diff --git a/Modules/Core/include/mitkImageVtkMapper2D.h b/Modules/Core/include/mitkImageVtkMapper2D.h index 0d7b3e7440..537b81c12a 100644 --- a/Modules/Core/include/mitkImageVtkMapper2D.h +++ b/Modules/Core/include/mitkImageVtkMapper2D.h @@ -1,323 +1,323 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ #ifndef MITKIMAGEVTKMAPPER2D_H_HEADER_INCLUDED_C10E906E #define MITKIMAGEVTKMAPPER2D_H_HEADER_INCLUDED_C10E906E // MITK #include // MITK Rendering #include "mitkBaseRenderer.h" #include "mitkExtractSliceFilter.h" #include "mitkVtkMapper.h" // VTK #include #include class vtkActor; class vtkPolyDataMapper; class vtkPlaneSource; class vtkImageData; class vtkLookupTable; class vtkImageExtractComponents; class vtkImageReslice; class vtkImageChangeInformation; class vtkPoints; class vtkMitkThickSlicesFilter; class vtkPolyData; class vtkMitkApplyLevelWindowToRGBFilter; class vtkMitkLevelWindowFilter; namespace mitk { /** \brief Mapper to resample and display 2D slices of a 3D image. * * The following image gives a brief overview of the mapping and the involved parts. * * \image html imageVtkMapper2Darchitecture.png * * First, the image is resliced by means of vtkImageReslice. The volume image * serves as input to the mapper in addition to spatial placement of the slice and a few other * properties such as thick slices. This code was already present in the old version * (mitkImageMapperGL2D). * * Next, the obtained slice (m_ReslicedImage) is put into a vtkMitkLevelWindowFilter * and the scalar levelwindow, opacity levelwindow and optional clipping to * local image bounds are applied * * Next, the output of the vtkMitkLevelWindowFilter is used to create a texture * (m_Texture) and a plane onto which the texture is rendered (m_Plane). For * mapping purposes, a vtkPolyDataMapper (m_Mapper) is utilized. Orthographic * projection is applied to create the effect of a 2D image. The mapper and the * texture are assigned to the actor (m_Actor) which is passed to the VTK rendering * pipeline via the method GetVtkProp(). * * In order to transform the textured plane to the correct position in space, the * same transformation as used for reslicing is applied to both the camera and the * vtkActor. All important steps are explained in more detail below. The resulting * 2D image (by reslicing the underlying 3D input image appropriately) can either * be directly rendered in a 2D view or just be calculated to be used later by another * rendering entity, e.g. in texture mapping in a 3D view. * * Properties that can be set for images and influence the imageMapper2D are: * * - \b "opacity": (FloatProperty) Opacity of the image * - \b "color": (ColorProperty) Color of the image * - \b "LookupTable": (mitkLookupTableProperty) If this property is set, * the default lookuptable will be ignored and the "LookupTable" value * will be used instead. * - \b "Image Rendering.Mode": This property decides which mode is used to render images. (E.g. if a lookup table or a transferfunction is applied). Detailed documentation about the modes can be found here: \link mitk::RenderingModeProperty \endlink * - \b "Image Rendering.Transfer Function": (mitkTransferFunctionProperty) If this * property is set, a color transferfunction will be used to color the image. * - \b "binary": (BoolProperty) is the image a binary image or not * - \b "outline binary": (BoolProperty) show outline of the image or not * - \b "texture interpolation": (BoolProperty) texture interpolation of the image * - \b "reslice interpolation": (VtkResliceInterpolationProperty) reslice interpolation of the image * - \b "in plane resample extent by geometry": (BoolProperty) Do it or not * - \b "bounding box": (BoolProperty) Is the Bounding Box of the image shown or not * - \b "layer": (IntProperty) Layer of the image * - \b "volume annotation color": (ColorProperty) color of the volume annotation, TODO has to be reimplemented * - \b "volume annotation unit": (StringProperty) annotation unit as string (does not implicit convert the unit!) unit is ml or cm3, TODO has to be reimplemented * The default properties are: * - \b "opacity", mitk::FloatProperty::New(0.3f), renderer, overwrite ) * - \b "color", ColorProperty::New(1.0,0.0,0.0), renderer, overwrite ) * - \b "binary", mitk::BoolProperty::New( true ), renderer, overwrite ) * - \b "outline binary", mitk::BoolProperty::New( false ), renderer, overwrite ) * - \b "texture interpolation", mitk::BoolProperty::New( false ) ) * - \b "reslice interpolation", mitk::VtkResliceInterpolationProperty::New() ) * - \b "in plane resample extent by geometry", mitk::BoolProperty::New( false ) ) * - \b "bounding box", mitk::BoolProperty::New( false ) ) * - \b "layer", mitk::IntProperty::New(10), renderer, overwrite) * - \b "Image Rendering.Transfer Function": Default color transfer function for CTs * - \b "LookupTable": Rainbow color. * If the modality-property is set for an image, the mapper uses modality-specific default properties, * e.g. color maps, if they are defined. * \ingroup Mapper */ class MITKCORE_EXPORT ImageVtkMapper2D : public VtkMapper { public: /** Standard class typedefs. */ mitkClassMacro(ImageVtkMapper2D, VtkMapper); /** Method for creation through the object factory. */ itkFactorylessNewMacro(Self); itkCloneMacro(Self); /** \brief Get the Image to map */ const mitk::Image *GetInput(void); /** \brief Checks whether this mapper needs to update itself and generate * data. */ void Update(mitk::BaseRenderer *renderer) override; //### methods of MITK-VTK rendering pipeline vtkProp *GetVtkProp(mitk::BaseRenderer *renderer) override; //### end of methods of MITK-VTK rendering pipeline /** \brief Internal class holding the mapper, actor, etc. for each of the 3 2D render windows */ /** * To render transveral, coronal, and sagittal, the mapper is called three times. * For performance reasons, the corresponding data for each view is saved in the * internal helper class LocalStorage. This allows rendering n views with just * 1 mitkMapper using n vtkMapper. * */ class MITKCORE_EXPORT LocalStorage : public mitk::Mapper::BaseLocalStorage { public: /** \brief Actor of the image in a 2D render window. */ vtkSmartPointer m_ImageActor; /** \brief Actor of the shadowimage in a 2D render window. */ vtkSmartPointer m_ShadowOutlineActor; /** Prop assembly containting everything for a regular display of the image.*/ vtkSmartPointer m_Actors; /** Prop assembly used if workspace is in an invalid state (e.g. invalid time point or * invalid world coordinate position is selected) and mapper has to "early out" * in Update() or GenerateDataForRenderer()*/ vtkSmartPointer m_EmptyActors; /** Prop assembly exposed publicly via ImagVtkMapper2D::GetVTKProp()*/ - vtkSmartPointer m_PublicActors; + vtkProp* m_PublicActors = nullptr; /** \brief Mapper of a 2D render window. */ vtkSmartPointer m_Mapper; vtkSmartPointer m_VectorComponentExtractor; /** \brief Current slice of a 2D render window.*/ vtkSmartPointer m_ReslicedImage; /** \brief Empty vtkPolyData that is set when rendering geometry does not * intersect the image geometry. * \warning This member variable is set to nullptr, * if no image geometry is inside the plane geometry * of the respective render window. Any user of this * slice has to check whether it is set to nullptr! */ vtkSmartPointer m_EmptyPolyData; /** \brief Plane on which the slice is rendered as texture. */ vtkSmartPointer m_Plane; /** \brief The texture which is used to render the current slice. */ vtkSmartPointer m_Texture; /** \brief The lookuptables for colors and level window */ vtkSmartPointer m_DefaultLookupTable; vtkSmartPointer m_BinaryLookupTable; vtkSmartPointer m_ColorLookupTable; /** \brief The actual reslicer (one per renderer) */ mitk::ExtractSliceFilter::Pointer m_Reslicer; /** \brief Filter for thick slices */ vtkSmartPointer m_TSFilter; /** \brief PolyData object containg all lines/points needed for outlining the contour. This container is used to save a computed contour for the next rendering execution. For instance, if you zoom or pann, there is no need to recompute the contour. */ vtkSmartPointer m_OutlinePolyData; /** \brief Timestamp of last update of stored data. */ itk::TimeStamp m_LastUpdateTime; /** \brief mmPerPixel relation between pixel and mm. (World spacing).*/ mitk::ScalarType *m_mmPerPixel; /** \brief This filter is used to apply the level window to Grayvalue and RBG(A) images. */ vtkSmartPointer m_LevelWindowFilter; /** \brief Default constructor of the local storage. */ LocalStorage(); /** \brief Default deconstructor of the local storage. */ ~LocalStorage() override; }; /** \brief Get the LocalStorage corresponding to the current renderer. */ const LocalStorage *GetConstLocalStorage(mitk::BaseRenderer *renderer); /** \brief Set the default properties for general image rendering. */ static void SetDefaultProperties(mitk::DataNode *node, mitk::BaseRenderer *renderer = nullptr, bool overwrite = false); /** \brief This method switches between different rendering modes (e.g. use a lookup table or a transfer function). * Detailed documentation about the modes can be found here: \link mitk::RenderingModeProperty \endlink */ void ApplyRenderingMode(mitk::BaseRenderer *renderer); protected: /** \brief The LocalStorageHandler holds all (three) LocalStorages for the three 2D render windows. */ mitk::LocalStorageHandler m_LSH; /** \brief Get the LocalStorage corresponding to the current renderer. */ LocalStorage* GetLocalStorage(mitk::BaseRenderer* renderer); /** \brief Transforms the actor to the actual position in 3D. * \param renderer The current renderer corresponding to the render window. */ void TransformActor(mitk::BaseRenderer *renderer); /** \brief Generates a plane according to the size of the resliced image in milimeters. * * \image html texturedPlane.png * * In VTK a vtkPlaneSource is defined through three points. The origin and two * points defining the axes of the plane (see VTK documentation). The origin is * set to (xMin; yMin; Z), where xMin and yMin are the minimal bounds of the * resliced image in space. Z is relevant for blending and the layer property. * The center of the plane (C) is also the center of the view plane (cf. the image above). * * \note For the standard MITK view with three 2D render windows showing three * different slices, three such planes are generated. All these planes are generated * in the XY-plane (even if they depict a YZ-slice of the volume). * */ void GeneratePlane(mitk::BaseRenderer *renderer, double planeBounds[6]); /** \brief Generates a vtkPolyData object containing the outline of a given binary slice. \param renderer: Pointer to the renderer containing the needed information \note This code is based on code from the iil library. */ template vtkSmartPointer CreateOutlinePolyData(mitk::BaseRenderer *renderer); /** Default constructor */ ImageVtkMapper2D(); /** Default deconstructor */ ~ImageVtkMapper2D() override; /** \brief Does the actual resampling, without rendering the image yet. * All the data is generated inside this method. The vtkProp (or Actor) * is filled with content (i.e. the resliced image). * * After generation, a 4x4 transformation matrix(t) of the current slice is obtained * from the vtkResliceImage object via GetReslicesAxis(). This matrix is * applied to each textured plane (actor->SetUserTransform(t)) to transform everything * to the actual 3D position (cf. the following image). * * \image html cameraPositioning3D.png * */ void GenerateDataForRenderer(mitk::BaseRenderer *renderer) override; /** \brief This method uses the vtkCamera clipping range and the layer property * to calcualte the depth of the object (e.g. image or contour). The depth is used * to keep the correct order for the final VTK rendering.*/ float CalculateLayerDepth(mitk::BaseRenderer *renderer); /** \brief This method applies (or modifies) the lookuptable for all types of images. * \warning To use the lookup table, the property 'Lookup Table' must be set and a 'Image Rendering.Mode' * which uses the lookup table must be set. */ void ApplyLookuptable(mitk::BaseRenderer *renderer); /** \brief This method applies a color transfer function. * Internally, a vtkColorTransferFunction is used. This is usefull for coloring continous * images (e.g. float) * \warning To use the color transfer function, the property 'Image Rendering.Transfer Function' must be set and a * 'Image Rendering.Mode' which uses the color transfer function must be set. */ void ApplyColorTransferFunction(mitk::BaseRenderer *renderer); /** * @brief ApplyLevelWindow Apply the level window for the given renderer. * \warning To use the level window, the property 'LevelWindow' must be set and a 'Image Rendering.Mode' which uses * the level window must be set. * @param renderer Level window for which renderer? */ void ApplyLevelWindow(mitk::BaseRenderer *renderer); /** \brief Set the color of the image/polydata */ void ApplyColor(mitk::BaseRenderer *renderer); /** \brief Set the opacity of the actor. */ void ApplyOpacity(mitk::BaseRenderer *renderer); /** * \brief Calculates whether the given rendering geometry intersects the * given SlicedGeometry3D. * * This method checks if the given PlaneGeometry intersects the given * SlicedGeometry3D. It calculates the distance of the PlaneGeometry to all * 8 cornerpoints of the SlicedGeometry3D. If all distances have the same * sign (all positive or all negative) there is no intersection. * If the distances have different sign, there is an intersection. **/ bool RenderingGeometryIntersectsImage(const PlaneGeometry *renderingGeometry, SlicedGeometry3D *imageGeometry); /** Helper function to reset the local storage in order to indicate an invalid state.*/ void SetToInvalidState(mitk::ImageVtkMapper2D::LocalStorage* localStorage); }; } // namespace mitk #endif /* MITKIMAGEVTKMAPPER2D_H_HEADER_INCLUDED_C10E906E */ diff --git a/Modules/Core/src/Rendering/mitkImageVtkMapper2D.cpp b/Modules/Core/src/Rendering/mitkImageVtkMapper2D.cpp index 7fd1332efe..3a4462b53a 100644 --- a/Modules/Core/src/Rendering/mitkImageVtkMapper2D.cpp +++ b/Modules/Core/src/Rendering/mitkImageVtkMapper2D.cpp @@ -1,1124 +1,1124 @@ /*============================================================================ The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center (DKFZ) All rights reserved. Use of this source code is governed by a 3-clause BSD license that can be found in the LICENSE file. ============================================================================*/ // MITK #include #include #include #include #include #include #include #include #include #include #include //#include #include "mitkImageStatisticsHolder.h" #include "mitkPlaneClipping.h" #include // MITK Rendering #include "mitkImageVtkMapper2D.h" #include "vtkMitkLevelWindowFilter.h" #include "vtkMitkThickSlicesFilter.h" #include "vtkNeverTranslucentTexture.h" // VTK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // ITK #include #include mitk::ImageVtkMapper2D::ImageVtkMapper2D() { } mitk::ImageVtkMapper2D::~ImageVtkMapper2D() { // The 3D RW Mapper (PlaneGeometryDataVtkMapper3D) is listening to this event, // in order to delete the images from the 3D RW. this->InvokeEvent(itk::DeleteEvent()); } // set the two points defining the textured plane according to the dimension and spacing void mitk::ImageVtkMapper2D::GeneratePlane(mitk::BaseRenderer *renderer, double planeBounds[6]) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); float depth = this->CalculateLayerDepth(renderer); // Set the origin to (xMin; yMin; depth) of the plane. This is necessary for obtaining the correct // plane size in crosshair rotation and swivel mode. localStorage->m_Plane->SetOrigin(planeBounds[0], planeBounds[2], depth); // These two points define the axes of the plane in combination with the origin. // Point 1 is the x-axis and point 2 the y-axis. // Each plane is transformed according to the view (axial, coronal and saggital) afterwards. localStorage->m_Plane->SetPoint1(planeBounds[1], planeBounds[2], depth); // P1: (xMax, yMin, depth) localStorage->m_Plane->SetPoint2(planeBounds[0], planeBounds[3], depth); // P2: (xMin, yMax, depth) } float mitk::ImageVtkMapper2D::CalculateLayerDepth(mitk::BaseRenderer *renderer) { // get the clipping range to check how deep into z direction we can render images double maxRange = renderer->GetVtkRenderer()->GetActiveCamera()->GetClippingRange()[1]; // Due to a VTK bug, we cannot use the whole clipping range. /100 is empirically determined float depth = -maxRange * 0.01; // divide by 100 int layer = 0; GetDataNode()->GetIntProperty("layer", layer, renderer); // add the layer property for each image to render images with a higher layer on top of the others depth += layer * 10; //*10: keep some room for each image (e.g. for ODFs in between) if (depth > 0.0f) { depth = 0.0f; MITK_WARN << "Layer value exceeds clipping range. Set to minimum instead."; } return depth; } const mitk::Image *mitk::ImageVtkMapper2D::GetInput(void) { return static_cast(GetDataNode()->GetData()); } vtkProp *mitk::ImageVtkMapper2D::GetVtkProp(mitk::BaseRenderer *renderer) { // return the actor corresponding to the renderer return m_LSH.GetLocalStorage(renderer)->m_PublicActors; } void mitk::ImageVtkMapper2D::GenerateDataForRenderer(mitk::BaseRenderer *renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); auto *image = const_cast(this->GetInput()); mitk::DataNode *datanode = this->GetDataNode(); if (nullptr == image || !image->IsInitialized()) { this->SetToInvalidState(localStorage); return; } // check if there is a valid worldGeometry const PlaneGeometry *worldGeometry = renderer->GetCurrentWorldPlaneGeometry(); if (nullptr == worldGeometry || !worldGeometry->IsValid() || !worldGeometry->HasReferenceGeometry()) { this->SetToInvalidState(localStorage); return; } image->Update(); - localStorage->m_PublicActors = localStorage->m_Actors; + localStorage->m_PublicActors = localStorage->m_Actors.Get(); // early out if there is no intersection of the current rendering geometry // and the geometry of the image that is to be rendered. if (!RenderingGeometryIntersectsImage(worldGeometry, image->GetSlicedGeometry())) { this->SetToInvalidState(localStorage); return; } // set main input for ExtractSliceFilter localStorage->m_Reslicer->SetInput(image); localStorage->m_Reslicer->SetWorldGeometry(worldGeometry); localStorage->m_Reslicer->SetTimeStep(this->GetTimestep()); // set the transformation of the image to adapt reslice axis localStorage->m_Reslicer->SetResliceTransformByGeometry( image->GetTimeGeometry()->GetGeometryForTimeStep(this->GetTimestep())); // is the geometry of the slice based on the input image or the worldgeometry? bool inPlaneResampleExtentByGeometry = false; datanode->GetBoolProperty("in plane resample extent by geometry", inPlaneResampleExtentByGeometry, renderer); localStorage->m_Reslicer->SetInPlaneResampleExtentByGeometry(inPlaneResampleExtentByGeometry); // Initialize the interpolation mode for resampling; switch to nearest // neighbor if the input image is too small. if ((image->GetDimension() >= 3) && (image->GetDimension(2) > 1)) { VtkResliceInterpolationProperty *resliceInterpolationProperty; datanode->GetProperty(resliceInterpolationProperty, "reslice interpolation", renderer); int interpolationMode = VTK_RESLICE_NEAREST; if (resliceInterpolationProperty != nullptr) { interpolationMode = resliceInterpolationProperty->GetInterpolation(); } switch (interpolationMode) { case VTK_RESLICE_NEAREST: localStorage->m_Reslicer->SetInterpolationMode(ExtractSliceFilter::RESLICE_NEAREST); break; case VTK_RESLICE_LINEAR: localStorage->m_Reslicer->SetInterpolationMode(ExtractSliceFilter::RESLICE_LINEAR); break; case VTK_RESLICE_CUBIC: localStorage->m_Reslicer->SetInterpolationMode(ExtractSliceFilter::RESLICE_CUBIC); break; } } else { localStorage->m_Reslicer->SetInterpolationMode(ExtractSliceFilter::RESLICE_NEAREST); } // set the vtk output property to true, makes sure that no unneeded mitk image convertion // is done. localStorage->m_Reslicer->SetVtkOutputRequest(true); // Thickslicing int thickSlicesMode = 0; int thickSlicesNum = 1; // Thick slices parameters if (image->GetPixelType().GetNumberOfComponents() == 1) // for now only single component are allowed { DataNode *dn = renderer->GetCurrentWorldPlaneGeometryNode(); if (dn) { ResliceMethodProperty *resliceMethodEnumProperty = nullptr; if (dn->GetProperty(resliceMethodEnumProperty, "reslice.thickslices", renderer) && resliceMethodEnumProperty) thickSlicesMode = resliceMethodEnumProperty->GetValueAsId(); IntProperty *intProperty = nullptr; if (dn->GetProperty(intProperty, "reslice.thickslices.num", renderer) && intProperty) { thickSlicesNum = intProperty->GetValue(); if (thickSlicesNum < 1) thickSlicesNum = 1; } } else { MITK_WARN << "no associated widget plane data tree node found"; } } const auto *planeGeometry = dynamic_cast(worldGeometry); if (thickSlicesMode > 0) { double dataZSpacing = 1.0; Vector3D normInIndex, normal; const auto *abstractGeometry = dynamic_cast(worldGeometry); if (abstractGeometry != nullptr) normal = abstractGeometry->GetPlane()->GetNormal(); else { if (planeGeometry != nullptr) { normal = planeGeometry->GetNormal(); } else return; // no fitting geometry set } normal.Normalize(); image->GetTimeGeometry()->GetGeometryForTimeStep(this->GetTimestep())->WorldToIndex(normal, normInIndex); dataZSpacing = 1.0 / normInIndex.GetNorm(); localStorage->m_Reslicer->SetOutputDimensionality(3); localStorage->m_Reslicer->SetOutputSpacingZDirection(dataZSpacing); localStorage->m_Reslicer->SetOutputExtentZDirection(-thickSlicesNum, 0 + thickSlicesNum); // Do the reslicing. Modified() is called to make sure that the reslicer is // executed even though the input geometry information did not change; this // is necessary when the input /em data, but not the /em geometry changes. localStorage->m_TSFilter->SetThickSliceMode(thickSlicesMode - 1); localStorage->m_TSFilter->SetInputData(localStorage->m_Reslicer->GetVtkOutput()); // vtkFilter=>mitkFilter=>vtkFilter update mechanism will fail without calling manually localStorage->m_Reslicer->Modified(); localStorage->m_Reslicer->Update(); localStorage->m_TSFilter->Modified(); localStorage->m_TSFilter->Update(); localStorage->m_ReslicedImage = localStorage->m_TSFilter->GetOutput(); } else { // this is needed when thick mode was enable bevore. These variable have to be reset to default values localStorage->m_Reslicer->SetOutputDimensionality(2); localStorage->m_Reslicer->SetOutputSpacingZDirection(1.0); localStorage->m_Reslicer->SetOutputExtentZDirection(0, 0); localStorage->m_Reslicer->Modified(); // start the pipeline with updating the largest possible, needed if the geometry of the input has changed localStorage->m_Reslicer->UpdateLargestPossibleRegion(); localStorage->m_ReslicedImage = localStorage->m_Reslicer->GetVtkOutput(); } // Bounds information for reslicing (only reuqired if reference geometry // is present) // this used for generating a vtkPLaneSource with the right size double sliceBounds[6]; for (auto &sliceBound : sliceBounds) { sliceBound = 0.0; } localStorage->m_Reslicer->GetClippedPlaneBounds(sliceBounds); // get the spacing of the slice localStorage->m_mmPerPixel = localStorage->m_Reslicer->GetOutputSpacing(); // calculate minimum bounding rect of IMAGE in texture { double textureClippingBounds[6]; for (auto &textureClippingBound : textureClippingBounds) { textureClippingBound = 0.0; } // Calculate the actual bounds of the transformed plane clipped by the // dataset bounding box; this is required for drawing the texture at the // correct position during 3D mapping. mitk::PlaneClipping::CalculateClippedPlaneBounds(image->GetGeometry(), planeGeometry, textureClippingBounds); textureClippingBounds[0] = static_cast(textureClippingBounds[0] / localStorage->m_mmPerPixel[0] + 0.5); textureClippingBounds[1] = static_cast(textureClippingBounds[1] / localStorage->m_mmPerPixel[0] + 0.5); textureClippingBounds[2] = static_cast(textureClippingBounds[2] / localStorage->m_mmPerPixel[1] + 0.5); textureClippingBounds[3] = static_cast(textureClippingBounds[3] / localStorage->m_mmPerPixel[1] + 0.5); // clipping bounds for cutting the image localStorage->m_LevelWindowFilter->SetClippingBounds(textureClippingBounds); } // get the number of scalar components to distinguish between different image types int numberOfComponents = localStorage->m_ReslicedImage->GetNumberOfScalarComponents(); // get the binary property bool binary = false; bool binaryOutline = false; datanode->GetBoolProperty("binary", binary, renderer); if (binary) // binary image { datanode->GetBoolProperty("outline binary", binaryOutline, renderer); if (binaryOutline) // contour rendering { // get pixel type of vtk image itk::ImageIOBase::IOComponentType componentType = static_cast(image->GetPixelType().GetComponentType()); switch (componentType) { case itk::ImageIOBase::UCHAR: // generate contours/outlines localStorage->m_OutlinePolyData = CreateOutlinePolyData(renderer); break; case itk::ImageIOBase::USHORT: // generate contours/outlines localStorage->m_OutlinePolyData = CreateOutlinePolyData(renderer); break; default: binaryOutline = false; this->ApplyLookuptable(renderer); MITK_WARN << "Type of all binary images should be unsigned char or unsigned short. Outline does not work on other pixel types!"; } if (binaryOutline) // binary outline is still true --> add outline { float binaryOutlineWidth = 1.0; if (datanode->GetFloatProperty("outline width", binaryOutlineWidth, renderer)) { float binaryOutlineShadowWidth = 1.5; datanode->GetFloatProperty("outline shadow width", binaryOutlineShadowWidth, renderer); localStorage->m_ShadowOutlineActor->GetProperty()->SetLineWidth(binaryOutlineWidth * binaryOutlineShadowWidth); localStorage->m_ImageActor->GetProperty()->SetLineWidth(binaryOutlineWidth); } } } else // standard binary image { if (numberOfComponents != 1) { MITK_ERROR << "Rendering Error: Binary Images with more then 1 component are not supported!"; } } } this->ApplyOpacity(renderer); this->ApplyRenderingMode(renderer); // do not use a VTK lookup table (we do that ourselves in m_LevelWindowFilter) localStorage->m_Texture->SetColorModeToDirectScalars(); int displayedComponent = 0; if (datanode->GetIntProperty("Image.Displayed Component", displayedComponent, renderer) && numberOfComponents > 1) { localStorage->m_VectorComponentExtractor->SetComponents(displayedComponent); localStorage->m_VectorComponentExtractor->SetInputData(localStorage->m_ReslicedImage); localStorage->m_LevelWindowFilter->SetInputConnection(localStorage->m_VectorComponentExtractor->GetOutputPort(0)); } else { // connect the input with the levelwindow filter localStorage->m_LevelWindowFilter->SetInputData(localStorage->m_ReslicedImage); } // check for texture interpolation property bool textureInterpolation = false; GetDataNode()->GetBoolProperty("texture interpolation", textureInterpolation, renderer); // set the interpolation modus according to the property localStorage->m_Texture->SetInterpolate(textureInterpolation); // connect the texture with the output of the levelwindow filter localStorage->m_Texture->SetInputConnection(localStorage->m_LevelWindowFilter->GetOutputPort()); this->TransformActor(renderer); if (binary && binaryOutline) // connect the mapper with the polyData which contains the lines { // We need the contour for the binary outline property as actor localStorage->m_Mapper->SetInputData(localStorage->m_OutlinePolyData); localStorage->m_ImageActor->SetTexture(nullptr); // no texture for contours bool binaryOutlineShadow = false; datanode->GetBoolProperty("outline binary shadow", binaryOutlineShadow, renderer); if (binaryOutlineShadow) { localStorage->m_ShadowOutlineActor->SetVisibility(true); } else { localStorage->m_ShadowOutlineActor->SetVisibility(false); } } else { // Connect the mapper with the input texture. This is the standard case. // setup the textured plane this->GeneratePlane(renderer, sliceBounds); // set the plane as input for the mapper localStorage->m_Mapper->SetInputConnection(localStorage->m_Plane->GetOutputPort()); // set the texture for the actor localStorage->m_ImageActor->SetTexture(localStorage->m_Texture); localStorage->m_ShadowOutlineActor->SetVisibility(false); } // We have been modified => save this for next Update() localStorage->m_LastUpdateTime.Modified(); } void mitk::ImageVtkMapper2D::ApplyLevelWindow(mitk::BaseRenderer *renderer) { LocalStorage *localStorage = this->GetLocalStorage(renderer); LevelWindow levelWindow; this->GetDataNode()->GetLevelWindow(levelWindow, renderer, "levelwindow"); localStorage->m_LevelWindowFilter->GetLookupTable()->SetRange(levelWindow.GetLowerWindowBound(), levelWindow.GetUpperWindowBound()); mitk::LevelWindow opacLevelWindow; if (this->GetDataNode()->GetLevelWindow(opacLevelWindow, renderer, "opaclevelwindow")) { // pass the opaque level window to the filter localStorage->m_LevelWindowFilter->SetMinOpacity(opacLevelWindow.GetLowerWindowBound()); localStorage->m_LevelWindowFilter->SetMaxOpacity(opacLevelWindow.GetUpperWindowBound()); } else { // no opaque level window localStorage->m_LevelWindowFilter->SetMinOpacity(0.0); localStorage->m_LevelWindowFilter->SetMaxOpacity(255.0); } } void mitk::ImageVtkMapper2D::ApplyColor(mitk::BaseRenderer *renderer) { LocalStorage *localStorage = this->GetLocalStorage(renderer); float rgb[3] = {1.0f, 1.0f, 1.0f}; // check for color prop and use it for rendering if it exists // binary image hovering & binary image selection bool hover = false; bool selected = false; bool binary = false; GetDataNode()->GetBoolProperty("binaryimage.ishovering", hover, renderer); GetDataNode()->GetBoolProperty("selected", selected, renderer); GetDataNode()->GetBoolProperty("binary", binary, renderer); if (binary && hover && !selected) { mitk::ColorProperty::Pointer colorprop = dynamic_cast(GetDataNode()->GetProperty("binaryimage.hoveringcolor", renderer)); if (colorprop.IsNotNull()) { memcpy(rgb, colorprop->GetColor().GetDataPointer(), 3 * sizeof(float)); } else { GetDataNode()->GetColor(rgb, renderer, "color"); } } if (binary && selected) { mitk::ColorProperty::Pointer colorprop = dynamic_cast(GetDataNode()->GetProperty("binaryimage.selectedcolor", renderer)); if (colorprop.IsNotNull()) { memcpy(rgb, colorprop->GetColor().GetDataPointer(), 3 * sizeof(float)); } else { GetDataNode()->GetColor(rgb, renderer, "color"); } } if (!binary || (!hover && !selected)) { GetDataNode()->GetColor(rgb, renderer, "color"); } double rgbConv[3] = {(double)rgb[0], (double)rgb[1], (double)rgb[2]}; // conversion to double for VTK localStorage->m_ShadowOutlineActor->GetProperty()->SetColor(rgbConv); localStorage->m_ImageActor->GetProperty()->SetColor(rgbConv); float shadowRGB[3] = {1.0f, 1.0f, 1.0f}; mitk::ColorProperty::Pointer colorprop = dynamic_cast(GetDataNode()->GetProperty("outline binary shadow color", renderer)); if (colorprop.IsNotNull()) { memcpy(shadowRGB, colorprop->GetColor().GetDataPointer(), 3 * sizeof(float)); } double shadowRGBConv[3] = {(double)shadowRGB[0], (double)shadowRGB[1], (double)shadowRGB[2]}; // conversion to double for VTK localStorage->m_ShadowOutlineActor->GetProperty()->SetColor(shadowRGBConv); } void mitk::ImageVtkMapper2D::ApplyOpacity(mitk::BaseRenderer *renderer) { LocalStorage *localStorage = this->GetLocalStorage(renderer); float opacity = 1.0f; // check for opacity prop and use it for rendering if it exists GetDataNode()->GetOpacity(opacity, renderer, "opacity"); // set the opacity according to the properties localStorage->m_ImageActor->GetProperty()->SetOpacity(opacity); localStorage->m_ShadowOutlineActor->GetProperty()->SetOpacity(opacity); } void mitk::ImageVtkMapper2D::ApplyRenderingMode(mitk::BaseRenderer *renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); bool binary = false; this->GetDataNode()->GetBoolProperty("binary", binary, renderer); if (binary) // is it a binary image? { // for binary images, we always use our default LuT and map every value to (0,1) // the opacity of 0 will always be 0.0. We never a apply a LuT/TfF nor a level window. localStorage->m_LevelWindowFilter->SetLookupTable(localStorage->m_BinaryLookupTable); } else { // all other image types can make use of the rendering mode int renderingMode = mitk::RenderingModeProperty::LOOKUPTABLE_LEVELWINDOW_COLOR; mitk::RenderingModeProperty::Pointer mode = dynamic_cast(this->GetDataNode()->GetProperty("Image Rendering.Mode", renderer)); if (mode.IsNotNull()) { renderingMode = mode->GetRenderingMode(); } switch (renderingMode) { case mitk::RenderingModeProperty::LOOKUPTABLE_LEVELWINDOW_COLOR: MITK_DEBUG << "'Image Rendering.Mode' = LevelWindow_LookupTable_Color"; this->ApplyLookuptable(renderer); this->ApplyLevelWindow(renderer); break; case mitk::RenderingModeProperty::COLORTRANSFERFUNCTION_LEVELWINDOW_COLOR: MITK_DEBUG << "'Image Rendering.Mode' = LevelWindow_ColorTransferFunction_Color"; this->ApplyColorTransferFunction(renderer); this->ApplyLevelWindow(renderer); break; case mitk::RenderingModeProperty::LOOKUPTABLE_COLOR: MITK_DEBUG << "'Image Rendering.Mode' = LookupTable_Color"; this->ApplyLookuptable(renderer); break; case mitk::RenderingModeProperty::COLORTRANSFERFUNCTION_COLOR: MITK_DEBUG << "'Image Rendering.Mode' = ColorTransferFunction_Color"; this->ApplyColorTransferFunction(renderer); break; default: MITK_ERROR << "No valid 'Image Rendering.Mode' set. Using LOOKUPTABLE_LEVELWINDOW_COLOR instead."; this->ApplyLookuptable(renderer); this->ApplyLevelWindow(renderer); break; } } // we apply color for all images (including binaries). this->ApplyColor(renderer); } void mitk::ImageVtkMapper2D::ApplyLookuptable(mitk::BaseRenderer *renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); vtkLookupTable *usedLookupTable = localStorage->m_ColorLookupTable; // If lookup table or transferfunction use is requested... mitk::LookupTableProperty::Pointer lookupTableProp = dynamic_cast(this->GetDataNode()->GetProperty("LookupTable", renderer)); if (lookupTableProp.IsNotNull()) // is a lookuptable set? { usedLookupTable = lookupTableProp->GetLookupTable()->GetVtkLookupTable(); } else { //"Image Rendering.Mode was set to use a lookup table but there is no property 'LookupTable'. // A default (rainbow) lookup table will be used. // Here have to do nothing. Warning for the user has been removed, due to unwanted console output // in every interation of the rendering. } localStorage->m_LevelWindowFilter->SetLookupTable(usedLookupTable); } void mitk::ImageVtkMapper2D::ApplyColorTransferFunction(mitk::BaseRenderer *renderer) { mitk::TransferFunctionProperty::Pointer transferFunctionProp = dynamic_cast( this->GetDataNode()->GetProperty("Image Rendering.Transfer Function", renderer)); if (transferFunctionProp.IsNull()) { MITK_ERROR << "'Image Rendering.Mode'' was set to use a color transfer function but there is no property 'Image " "Rendering.Transfer Function'. Nothing will be done."; return; } LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); // pass the transfer function to our level window filter localStorage->m_LevelWindowFilter->SetLookupTable(transferFunctionProp->GetValue()->GetColorTransferFunction()); localStorage->m_LevelWindowFilter->SetOpacityPiecewiseFunction( transferFunctionProp->GetValue()->GetScalarOpacityFunction()); } void mitk::ImageVtkMapper2D::SetToInvalidState(mitk::ImageVtkMapper2D::LocalStorage* localStorage) { - localStorage->m_PublicActors = localStorage->m_EmptyActors; + localStorage->m_PublicActors = localStorage->m_EmptyActors.Get(); // set image to nullptr, to clear the texture in 3D, because // the latest image is used there if the plane is out of the geometry // see bug-13275 localStorage->m_ReslicedImage = nullptr; localStorage->m_Mapper->SetInputData(localStorage->m_EmptyPolyData); } void mitk::ImageVtkMapper2D::Update(mitk::BaseRenderer *renderer) { bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if (!visible) { return; } auto *data = const_cast(this->GetInput()); if (data == nullptr) { return; } // Calculate time step of the input data for the specified renderer (integer value) this->CalculateTimeStep(renderer); LocalStorage* localStorage = m_LSH.GetLocalStorage(renderer); // Check if time step is valid const TimeGeometry *dataTimeGeometry = data->GetTimeGeometry(); if ((dataTimeGeometry == nullptr) || (dataTimeGeometry->CountTimeSteps() == 0) || (!dataTimeGeometry->IsValidTimeStep(this->GetTimestep()))) { this->SetToInvalidState(localStorage); return; } const DataNode *node = this->GetDataNode(); data->UpdateOutputInformation(); // check if something important has changed and we need to rerender if ((localStorage->m_LastUpdateTime < node->GetMTime()) || (localStorage->m_LastUpdateTime < data->GetPipelineMTime()) || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldPlaneGeometryUpdateTime()) || (localStorage->m_LastUpdateTime < renderer->GetCurrentWorldPlaneGeometry()->GetMTime()) || (localStorage->m_LastUpdateTime < node->GetPropertyList()->GetMTime()) || (localStorage->m_LastUpdateTime < node->GetPropertyList(renderer)->GetMTime()) || (localStorage->m_LastUpdateTime < data->GetPropertyList()->GetMTime())) { this->GenerateDataForRenderer(renderer); } // since we have checked that nothing important has changed, we can set // m_LastUpdateTime to the current time localStorage->m_LastUpdateTime.Modified(); } void mitk::ImageVtkMapper2D::SetDefaultProperties(mitk::DataNode *node, mitk::BaseRenderer *renderer, bool overwrite) { mitk::Image::Pointer image = dynamic_cast(node->GetData()); // Properties common for both images and segmentations node->AddProperty("depthOffset", mitk::FloatProperty::New(0.0), renderer, overwrite); node->AddProperty("outline binary", mitk::BoolProperty::New(false), renderer, overwrite); node->AddProperty("outline width", mitk::FloatProperty::New(1.0), renderer, overwrite); node->AddProperty("outline binary shadow", mitk::BoolProperty::New(false), renderer, overwrite); node->AddProperty("outline binary shadow color", ColorProperty::New(0.0, 0.0, 0.0), renderer, overwrite); node->AddProperty("outline shadow width", mitk::FloatProperty::New(1.5), renderer, overwrite); if (image->IsRotated()) node->AddProperty("reslice interpolation", mitk::VtkResliceInterpolationProperty::New(VTK_RESLICE_CUBIC)); else node->AddProperty("reslice interpolation", mitk::VtkResliceInterpolationProperty::New()); node->AddProperty("texture interpolation", mitk::BoolProperty::New(false)); node->AddProperty("in plane resample extent by geometry", mitk::BoolProperty::New(false)); node->AddProperty("bounding box", mitk::BoolProperty::New(false)); mitk::RenderingModeProperty::Pointer renderingModeProperty = mitk::RenderingModeProperty::New(); node->AddProperty("Image Rendering.Mode", renderingModeProperty); // Set default grayscale look-up table mitk::LookupTable::Pointer mitkLut = mitk::LookupTable::New(); mitkLut->SetType(mitk::LookupTable::GRAYSCALE); mitk::LookupTableProperty::Pointer mitkLutProp = mitk::LookupTableProperty::New(); mitkLutProp->SetLookupTable(mitkLut); node->SetProperty("LookupTable", mitkLutProp, renderer); std::string photometricInterpretation; // DICOM tag telling us how pixel values should be displayed if (node->GetStringProperty("dicom.pixel.PhotometricInterpretation", photometricInterpretation)) { // modality provided by DICOM or other reader if (photometricInterpretation.find("MONOCHROME1") != std::string::npos) // meaning: display MINIMUM pixels as WHITE { // Set inverse grayscale look-up table mitkLut->SetType(mitk::LookupTable::INVERSE_GRAYSCALE); mitkLutProp->SetLookupTable(mitkLut); node->SetProperty("LookupTable", mitkLutProp, renderer); renderingModeProperty->SetValue(mitk::RenderingModeProperty::LOOKUPTABLE_LEVELWINDOW_COLOR); // USE lookuptable } // Otherwise do nothing - the default grayscale look-up table has already been set } bool isBinaryImage(false); if (!node->GetBoolProperty("binary", isBinaryImage) && image->GetPixelType().GetNumberOfComponents() == 1) { // ok, property is not set, use heuristic to determine if this // is a binary image mitk::Image::Pointer centralSliceImage; ScalarType minValue = 0.0; ScalarType maxValue = 0.0; ScalarType min2ndValue = 0.0; ScalarType max2ndValue = 0.0; mitk::ImageSliceSelector::Pointer sliceSelector = mitk::ImageSliceSelector::New(); sliceSelector->SetInput(image); sliceSelector->SetSliceNr(image->GetDimension(2) / 2); sliceSelector->SetTimeNr(image->GetDimension(3) / 2); sliceSelector->SetChannelNr(image->GetDimension(4) / 2); sliceSelector->Update(); centralSliceImage = sliceSelector->GetOutput(); if (centralSliceImage.IsNotNull() && centralSliceImage->IsInitialized()) { minValue = centralSliceImage->GetStatistics()->GetScalarValueMin(); maxValue = centralSliceImage->GetStatistics()->GetScalarValueMax(); min2ndValue = centralSliceImage->GetStatistics()->GetScalarValue2ndMin(); max2ndValue = centralSliceImage->GetStatistics()->GetScalarValue2ndMax(); } if ((maxValue == min2ndValue && minValue == max2ndValue) || minValue == maxValue) { // centralSlice is strange, lets look at all data minValue = image->GetStatistics()->GetScalarValueMin(); maxValue = image->GetStatistics()->GetScalarValueMaxNoRecompute(); min2ndValue = image->GetStatistics()->GetScalarValue2ndMinNoRecompute(); max2ndValue = image->GetStatistics()->GetScalarValue2ndMaxNoRecompute(); } isBinaryImage = (maxValue == min2ndValue && minValue == max2ndValue); } std::string className = image->GetNameOfClass(); if (className != "TensorImage" && className != "OdfImage" && className != "ShImage") { PixelType pixelType = image->GetPixelType(); size_t numComponents = pixelType.GetNumberOfComponents(); if ((pixelType.GetPixelType() == itk::ImageIOBase::VECTOR && numComponents > 1) || numComponents == 2 || numComponents > 4) { node->AddProperty("Image.Displayed Component", mitk::IntProperty::New(0), renderer, overwrite); } } // some more properties specific for a binary... if (isBinaryImage) { node->AddProperty("opacity", mitk::FloatProperty::New(0.3f), renderer, overwrite); node->AddProperty("color", ColorProperty::New(1.0, 0.0, 0.0), renderer, overwrite); node->AddProperty("binaryimage.selectedcolor", ColorProperty::New(1.0, 0.0, 0.0), renderer, overwrite); node->AddProperty("binaryimage.selectedannotationcolor", ColorProperty::New(1.0, 0.0, 0.0), renderer, overwrite); node->AddProperty("binaryimage.hoveringcolor", ColorProperty::New(1.0, 0.0, 0.0), renderer, overwrite); node->AddProperty("binaryimage.hoveringannotationcolor", ColorProperty::New(1.0, 0.0, 0.0), renderer, overwrite); node->AddProperty("binary", mitk::BoolProperty::New(true), renderer, overwrite); node->AddProperty("layer", mitk::IntProperty::New(10), renderer, overwrite); } else //...or image type object { node->AddProperty("opacity", mitk::FloatProperty::New(1.0f), renderer, overwrite); node->AddProperty("color", ColorProperty::New(1.0, 1.0, 1.0), renderer, overwrite); node->AddProperty("binary", mitk::BoolProperty::New(false), renderer, overwrite); node->AddProperty("layer", mitk::IntProperty::New(0), renderer, overwrite); } if (image.IsNotNull() && image->IsInitialized()) { if ((overwrite) || (node->GetProperty("levelwindow", renderer) == nullptr)) { /* initialize level/window from DICOM tags */ mitk::LevelWindow contrast; std::string sLevel = ""; std::string sWindow = ""; if (GetBackwardsCompatibleDICOMProperty( 0x0028, 0x1050, "dicom.voilut.WindowCenter", image->GetPropertyList(), sLevel) && GetBackwardsCompatibleDICOMProperty( 0x0028, 0x1051, "dicom.voilut.WindowWidth", image->GetPropertyList(), sWindow)) { float level = atof(sLevel.c_str()); float window = atof(sWindow.c_str()); std::string sSmallestPixelValueInSeries; std::string sLargestPixelValueInSeries; if (GetBackwardsCompatibleDICOMProperty(0x0028, 0x0108, "dicom.series.SmallestPixelValueInSeries", image->GetPropertyList(), sSmallestPixelValueInSeries) && GetBackwardsCompatibleDICOMProperty(0x0028, 0x0109, "dicom.series.LargestPixelValueInSeries", image->GetPropertyList(), sLargestPixelValueInSeries)) { float smallestPixelValueInSeries = atof(sSmallestPixelValueInSeries.c_str()); float largestPixelValueInSeries = atof(sLargestPixelValueInSeries.c_str()); contrast.SetRangeMinMax(smallestPixelValueInSeries - 1, largestPixelValueInSeries + 1); // why not a little buffer? // might remedy some l/w widget challenges } else { contrast.SetAuto(static_cast(node->GetData()), false, true); // fallback } contrast.SetLevelWindow(level, window, true); } else { contrast.SetAuto(static_cast(node->GetData()), false, true); // fallback } node->SetProperty("levelwindow", LevelWindowProperty::New(contrast), renderer); } if (((overwrite) || (node->GetProperty("opaclevelwindow", renderer) == nullptr)) && (image->GetPixelType().GetPixelType() == itk::ImageIOBase::RGBA) && (image->GetPixelType().GetComponentType() == itk::ImageIOBase::UCHAR)) { mitk::LevelWindow opaclevwin; opaclevwin.SetRangeMinMax(0, 255); opaclevwin.SetWindowBounds(0, 255); mitk::LevelWindowProperty::Pointer prop = mitk::LevelWindowProperty::New(opaclevwin); node->SetProperty("opaclevelwindow", prop, renderer); } } Superclass::SetDefaultProperties(node, renderer, overwrite); } mitk::ImageVtkMapper2D::LocalStorage *mitk::ImageVtkMapper2D::GetLocalStorage(mitk::BaseRenderer *renderer) { return m_LSH.GetLocalStorage(renderer); } const mitk::ImageVtkMapper2D::LocalStorage* mitk::ImageVtkMapper2D::GetConstLocalStorage(mitk::BaseRenderer* renderer) { return m_LSH.GetLocalStorage(renderer); } template vtkSmartPointer mitk::ImageVtkMapper2D::CreateOutlinePolyData(mitk::BaseRenderer *renderer) { LocalStorage *localStorage = this->GetLocalStorage(renderer); // get the min and max index values of each direction int *extent = localStorage->m_ReslicedImage->GetExtent(); int xMin = extent[0]; int xMax = extent[1]; int yMin = extent[2]; int yMax = extent[3]; int *dims = localStorage->m_ReslicedImage->GetDimensions(); // dimensions of the image int line = dims[0]; // how many pixels per line? int x = xMin; // pixel index x int y = yMin; // pixel index y // get the depth for each contour float depth = CalculateLayerDepth(renderer); vtkSmartPointer points = vtkSmartPointer::New(); // the points to draw vtkSmartPointer lines = vtkSmartPointer::New(); // the lines to connect the points // We take the pointer to the first pixel of the image auto* currentPixel = static_cast(localStorage->m_ReslicedImage->GetScalarPointer()); while (y <= yMax) { // if the current pixel value is set to something if ((currentPixel) && (*currentPixel != 0)) { // check in which direction a line is necessary // a line is added if the neighbor of the current pixel has the value 0 // and if the pixel is located at the edge of the image // if vvvvv not the first line vvvvv if (y > yMin && *(currentPixel - line) == 0) { // x direction - bottom edge of the pixel // add the 2 points vtkIdType p1 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint((x + 1) * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); // add the line between both points lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } // if vvvvv not the last line vvvvv if (y < yMax && *(currentPixel + line) == 0) { // x direction - top edge of the pixel vtkIdType p1 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint( (x + 1) * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } // if vvvvv not the first pixel vvvvv if ((x > xMin || y > yMin) && *(currentPixel - 1) == 0) { // y direction - left edge of the pixel vtkIdType p1 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } // if vvvvv not the last pixel vvvvv if ((y < yMax || (x < xMax)) && *(currentPixel + 1) == 0) { // y direction - right edge of the pixel vtkIdType p1 = points->InsertNextPoint((x + 1) * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint( (x + 1) * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } /* now consider pixels at the edge of the image */ // if vvvvv left edge of image vvvvv if (x == xMin) { // draw left edge of the pixel vtkIdType p1 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } // if vvvvv right edge of image vvvvv if (x == xMax) { // draw right edge of the pixel vtkIdType p1 = points->InsertNextPoint((x + 1) * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint( (x + 1) * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } // if vvvvv bottom edge of image vvvvv if (y == yMin) { // draw bottom edge of the pixel vtkIdType p1 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint((x + 1) * localStorage->m_mmPerPixel[0], y * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } // if vvvvv top edge of image vvvvv if (y == yMax) { // draw top edge of the pixel vtkIdType p1 = points->InsertNextPoint(x * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); vtkIdType p2 = points->InsertNextPoint( (x + 1) * localStorage->m_mmPerPixel[0], (y + 1) * localStorage->m_mmPerPixel[1], depth); lines->InsertNextCell(2); lines->InsertCellPoint(p1); lines->InsertCellPoint(p2); } } // end if currentpixel is set x++; if (x > xMax) { // reached end of line x = xMin; y++; } // Increase the pointer-position to the next pixel. // This is safe, as the while-loop and the x-reset logic above makes // sure we do not exceed the bounds of the image currentPixel++; } // end of while // Create a polydata to store everything in vtkSmartPointer polyData = vtkSmartPointer::New(); // Add the points to the dataset polyData->SetPoints(points); // Add the lines to the dataset polyData->SetLines(lines); return polyData; } void mitk::ImageVtkMapper2D::TransformActor(mitk::BaseRenderer *renderer) { LocalStorage *localStorage = m_LSH.GetLocalStorage(renderer); // get the transformation matrix of the reslicer in order to render the slice as axial, coronal or saggital vtkSmartPointer trans = vtkSmartPointer::New(); vtkSmartPointer matrix = localStorage->m_Reslicer->GetResliceAxes(); trans->SetMatrix(matrix); // transform the plane/contour (the actual actor) to the corresponding view (axial, coronal or saggital) localStorage->m_ImageActor->SetUserTransform(trans); // transform the origin to center based coordinates, because MITK is center based. localStorage->m_ImageActor->SetPosition(-0.5 * localStorage->m_mmPerPixel[0], -0.5 * localStorage->m_mmPerPixel[1], 0.0); localStorage->m_ShadowOutlineActor->SetUserTransform(trans); localStorage->m_ShadowOutlineActor->SetPosition(-0.5 * localStorage->m_mmPerPixel[0], -0.5 * localStorage->m_mmPerPixel[1], 0.0); } bool mitk::ImageVtkMapper2D::RenderingGeometryIntersectsImage(const PlaneGeometry *renderingGeometry, SlicedGeometry3D *imageGeometry) { // if either one of the two geometries is nullptr we return true // for safety reasons if (renderingGeometry == nullptr || imageGeometry == nullptr) return true; // get the distance for the first cornerpoint ScalarType initialDistance = renderingGeometry->SignedDistance(imageGeometry->GetCornerPoint(0)); for (int i = 1; i < 8; i++) { mitk::Point3D cornerPoint = imageGeometry->GetCornerPoint(i); // get the distance to the other cornerpoints ScalarType distance = renderingGeometry->SignedDistance(cornerPoint); // if it has not the same signing as the distance of the first point if (initialDistance * distance < 0) { // we have an intersection and return true return true; } } // all distances have the same sign, no intersection and we return false return false; } mitk::ImageVtkMapper2D::LocalStorage::~LocalStorage() { } mitk::ImageVtkMapper2D::LocalStorage::LocalStorage() : m_VectorComponentExtractor(vtkSmartPointer::New()) { m_LevelWindowFilter = vtkSmartPointer::New(); // Do as much actions as possible in here to avoid double executions. m_Plane = vtkSmartPointer::New(); m_Texture = vtkSmartPointer::New().GetPointer(); m_DefaultLookupTable = vtkSmartPointer::New(); m_BinaryLookupTable = vtkSmartPointer::New(); m_ColorLookupTable = vtkSmartPointer::New(); m_Mapper = vtkSmartPointer::New(); m_ImageActor = vtkSmartPointer::New(); m_ShadowOutlineActor = vtkSmartPointer::New(); m_Actors = vtkSmartPointer::New(); m_EmptyActors = vtkSmartPointer::New(); m_Reslicer = mitk::ExtractSliceFilter::New(); m_TSFilter = vtkSmartPointer::New(); m_OutlinePolyData = vtkSmartPointer::New(); m_ReslicedImage = vtkSmartPointer::New(); m_EmptyPolyData = vtkSmartPointer::New(); // the following actions are always the same and thus can be performed // in the constructor for each image (i.e. the image-corresponding local storage) m_TSFilter->ReleaseDataFlagOn(); mitk::LookupTable::Pointer mitkLUT = mitk::LookupTable::New(); // built a default lookuptable mitkLUT->SetType(mitk::LookupTable::GRAYSCALE); m_DefaultLookupTable = mitkLUT->GetVtkLookupTable(); mitkLUT->SetType(mitk::LookupTable::LEGACY_BINARY); m_BinaryLookupTable = mitkLUT->GetVtkLookupTable(); mitkLUT->SetType(mitk::LookupTable::LEGACY_RAINBOW_COLOR); m_ColorLookupTable = mitkLUT->GetVtkLookupTable(); // do not repeat the texture (the image) m_Texture->RepeatOff(); // set the mapper for the actor m_ImageActor->SetMapper(m_Mapper); m_ShadowOutlineActor->SetMapper(m_Mapper); m_Actors->AddPart(m_ShadowOutlineActor); m_Actors->AddPart(m_ImageActor); - m_PublicActors = m_EmptyActors; + m_PublicActors = m_EmptyActors.Get(); }