false) , m_ControlGmEndings(false) , m_MaxNumTracts(-1) , m_Verbose(true) , m_AposterioriCurvCheck(false) , m_DemoMode(false) , m_Random(true) , m_UseOutputProbabilityMap(false) , m_CurrentTracts(0) , m_Progress(0) , m_StopTracking(false) + , m_InterpolateMask(false) { this->SetNumberOfRequiredInputs(0); } std::string StreamlineTrackingFilter::GetStatusText() { std::string status = "Seedpoints processed: " + boost::lexical_cast(m_Progress) + "/" + boost::lexical_cast(m_SeedPoints.size()); if (m_SeedPoints.size()>0) status += " (" + boost::lexical_cast(100*m_Progress/m_SeedPoints.size()) + "%)"; if (m_MaxNumTracts>0) status += "\nFibers accepted: " + boost::lexical_cast(m_CurrentTracts) + "/" + boost::lexical_cast(m_MaxNumTracts); else status += "\nFibers accepted: " + boost::lexical_cast(m_CurrentTracts); return status; } void StreamlineTrackingFilter::BeforeTracking() { m_StopTracking = false; m_TrackingHandler->SetRandom(m_Random); m_TrackingHandler->InitForTracking(); m_FiberPolyData = PolyDataType::New(); m_Points = vtkSmartPointer< vtkPoints >::New(); m_Cells = vtkSmartPointer< vtkCellArray >::New(); itk::Vector< double, 3 > imageSpacing = m_TrackingHandler->GetSpacing(); float minSpacing; if(imageSpacing[0]SetAngularThreshold(m_AngularThreshold); if (m_SamplingDistanceVoxGetNumberOfThreads(); i++) { PolyDataType poly = PolyDataType::New(); m_PolyDataContainer.push_back(poly); } if (m_UseOutputProbabilityMap) { m_OutputProbabilityMap = ItkDoubleImgType::New(); m_OutputProbabilityMap->SetSpacing(imageSpacing); m_OutputProbabilityMap->SetOrigin(m_TrackingHandler->GetOrigin()); m_OutputProbabilityMap->SetDirection(m_TrackingHandler->GetDirection()); m_OutputProbabilityMap->SetRegions(m_TrackingHandler->GetLargestPossibleRegion()); m_OutputProbabilityMap->Allocate(); m_OutputProbabilityMap->FillBuffer(0); } if (m_StoppingRegions.IsNull()) { m_StoppingRegions = ItkUcharImgType::New(); m_StoppingRegions->SetSpacing( imageSpacing ); m_StoppingRegions->SetOrigin( m_TrackingHandler->GetOrigin() ); m_StoppingRegions->SetDirection( m_TrackingHandler->GetDirection() ); m_StoppingRegions->SetRegions( m_TrackingHandler->GetLargestPossibleRegion() ); m_StoppingRegions->Allocate(); m_StoppingRegions->FillBuffer(0); } else std::cout << "StreamlineTracking - Using stopping region image" << std::endl; if (m_TargetRegions.IsNull()) { m_TargetRegions = ItkUintImgType::New(); m_TargetRegions->SetSpacing( imageSpacing ); m_TargetRegions->SetOrigin( m_TrackingHandler->GetOrigin() ); m_TargetRegions->SetDirection( m_TrackingHandler->GetDirection() ); m_TargetRegions->SetRegions( m_TrackingHandler->GetLargestPossibleRegion() ); m_TargetRegions->Allocate(); m_TargetRegions->FillBuffer(1); } else std::cout << "StreamlineTracking - Using target region image" << std::endl; if (m_SeedImage.IsNull()) { m_SeedImage = ItkUcharImgType::New(); m_SeedImage->SetSpacing( imageSpacing ); m_SeedImage->SetOrigin( m_TrackingHandler->GetOrigin() ); m_SeedImage->SetDirection( m_TrackingHandler->GetDirection() ); m_SeedImage->SetRegions( m_TrackingHandler->GetLargestPossibleRegion() ); m_SeedImage->Allocate(); m_SeedImage->FillBuffer(1); } else std::cout << "StreamlineTracking - Using seed image" << std::endl; if (m_MaskImage.IsNull()) { // initialize mask image m_MaskImage = ItkUcharImgType::New(); m_MaskImage->SetSpacing( imageSpacing ); m_MaskImage->SetOrigin( m_TrackingHandler->GetOrigin() ); m_MaskImage->SetDirection( m_TrackingHandler->GetDirection() ); m_MaskImage->SetRegions( m_TrackingHandler->GetLargestPossibleRegion() ); m_MaskImage->Allocate(); m_MaskImage->FillBuffer(1); } else std::cout << "StreamlineTracking - Using mask image" << std::endl; if (m_SeedPoints.empty()) GetSeedPointsFromSeedImage(); else m_SeedOnlyGm = false; if (m_TissueImage.IsNull()) { if (m_SeedOnlyGm) { MITK_WARN << "StreamlineTracking - Cannot seed in gray matter. No tissue type image set."; m_SeedOnlyGm = false; } if (m_ControlGmEndings) { MITK_WARN << "StreamlineTracking - Cannot control gray matter endings. No tissue type image set."; m_ControlGmEndings = false; } } else { if (m_ControlGmEndings) m_SeedOnlyGm = true; if (m_ControlGmEndings || m_SeedOnlyGm) std::cout << "StreamlineTracking - Using tissue image" << std::endl; else MITK_WARN << "StreamlineTracking - Tissue image set but no gray matter seeding or fiber endpoint-control enabled" << std::endl; } m_BuildFibersReady = 0; m_BuildFibersFinished = false; m_Tractogram.clear(); m_SamplingPointset = mitk::PointSet::New(); m_AlternativePointset = mitk::PointSet::New(); m_StopVotePointset = mitk::PointSet::New(); m_StartTime = std::chrono::system_clock::now(); if (m_SeedOnlyGm && m_ControlGmEndings) InitGrayMatterEndings(); if (m_DemoMode) omp_set_num_threads(1); if (m_TrackingHandler->GetMode()==mitk::TrackingDataHandler::MODE::DETERMINISTIC) std::cout << "StreamlineTracking - Mode: deterministic" << std::endl; else if(m_TrackingHandler->GetMode()==mitk::TrackingDataHandler::MODE::PROBABILISTIC) std::cout << "StreamlineTracking - Mode: probabilistic" << std::endl; else std::cout << "StreamlineTracking - Mode: ???" << std::endl; std::cout << "StreamlineTracking - Angular threshold: " << m_AngularThreshold << " (" << 180*std::acos( m_AngularThreshold )/M_PI << "°)" << std::endl; std::cout << "StreamlineTracking - Stepsize: " << m_StepSize << "mm (" << m_StepSize/minSpacing << "*vox)" << std::endl; std::cout << "StreamlineTracking - Seeds per voxel: " << m_SeedsPerVoxel << std::endl; std::cout << "StreamlineTracking - Max. tract length: " << m_MaxTractLength << "mm" << std::endl; std::cout << "StreamlineTracking - Min. tract length: " << m_MinTractLength << "mm" << std::endl; std::cout << "StreamlineTracking - Max. num. tracts: " << m_MaxNumTracts << std::endl; std::cout << "StreamlineTracking - Num. neighborhood samples: " << m_NumberOfSamples << std::endl; std::cout << "StreamlineTracking - Max. sampling distance: " << m_SamplingDistance << "mm (" << m_SamplingDistance/minSpacing << "*vox)" << std::endl; std::cout << "StreamlineTracking - Deflection modifier: " << m_DeflectionMod << std::endl; std::cout << "StreamlineTracking - Use stop votes: " << m_UseStopVotes << std::endl; std::cout << "StreamlineTracking - Only frontal samples: " << m_OnlyForwardSamples << std::endl; if (m_DemoMode) { std::cout << "StreamlineTracking - Running in demo mode"; std::cout << "StreamlineTracking - Starting streamline tracking using 1 thread" << std::endl; } else std::cout << "StreamlineTracking - Starting streamline tracking using " << omp_get_max_threads() << " threads" << std::endl; } void StreamlineTrackingFilter::InitGrayMatterEndings() { m_TrackingHandler->SetAngularThreshold(0); m_GmStubs.clear(); if (m_TissueImage.IsNotNull()) { std::cout << "StreamlineTracking - initializing GM endings" << std::endl; ImageRegionConstIterator< ItkUcharImgType > it(m_TissueImage, m_TissueImage->GetLargestPossibleRegion() ); it.GoToBegin(); vnl_vector_fixed d1; d1.fill(0.0); std::deque< vnl_vector_fixed > olddirs; while (olddirs.size() start; m_TissueImage->TransformIndexToPhysicalPoint(s_idx, start); itk::Point wm_p; float max = -1; FiberType fib; for (int x : {-1,0,1}) for (int y : {-1,0,1}) for (int z : {-1,0,1}) { if (x==y && y==z) continue; ItkUcharImgType::IndexType e_idx; e_idx[0] = s_idx[0] + x; e_idx[1] = s_idx[1] + y; e_idx[2] = s_idx[2] + z; if ( !m_TissueImage->GetLargestPossibleRegion().IsInside(e_idx) || m_TissueImage->GetPixel(e_idx)!=m_WmLabel ) continue; itk::ContinuousIndex end; m_TissueImage->TransformIndexToPhysicalPoint(e_idx, end); d1 = m_TrackingHandler->ProposeDirection(end, olddirs, s_idx); if (d1.magnitude()<0.0001) continue; d1.normalize(); vnl_vector_fixed< float, 3 > d2; d2[0] = end[0] - start[0]; d2[1] = end[1] - start[1]; d2[2] = end[2] - start[2]; d2.normalize(); float a = fabs(dot_product(d1,d2)); if (a>max) { max = a; wm_p = end; } } if (max>=0) { fib.push_back(start); fib.push_back(wm_p); m_GmStubs.push_back(fib); } } ++it; } } m_TrackingHandler->SetAngularThreshold(m_AngularThreshold); } void StreamlineTrackingFilter::CalculateNewPosition(itk::Point& pos, vnl_vector_fixed& dir) { pos[0] += dir[0]*m_StepSize; pos[1] += dir[1]*m_StepSize; pos[2] += dir[2]*m_StepSize; } bool StreamlineTrackingFilter ::IsInsideMask(const itk::Point &pos, ItkUcharImgType::Pointer mask) { if (mask.IsNull()) return true; - ItkUcharImgType::IndexType idx; - mask->TransformPhysicalPointToIndex(pos, idx); - if (!mask->GetLargestPossibleRegion().IsInside(idx) || mask->GetPixel(idx)==0) - return false; + if (m_InterpolateMask) + { + if (m_TrackingHandler->GetImageValue(pos, mask, m_InterpolateMask)<0.5) + return false; + } + else + { + if (m_TrackingHandler->GetImageValue(pos, mask, m_InterpolateMask)==0) + return false; + } return true; } bool StreamlineTrackingFilter ::IsInGm(const itk::Point &pos) { if (m_TissueImage.IsNull()) return true; ItkUcharImgType::IndexType idx; m_TissueImage->TransformPhysicalPointToIndex(pos, idx); if (m_TissueImage->GetLargestPossibleRegion().IsInside(idx) && m_TissueImage->GetPixel(idx) == m_GmLabel) return true; return false; } std::vector< vnl_vector_fixed > StreamlineTrackingFilter::CreateDirections(int NPoints) { std::vector< vnl_vector_fixed > pointshell; if (NPoints<2) return pointshell; std::vector< float > theta; theta.resize(NPoints); std::vector< float > phi; phi.resize(NPoints); float C = sqrt(4*M_PI); phi[0] = 0.0; phi[NPoints-1] = 0.0; for(int i=0; i0 && i d; d[0] = cos(theta[i]) * cos(phi[i]); d[1] = cos(theta[i]) * sin(phi[i]); d[2] = sin(theta[i]); pointshell.push_back(d); } return pointshell; } vnl_vector_fixed StreamlineTrackingFilter::GetNewDirection(itk::Point &pos, std::deque >& olddirs, itk::Index<3> &oldIndex) { if (m_DemoMode) { m_SamplingPointset->Clear(); m_AlternativePointset->Clear(); m_StopVotePointset->Clear(); } vnl_vector_fixed direction; direction.fill(0); if (IsInsideMask(pos, m_MaskImage) && !IsInsideMask(pos, m_StoppingRegions)) direction = m_TrackingHandler->ProposeDirection(pos, olddirs, oldIndex); // get direction proposal at current streamline position else return direction; vnl_vector_fixed olddir = olddirs.back(); std::vector< vnl_vector_fixed > probeVecs = CreateDirections(m_NumberOfSamples); itk::Point sample_pos; int alternatives = 1; int stop_votes = 0; int possible_stop_votes = 0; for (unsigned int i=0; i d; bool is_stop_voter = false; if (m_Random && m_RandomSampling) { d[0] = m_TrackingHandler->GetRandDouble(-0.5, 0.5); d[1] = m_TrackingHandler->GetRandDouble(-0.5, 0.5); d[2] = m_TrackingHandler->GetRandDouble(-0.5, 0.5); d.normalize(); d *= m_TrackingHandler->GetRandDouble(0,m_SamplingDistance); } else { d = probeVecs.at(i); float dot = dot_product(d, olddir); if (m_UseStopVotes && dot>0.7) { is_stop_voter = true; possible_stop_votes++; } else if (m_OnlyForwardSamples && dot<0) continue; d *= m_SamplingDistance; } sample_pos[0] = pos[0] + d[0]; sample_pos[1] = pos[1] + d[1]; sample_pos[2] = pos[2] + d[2]; vnl_vector_fixed tempDir; tempDir.fill(0.0); if (IsInsideMask(sample_pos, m_MaskImage)) tempDir = m_TrackingHandler->ProposeDirection(sample_pos, olddirs, oldIndex); // sample neighborhood if (tempDir.magnitude()>mitk::eps) { direction += tempDir; if(m_DemoMode) m_SamplingPointset->InsertPoint(i, sample_pos); } else if (m_AvoidStop && olddir.magnitude()>0.5) // out of white matter { if (is_stop_voter) stop_votes++; if (m_DemoMode) m_StopVotePointset->InsertPoint(i, sample_pos); float dot = dot_product(d, olddir); if (dot >= 0.0) // in front of plane defined by pos and olddir d = -d + 2*dot*olddir; // reflect else d = -d; // invert // look a bit further into the other direction sample_pos[0] = pos[0] + d[0]; sample_pos[1] = pos[1] + d[1]; sample_pos[2] = pos[2] + d[2]; alternatives++; vnl_vector_fixed tempDir; tempDir.fill(0.0); if (IsInsideMask(sample_pos, m_MaskImage)) tempDir = m_TrackingHandler->ProposeDirection(sample_pos, olddirs, oldIndex); // sample neighborhood if (tempDir.magnitude()>mitk::eps) // are we back in the white matter? { direction += d * m_DeflectionMod; // go into the direction of the white matter direction += tempDir; // go into the direction of the white matter direction at this location if(m_DemoMode) m_AlternativePointset->InsertPoint(alternatives, sample_pos); } else { if (m_DemoMode) m_StopVotePointset->InsertPoint(i, sample_pos); } } else { if (m_DemoMode) m_StopVotePointset->InsertPoint(i, sample_pos); if (is_stop_voter) stop_votes++; } } if (direction.magnitude()>0.001 && (possible_stop_votes==0 || (float)stop_votes/possible_stop_votes<0.5) ) direction.normalize(); else direction.fill(0); return direction; } float StreamlineTrackingFilter::FollowStreamline(itk::Point pos, vnl_vector_fixed dir, FiberType* fib, float tractLength, bool front) { vnl_vector_fixed zero_dir; zero_dir.fill(0.0); std::deque< vnl_vector_fixed > last_dirs; for (unsigned int i=0; i oldIndex; m_TrackingHandler->WorldToIndex(pos, oldIndex); // get new position CalculateNewPosition(pos, dir); // is new position inside of image and mask if (m_AbortTracking) // if not end streamline { return tractLength; } else // if yes, add new point to streamline { tractLength += m_StepSize; if (front) fib->push_front(pos); else fib->push_back(pos); if (m_AposterioriCurvCheck) { int curv = CheckCurvature(fib, front); if (curv>0) { tractLength -= m_StepSize*curv; while (curv>0) { if (front) fib->pop_front(); else fib->pop_back(); curv--; } return tractLength; } } if (tractLength>m_MaxTractLength) return tractLength; } if (m_DemoMode && !m_UseOutputProbabilityMap) // CHECK: warum sind die samplingpunkte der streamline in der visualisierung immer einen schritt voras? { #pragma omp critical { m_BuildFibersReady++; m_Tractogram.push_back(*fib); BuildFibers(true); m_Stop = true; while (m_Stop){ } } } dir.normalize(); last_dirs.push_back(dir); if (last_dirs.size()>m_NumPreviousDirections) last_dirs.pop_front(); dir = GetNewDirection(pos, last_dirs, oldIndex); while (m_PauseTracking){} if (dir.magnitude()<0.0001) return tractLength; } return tractLength; } int StreamlineTrackingFilter::CheckCurvature(FiberType* fib, bool front) { float m_Distance = 5; if (fib->size()<3) return 0; float dist = 0; std::vector< vnl_vector_fixed< float, 3 > > vectors; vnl_vector_fixed< float, 3 > meanV; meanV.fill(0); float dev = 0; if (front) { int c=0; while(distsize()-1) { itk::Point p1 = fib->at(c); itk::Point p2 = fib->at(c+1); vnl_vector_fixed< float, 3 > v; v[0] = p2[0]-p1[0]; v[1] = p2[1]-p1[1]; v[2] = p2[2]-p1[2]; dist += v.magnitude(); v.normalize(); vectors.push_back(v); if (c==0) meanV += v; c++; } } else { int c=fib->size()-1; while(dist0) { itk::Point p1 = fib->at(c); itk::Point p2 = fib->at(c-1); vnl_vector_fixed< float, 3 > v; v[0] = p2[0]-p1[0]; v[1] = p2[1]-p1[1]; v[2] = p2[2]-p1[2]; dist += v.magnitude(); v.normalize(); vectors.push_back(v); if (c==(int)fib->size()-1) meanV += v; c--; } } meanV.normalize(); for (unsigned int c=0; c1.0) angle = 1.0; if (angle<-1.0) angle = -1.0; dev += acos(angle)*180/M_PI; } if (vectors.size()>0) dev /= vectors.size(); if (dev<30) return 0; else return vectors.size(); } void StreamlineTrackingFilter::GetSeedPointsFromSeedImage() { MITK_INFO << "StreamlineTracking - Calculating seed points."; m_SeedPoints.clear(); if (!m_ControlGmEndings) { typedef ImageRegionConstIterator< ItkUcharImgType > MaskIteratorType; MaskIteratorType sit(m_SeedImage, m_SeedImage->GetLargestPossibleRegion()); sit.GoToBegin(); while (!sit.IsAtEnd()) { if (sit.Value()>0) { ItkUcharImgType::IndexType index = sit.GetIndex(); itk::ContinuousIndex start; start[0] = index[0]; start[1] = index[1]; start[2] = index[2]; itk::Point worldPos; m_SeedImage->TransformContinuousIndexToPhysicalPoint(start, worldPos); if (IsInsideMask(worldPos, m_MaskImage) && (!m_SeedOnlyGm || IsInGm(worldPos))) { m_SeedPoints.push_back(worldPos); for (int s = 1; s < m_SeedsPerVoxel; s++) { start[0] = index[0] + m_TrackingHandler->GetRandDouble(-0.5, 0.5); start[1] = index[1] + m_TrackingHandler->GetRandDouble(-0.5, 0.5); start[2] = index[2] + m_TrackingHandler->GetRandDouble(-0.5, 0.5); itk::Point worldPos; m_SeedImage->TransformContinuousIndexToPhysicalPoint(start, worldPos); m_SeedPoints.push_back(worldPos); } } } ++sit; } } else { for (auto s : m_GmStubs) m_SeedPoints.push_back(s[1]); } } void StreamlineTrackingFilter::GenerateData() { this->BeforeTracking(); if (m_Random) std::random_shuffle(m_SeedPoints.begin(), m_SeedPoints.end()); m_CurrentTracts = 0; int num_seeds = m_SeedPoints.size(); itk::Index<3> zeroIndex; zeroIndex.Fill(0); m_Progress = 0; int i = 0; int print_interval = num_seeds/100; if (print_interval<100) m_Verbose=false; #pragma omp parallel while (i=num_seeds || m_StopTracking) continue; else if (m_Verbose && i%print_interval==0) #pragma omp critical { m_Progress += print_interval; std::cout << " \r"; if (m_MaxNumTracts>0) std::cout << "Tried: " << m_Progress << "/" << num_seeds << " | Accepted: " << m_CurrentTracts << "/" << m_MaxNumTracts << '\r'; else std::cout << "Tried: " << m_Progress << "/" << num_seeds << " | Accepted: " << m_CurrentTracts << '\r'; cout.flush(); } const itk::Point worldPos = m_SeedPoints.at(temp_i); FiberType fib; float tractLength = 0; unsigned int counter = 0; // get starting direction vnl_vector_fixed dir; dir.fill(0.0); std::deque< vnl_vector_fixed > olddirs; while (olddirs.size() gm_start_dir; if (m_ControlGmEndings) { gm_start_dir[0] = m_GmStubs[temp_i][1][0] - m_GmStubs[temp_i][0][0]; gm_start_dir[1] = m_GmStubs[temp_i][1][1] - m_GmStubs[temp_i][0][1]; gm_start_dir[2] = m_GmStubs[temp_i][1][2] - m_GmStubs[temp_i][0][2]; gm_start_dir.normalize(); olddirs.pop_back(); olddirs.push_back(gm_start_dir); } if (IsInsideMask(worldPos, m_MaskImage)) dir = m_TrackingHandler->ProposeDirection(worldPos, olddirs, zeroIndex); if (dir.magnitude()>0.0001) { if (m_ControlGmEndings) { float a = dot_product(gm_start_dir, dir); if (a<0) dir = -dir; } // forward tracking tractLength = FollowStreamline(worldPos, dir, &fib, 0, false); fib.push_front(worldPos); if (m_ControlGmEndings) { fib.push_front(m_GmStubs[temp_i][0]); CheckFiberForGmEnding(&fib); } else { // backward tracking (only if we don't explicitely start in the GM) tractLength = FollowStreamline(worldPos, -dir, &fib, tractLength, true); if (m_ControlGmEndings) { CheckFiberForGmEnding(&fib); std::reverse(fib.begin(),fib.end()); CheckFiberForGmEnding(&fib); } } counter = fib.size(); if (tractLength>=m_MinTractLength && counter>=2) { ItkUintImgType::IndexType idx_begin, idx_end; m_TargetRegions->TransformPhysicalPointToIndex(fib.front(), idx_begin); m_TargetRegions->TransformPhysicalPointToIndex(fib.back(), idx_end); #pragma omp critical if ( !m_TargetRegions->GetLargestPossibleRegion().IsInside(idx_end) || !m_TargetRegions->GetLargestPossibleRegion().IsInside(idx_begin) || (m_TargetRegions->GetPixel(idx_begin)>0 && m_TargetRegions->GetPixel(idx_end)==m_TargetRegions->GetPixel(idx_begin)) ) { if (!m_StopTracking) { if (!m_UseOutputProbabilityMap) m_Tractogram.push_back(fib); else FiberToProbmap(&fib); m_CurrentTracts++; } if (m_MaxNumTracts > 0 && m_CurrentTracts>=static_cast(m_MaxNumTracts)) { if (!m_StopTracking) { std::cout << " \r"; MITK_INFO << "Reconstructed maximum number of tracts (" << m_CurrentTracts << "). Stopping tractography."; } m_StopTracking = true; } } } } } this->AfterTracking(); } void StreamlineTrackingFilter::CheckFiberForGmEnding(FiberType* fib) { if (m_TissueImage.IsNull()) return; // first check if the current fibe rendpoint is located inside of the white matter // if not, remove last fiber point and repeat bool in_wm = false; while (!in_wm && fib->size()>2) { ItkUcharImgType::IndexType idx; m_TissueImage->TransformPhysicalPointToIndex(fib->back(), idx); if (m_TissueImage->GetPixel(idx)==m_WmLabel) in_wm = true; else fib->pop_back(); } if (fib->size()<3 || !in_wm) { fib->clear(); return; } // get fiber direction at end point vnl_vector_fixed< float, 3 > d1; d1[0] = fib->back()[0] - fib->at(fib->size()-2)[0]; d1[1] = fib->back()[1] - fib->at(fib->size()-2)[1]; d1[2] = fib->back()[2] - fib->at(fib->size()-2)[2]; d1.normalize(); // find closest gray matter voxel ItkUcharImgType::IndexType s_idx; m_TissueImage->TransformPhysicalPointToIndex(fib->back(), s_idx); itk::Point gm_endp; float max = -1; for (int x : {-1,0,1}) for (int y : {-1,0,1}) for (int z : {-1,0,1}) { if (x==y && y==z) continue; ItkUcharImgType::IndexType e_idx; e_idx[0] = s_idx[0] + x; e_idx[1] = s_idx[1] + y; e_idx[2] = s_idx[2] + z; if ( !m_TissueImage->GetLargestPossibleRegion().IsInside(e_idx) || m_TissueImage->GetPixel(e_idx)!=m_GmLabel ) continue; itk::ContinuousIndex end; m_TissueImage->TransformIndexToPhysicalPoint(e_idx, end); vnl_vector_fixed< float, 3 > d2; d2[0] = end[0] - fib->back()[0]; d2[1] = end[1] - fib->back()[1]; d2[2] = end[2] - fib->back()[2]; d2.normalize(); float a = dot_product(d1,d2); if (a>max) { max = a; gm_endp = end; } } if (max>=0) fib->push_back(gm_endp); else // no gray matter enpoint found -> delete fiber fib->clear(); } void StreamlineTrackingFilter::FiberToProbmap(FiberType* fib) { ItkDoubleImgType::IndexType last_idx; last_idx.Fill(0); for (auto p : *fib) { ItkDoubleImgType::IndexType idx; m_OutputProbabilityMap->TransformPhysicalPointToIndex(p, idx); if (idx != last_idx) { if (m_OutputProbabilityMap->GetLargestPossibleRegion().IsInside(idx)) m_OutputProbabilityMap->SetPixel(idx, m_OutputProbabilityMap->GetPixel(idx)+1); last_idx = idx; } } } void StreamlineTrackingFilter::BuildFibers(bool check) { if (m_BuildFibersReady::New(); vtkSmartPointer vNewLines = vtkSmartPointer::New(); vtkSmartPointer vNewPoints = vtkSmartPointer::New(); for (unsigned int i=0; i container = vtkSmartPointer::New(); FiberType fib = m_Tractogram.at(i); for (FiberType::iterator it = fib.begin(); it!=fib.end(); ++it) { vtkIdType id = vNewPoints->InsertNextPoint((*it).GetDataPointer()); container->GetPointIds()->InsertNextId(id); } vNewLines->InsertNextCell(container); } if (check) for (int i=0; iSetPoints(vNewPoints); m_FiberPolyData->SetLines(vNewLines); m_BuildFibersFinished = true; } void StreamlineTrackingFilter::AfterTracking() { if (m_Verbose) std::cout << " \r"; if (!m_UseOutputProbabilityMap) { MITK_INFO << "Reconstructed " << m_Tractogram.size() << " fibers."; MITK_INFO << "Generating polydata "; BuildFibers(false); } else { itk::RescaleIntensityImageFilter< ItkDoubleImgType, ItkDoubleImgType >::Pointer filter = itk::RescaleIntensityImageFilter< ItkDoubleImgType, ItkDoubleImgType >::New(); filter->SetInput(m_OutputProbabilityMap); filter->SetOutputMaximum(1.0); filter->SetOutputMinimum(0.0); filter->Update(); m_OutputProbabilityMap = filter->GetOutput(); } MITK_INFO << "done"; m_EndTime = std::chrono::system_clock::now(); std::chrono::hours hh = std::chrono::duration_cast(m_EndTime - m_StartTime); std::chrono::minutes mm = std::chrono::duration_cast(m_EndTime - m_StartTime); std::chrono::seconds ss = std::chrono::duration_cast(m_EndTime - m_StartTime); mm %= 60; ss %= 60; MITK_INFO << "Tracking took " << hh.count() << "h, " << mm.count() << "m and " << ss.count() << "s"; m_SeedPoints.clear(); } void StreamlineTrackingFilter::SetDicomProperties(mitk::FiberBundle::Pointer fib) { std::string model_code_value = "-"; std::string model_code_meaning = "-"; std::string algo_code_value = "-"; std::string algo_code_meaning = "-"; if (m_TrackingHandler->GetMode()==mitk::TrackingDataHandler::DETERMINISTIC && dynamic_cast(m_TrackingHandler) && !m_TrackingHandler->GetInterpolate()) { algo_code_value = "sup181_ee04"; algo_code_meaning = "FACT"; } else if (m_TrackingHandler->GetMode()==mitk::TrackingDataHandler::DETERMINISTIC) { algo_code_value = "sup181_ee01"; algo_code_meaning = "Deterministic"; } else if (m_TrackingHandler->GetMode()==mitk::TrackingDataHandler::PROBABILISTIC) { algo_code_value = "sup181_ee02"; algo_code_meaning = "Probabilistic"; } if (dynamic_cast(m_TrackingHandler) || (dynamic_cast(m_TrackingHandler) && dynamic_cast(m_TrackingHandler)->GetIsOdfFromTensor() ) ) { if ( dynamic_cast(m_TrackingHandler) && dynamic_cast(m_TrackingHandler)->GetNumTensorImages()>1 ) { model_code_value = "sup181_bb02"; model_code_meaning = "Multi Tensor"; } else { model_code_value = "sup181_bb01"; model_code_meaning = "Single Tensor"; } } else if (dynamic_cast*>(m_TrackingHandler) || dynamic_cast*>(m_TrackingHandler)) { model_code_value = "sup181_bb03"; model_code_meaning = "Model Free"; } else if (dynamic_cast(m_TrackingHandler)) { model_code_value = "-"; model_code_meaning = "ODF"; } else if (dynamic_cast(m_TrackingHandler)) { model_code_value = "-"; model_code_meaning = "Peaks"; } fib->SetProperty("DICOM.anatomy.value", mitk::StringProperty::New("T-A0095")); fib->SetProperty("DICOM.anatomy.meaning", mitk::StringProperty::New("White matter of brain and spinal cord")); fib->SetProperty("DICOM.algo_code.value", mitk::StringProperty::New(algo_code_value)); fib->SetProperty("DICOM.algo_code.meaning", mitk::StringProperty::New(algo_code_meaning)); fib->SetProperty("DICOM.model_code.value", mitk::StringProperty::New(model_code_value)); fib->SetProperty("DICOM.model_code.meaning", mitk::StringProperty::New(model_code_meaning)); } } diff --git a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkStreamlineTrackingFilter.h b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkStreamlineTrackingFilter.h index ff861852a4..197240a833 100644 --- a/Modules/DiffusionImaging/FiberTracking/Algorithms/itkStreamlineTrackingFilter.h +++ b/Modules/DiffusionImaging/FiberTracking/Algorithms/itkStreamlineTrackingFilter.h @@ -1,227 +1,229 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef __itkMLBSTrackingFilter_h_ #define __itkMLBSTrackingFilter_h_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace itk{ /** * \brief Performs streamline tracking on the input image. Depending on the tracking handler this can be a tensor, peak or machine learning based tracking. */ class MITKFIBERTRACKING_EXPORT StreamlineTrackingFilter : public ProcessObject { public: typedef StreamlineTrackingFilter Self; typedef SmartPointer Pointer; typedef SmartPointer ConstPointer; typedef ProcessObject Superclass; /** Method for creation through the object factory. */ itkFactorylessNewMacro(Self) itkCloneMacro(Self) /** Runtime information support. */ itkTypeMacro(MLBSTrackingFilter, ImageToImageFilter) typedef itk::Image ItkUcharImgType; typedef itk::Image ItkUintImgType; typedef itk::Image ItkDoubleImgType; typedef itk::Image ItkFloatImgType; typedef vtkSmartPointer< vtkPolyData > PolyDataType; typedef std::deque< itk::Point > FiberType; typedef std::vector< FiberType > BundleType; volatile bool m_PauseTracking; bool m_AbortTracking; bool m_BuildFibersFinished; int m_BuildFibersReady; volatile bool m_Stop; mitk::PointSet::Pointer m_SamplingPointset; mitk::PointSet::Pointer m_StopVotePointset; mitk::PointSet::Pointer m_AlternativePointset; void SetStepSize(float v) ///< Integration step size in voxels, default is 0.5 * voxel { m_StepSizeVox = v; } void SetAngularThreshold(float v) ///< Angular threshold per step (in degree), default is 90deg x stepsize { m_AngularThresholdDeg = v; } void SetSamplingDistance(float v) ///< Maximum distance of sampling points in voxels, default is 0.25 * voxel { m_SamplingDistanceVox = v; } void SetDicomProperties(mitk::FiberBundle::Pointer fib); itkGetMacro( OutputProbabilityMap, ItkDoubleImgType::Pointer) ///< Output probability map itkGetMacro( FiberPolyData, PolyDataType ) ///< Output fibers itkGetMacro( UseOutputProbabilityMap, bool) itkSetMacro( SeedImage, ItkUcharImgType::Pointer) ///< Seeds are only placed inside of this mask. itkSetMacro( MaskImage, ItkUcharImgType::Pointer) ///< Tracking is only performed inside of this mask image. itkSetMacro( TissueImage, ItkUcharImgType::Pointer) ///< itkSetMacro( SeedsPerVoxel, int) ///< One seed placed in the center of each voxel or multiple seeds randomly placed inside each voxel. itkSetMacro( MinTractLength, float ) ///< Shorter tracts are discarded. itkSetMacro( MaxTractLength, float ) ///< Streamline progression stops if tract is longer than specified. itkSetMacro( UseStopVotes, bool ) ///< Frontal sampling points can vote for stopping the streamline even if the remaining sampling points keep pushing itkSetMacro( OnlyForwardSamples, bool ) ///< Don't use sampling points behind the current position in progression direction itkSetMacro( DeflectionMod, float ) ///< Deflection distance modifier itkSetMacro( StoppingRegions, ItkUcharImgType::Pointer) ///< Streamlines entering a stopping region will stop immediately itkSetMacro( TargetRegions, ItkUintImgType::Pointer) ///< Only streamline starting and ending in this mask are retained itkSetMacro( DemoMode, bool ) itkSetMacro( SeedOnlyGm, bool ) ///< place seed points only in the gray matter itkSetMacro( ControlGmEndings, bool ) ///< itkSetMacro( NumberOfSamples, unsigned int ) ///< Number of neighborhood sampling points itkSetMacro( AposterioriCurvCheck, bool ) ///< Checks fiber curvature (angular deviation across 5mm) is larger than 30°. If yes, the streamline progression is stopped. itkSetMacro( AvoidStop, bool ) ///< Use additional sampling points to avoid premature streamline termination itkSetMacro( RandomSampling, bool ) ///< If true, the sampling points are distributed randomly around the current position, not sphericall in the specified sampling distance. itkSetMacro( NumPreviousDirections, unsigned int ) ///< How many "old" steps do we want to consider in our decision where to go next? itkSetMacro( MaxNumTracts, int ) ///< Tracking is stopped if the maximum number of tracts is exceeded itkSetMacro( Random, bool ) ///< If true, seedpoints are shuffled randomly before tracking itkSetMacro( Verbose, bool ) ///< If true, output tracking progress (might be slower) itkSetMacro( UseOutputProbabilityMap, bool) ///< If true, no tractogram but a probability map is created as output. itkSetMacro( StopTracking, bool ) + itkSetMacro( InterpolateMask, bool ) ///< Use manually defined points in physical space as seed points instead of seed image void SetSeedPoints( const std::vector< itk::Point >& sP) { m_SeedPoints = sP; } void SetTrackingHandler( mitk::TrackingDataHandler* h ) ///< { m_TrackingHandler = h; } virtual void Update() override{ this->GenerateData(); } std::string GetStatusText(); protected: void GenerateData() override; StreamlineTrackingFilter(); ~StreamlineTrackingFilter() {} void InitGrayMatterEndings(); void CheckFiberForGmEnding(FiberType* fib); void FiberToProbmap(FiberType* fib); void GetSeedPointsFromSeedImage(); void CalculateNewPosition(itk::Point& pos, vnl_vector_fixed& dir); ///< Calculate next integration step. float FollowStreamline(itk::Point start_pos, vnl_vector_fixed dir, FiberType* fib, float tractLength, bool front); ///< Start streamline in one direction. bool IsInsideMask(const itk::Point& pos, ItkUcharImgType::Pointer mask); ///< Are we outside of the mask image? bool IsInGm(const itk::Point &pos); vnl_vector_fixed GetNewDirection(itk::Point& pos, std::deque< vnl_vector_fixed >& olddirs, itk::Index<3>& oldIndex); ///< Determine new direction by sample voting at the current position taking the last progression direction into account. std::vector< vnl_vector_fixed > CreateDirections(int NPoints); void BeforeTracking(); void AfterTracking(); PolyDataType m_FiberPolyData; vtkSmartPointer m_Points; vtkSmartPointer m_Cells; BundleType m_Tractogram; BundleType m_GmStubs; ItkUcharImgType::Pointer m_StoppingRegions; ItkUintImgType::Pointer m_TargetRegions; ItkUcharImgType::Pointer m_SeedImage; ItkUcharImgType::Pointer m_MaskImage; ItkUcharImgType::Pointer m_TissueImage; ItkDoubleImgType::Pointer m_OutputProbabilityMap; float m_AngularThresholdDeg; float m_StepSizeVox; float m_SamplingDistanceVox; float m_AngularThreshold; float m_StepSize; int m_MaxLength; float m_MinTractLength; float m_MaxTractLength; int m_SeedsPerVoxel; bool m_AvoidStop; bool m_RandomSampling; float m_SamplingDistance; float m_DeflectionMod; bool m_OnlyForwardSamples; bool m_UseStopVotes; unsigned int m_NumberOfSamples; unsigned int m_NumPreviousDirections; int m_WmLabel; int m_GmLabel; bool m_SeedOnlyGm; bool m_ControlGmEndings; int m_MaxNumTracts; bool m_Verbose; bool m_AposterioriCurvCheck; bool m_DemoMode; bool m_Random; bool m_UseOutputProbabilityMap; std::vector< itk::Point > m_SeedPoints; unsigned int m_CurrentTracts; unsigned int m_Progress; bool m_StopTracking; + bool m_InterpolateMask; void BuildFibers(bool check); int CheckCurvature(FiberType* fib, bool front); // decision forest mitk::TrackingDataHandler* m_TrackingHandler; std::vector< PolyDataType > m_PolyDataContainer; std::chrono::time_point m_StartTime; std::chrono::time_point m_EndTime; private: }; } //#ifndef ITK_MANUAL_INSTANTIATION //#include "itkMLBSTrackingFilter.cpp" //#endif #endif //__itkMLBSTrackingFilter_h_ diff --git a/Plugins/org.mitk.gui.qt.segmentation/resources/Segmentation.svg b/Plugins/org.mitk.gui.qt.segmentation/resources/segmentation.svg similarity index 100% rename from Plugins/org.mitk.gui.qt.segmentation/resources/Segmentation.svg rename to Plugins/org.mitk.gui.qt.segmentation/resources/segmentation.svg