diff --git a/Modules/MitkExt/Algorithms/mitkReduceContourSetFilter.cpp b/Modules/MitkExt/Algorithms/mitkReduceContourSetFilter.cpp index e5a3db2e38..c02416a08b 100644 --- a/Modules/MitkExt/Algorithms/mitkReduceContourSetFilter.cpp +++ b/Modules/MitkExt/Algorithms/mitkReduceContourSetFilter.cpp @@ -1,469 +1,473 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Module: $RCSfile$ Language: C++ Date: $Date: $ Version: $Revision: $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "mitkReduceContourSetFilter.h" mitk::ReduceContourSetFilter::ReduceContourSetFilter() { m_MaxSegmentLenght = 0; m_StepSize = 10; m_Tolerance = -1; m_ReductionType = DOUGLAS_PEUCKER; m_MaxSpacing = -1; m_MinSpacing = -1; } mitk::ReduceContourSetFilter::~ReduceContourSetFilter() { } void mitk::ReduceContourSetFilter::GenerateData() { unsigned int numberOfInputs = this->GetNumberOfInputs(); unsigned int numberOfOutputs (0); this->CreateOutputsForAllInputs(numberOfInputs); vtkSmartPointer newPolyData; vtkSmartPointer newPolygons; vtkSmartPointer newPoints; //For the purpose of evaluation - //unsigned int numberOfPointsBefore (0); - //unsigned int numberOfPointsAfter (0); +// unsigned int numberOfPointsBefore (0); +// unsigned int numberOfPointsAfter (0); for(unsigned int i = 0; i < numberOfInputs; i++) { mitk::Surface* currentSurface = const_cast( this->GetInput(i) ); vtkSmartPointer polyData = currentSurface->GetVtkPolyData(); newPolyData = vtkPolyData::New(); newPolygons = vtkCellArray::New(); newPoints = vtkPoints::New(); vtkSmartPointer existingPolys = polyData->GetPolys(); vtkSmartPointer existingPoints = polyData->GetPoints(); existingPolys->InitTraversal(); vtkIdType* cell (NULL); vtkIdType cellSize (0); for( existingPolys->InitTraversal(); existingPolys->GetNextCell(cellSize, cell);) { bool incorporatePolygon = this->CheckForIntersection(cell,cellSize,existingPoints, /*numberOfIntersections, intersectionPoints, */i); if ( !incorporatePolygon ) continue; vtkSmartPointer newPolygon = vtkPolygon::New(); if(m_ReductionType == NTH_POINT) { this->ReduceNumberOfPointsByNthPoint(cellSize, cell, existingPoints, newPolygon, newPoints); if (newPolygon->GetPointIds()->GetNumberOfIds() != 0) { newPolygons->InsertNextCell(newPolygon); } } else if (m_ReductionType == DOUGLAS_PEUCKER) { this->ReduceNumberOfPointsByDouglasPeucker(cellSize, cell, existingPoints, newPolygon, newPoints); if (newPolygon->GetPointIds()->GetNumberOfIds() > 3) { newPolygons->InsertNextCell(newPolygon); } } //Again for evaluation - //numberOfPointsBefore += cellSize; - //numberOfPointsAfter += newPolygon->GetPointIds()->GetNumberOfIds(); +// numberOfPointsBefore += cellSize; +// numberOfPointsAfter += newPolygon->GetPointIds()->GetNumberOfIds(); } if (newPolygons->GetNumberOfCells() != 0) { newPolyData->SetPolys(newPolygons); newPolyData->SetPoints(newPoints); newPolyData->BuildLinks(); Surface::Pointer surface = this->GetOutput(numberOfOutputs); surface->SetVtkPolyData(newPolyData); numberOfOutputs++; } } - //MITK_INFO<<"Points before: "<SetNumberOfOutputs(numberOfOutputs); } void mitk::ReduceContourSetFilter::ReduceNumberOfPointsByNthPoint (vtkIdType cellSize, vtkIdType* cell, vtkPoints* points, vtkPolygon* reducedPolygon, vtkPoints* reducedPoints) { unsigned int newNumberOfPoints (0); unsigned int mod = cellSize%m_StepSize; if(mod == 0) { newNumberOfPoints = cellSize/m_StepSize; } else { newNumberOfPoints = ( (cellSize-mod)/m_StepSize )+1; } if (newNumberOfPoints <= 3) { return; } reducedPolygon->GetPointIds()->SetNumberOfIds(newNumberOfPoints); reducedPolygon->GetPoints()->SetNumberOfPoints(newNumberOfPoints); for (unsigned int i = 0; i < cellSize; i++) { if (i%m_StepSize == 0) { double point[3]; points->GetPoint(cell[i], point); vtkIdType id = reducedPoints->InsertNextPoint(point); reducedPolygon->GetPointIds()->SetId(i/m_StepSize, id); } } vtkIdType id = cell[0]; double point[3]; points->GetPoint(id, point); id = reducedPoints->InsertNextPoint(point); reducedPolygon->GetPointIds()->SetId(newNumberOfPoints-1, id); } void mitk::ReduceContourSetFilter::ReduceNumberOfPointsByDouglasPeucker(vtkIdType cellSize, vtkIdType* cell, vtkPoints* points, vtkPolygon* reducedPolygon, vtkPoints* reducedPoints) { //If the cell is too small to obtain a reduced polygon with the given stepsize return if (cellSize <= m_StepSize*3)return; /* What we do now is (see the Douglas Peucker Algorithm): 1. Divide the current contour in two line segments (start - middle; middle - end), put them into the stack 2. Fetch first line segment and create the following vectors: - v1 = (start;end) - v2 = (start;currentPoint) -> for each point of the current line segment! 3. Calculate the distance from the currentPoint to v1: a. Determine the length of the orthogonal projection of v2 to v1 by: l = v2 * (normalized v1) b. There a three possibilities for the distance then: d = sqrt(lenght(v2)^2 - l^2) if l > 0 and l < length(v1) d = lenght(v2-v1) if l > 0 and l > lenght(v1) d = length(v2) if l < 0 because v2 is then pointing in a different direction than v1 4. Memorize the point with the biggest distance and create two new line segments with it at the end of the iteration and put it into the stack 5. If the distance value D <= m_Tolerance, then add the start and end index and the corresponding points to the reduced ones */ //First of all set tolerance if none is specified if(m_Tolerance < 0) { if(m_MaxSpacing > 0) { m_Tolerance = m_MinSpacing; } else { m_Tolerance = 1.5; } } std::stack lineSegments; //1. Divide in line segments LineSegment ls2; ls2.StartIndex = cell[cellSize/2]; ls2.EndIndex = cell[cellSize-1]; lineSegments.push(ls2); LineSegment ls1; ls1.StartIndex = cell[0]; ls1.EndIndex = cell[cellSize/2]; lineSegments.push(ls1); LineSegment currentSegment; double v1[3]; double v2[3]; double tempV[3]; double lenghtV1; double currentMaxDistance (0); vtkIdType currentMaxDistanceIndex (0); double l; double d; vtkIdType pointId (0); //Add the start index to the reduced points. From now on just the end indices will be added pointId = reducedPoints->InsertNextPoint(points->GetPoint(cell[0])); reducedPolygon->GetPointIds()->InsertNextId(pointId); while (!lineSegments.empty()) { currentSegment = lineSegments.top(); lineSegments.pop(); //2. Create vectors points->GetPoint(currentSegment.EndIndex, tempV); points->GetPoint(currentSegment.StartIndex, v1); v1[0] = tempV[0]-v1[0]; v1[1] = tempV[1]-v1[1]; v1[2] = tempV[2]-v1[2]; lenghtV1 = vtkMath::Norm(v1); vtkMath::Normalize(v1); int range = currentSegment.EndIndex - currentSegment.StartIndex; for (int i = 1; i < abs(range); ++i) { points->GetPoint(currentSegment.StartIndex+i, tempV); points->GetPoint(currentSegment.StartIndex, v2); v2[0] = tempV[0]-v2[0]; v2[1] = tempV[1]-v2[1]; v2[2] = tempV[2]-v2[2]; //3. Calculate the distance l = vtkMath::Dot(v2, v1); d = vtkMath::Norm(v2); if (l > 0 && l < lenghtV1) { d = sqrt((d*d-l*l)); } else if (l > 0 && l > lenghtV1) { tempV[0] = lenghtV1*v1[0] - v2[0]; tempV[1] = lenghtV1*v1[1] - v2[1]; tempV[2] = lenghtV1*v1[2] - v2[2]; d = vtkMath::Norm(tempV); } //4. Memorize maximum distance if (d > currentMaxDistance) { currentMaxDistance = d; currentMaxDistanceIndex = currentSegment.StartIndex+i; } } //4. & 5. if (currentMaxDistance <= m_Tolerance) { //double temp[3]; int segmentLenght = currentSegment.EndIndex - currentSegment.StartIndex; if (segmentLenght > m_MaxSegmentLenght) { m_MaxSegmentLenght = segmentLenght; } - //MITK_INFO<<"Lenght: "< 20) +// MITK_INFO<<"Lenght: "< 25) { - unsigned int divisions = abs(segmentLenght)%20; - //MITK_INFO<<"Divisions: "< 25) + { + newLenght = newLenght*0.5; + } + unsigned int divisions = abs(segmentLenght)/newLenght; +// MITK_INFO<<"Divisions: "< (currentSegment.StartIndex + 20*i)) - { - //MITK_INFO<<"Inserting Index: "<<(currentSegment.StartIndex + 20*i); - pointId = reducedPoints->InsertNextPoint(points->GetPoint(currentSegment.StartIndex + 20*i)); +// MITK_INFO<<"Inserting MIDDLE: "<<(currentSegment.StartIndex + newLenght*i); + pointId = reducedPoints->InsertNextPoint(points->GetPoint(currentSegment.StartIndex + newLenght*i)); reducedPolygon->GetPointIds()->InsertNextId(pointId); - } } } +// MITK_INFO<<"Inserting END: "<InsertNextPoint(points->GetPoint(currentSegment.EndIndex)); reducedPolygon->GetPointIds()->InsertNextId(pointId); } else { ls2.StartIndex = currentMaxDistanceIndex; ls2.EndIndex = currentSegment.EndIndex; lineSegments.push(ls2); ls1.StartIndex = currentSegment.StartIndex; ls1.EndIndex = currentMaxDistanceIndex; lineSegments.push(ls1); } currentMaxDistance = 0; } } bool mitk::ReduceContourSetFilter::CheckForIntersection (vtkIdType* currentCell, vtkIdType currentCellSize, vtkPoints* currentPoints,/* vtkIdType numberOfIntersections, vtkIdType* intersectionPoints,*/ unsigned int currentInputIndex) { /* If we check the current cell for intersections then we have to consider three possibilies: 1. There is another cell among all the other input surfaces which intersects the current polygon: - That means we have to save the intersection points because these points should not be eliminated 2. There current polygon exists just because of an intersection of another polygon with the current plane defined by the current polygon - That means the current polygon should not be incorporated and all of its points should be eliminated 3. There is no intersection - That mean we can just reduce the current polygons points without considering any intersections */ for (unsigned int i = 0; i < this->GetNumberOfInputs(); i++) { //Don't check for intersection with the polygon itself if (i == currentInputIndex) continue; //Get the next polydata to check for intersection vtkSmartPointer poly = const_cast( this->GetInput(i) )->GetVtkPolyData(); vtkSmartPointer polygonArray = poly->GetPolys(); polygonArray->InitTraversal(); vtkIdType anotherInputPolygonSize (0); vtkIdType* anotherInputPolygonIDs(NULL); /* The procedure is: - Create the equation of the plane, defined by the points of next input - Calculate the distance of each point of the current polygon to the plane - If the maximum distance is not bigger than 1.5 of the maximum spacing AND the minimal distance is not bigger than 0.5 of the minimum spacing then the current contour is an intersection contour */ for( polygonArray->InitTraversal(); polygonArray->GetNextCell(anotherInputPolygonSize, anotherInputPolygonIDs);) { //Choosing three plane points to calculate the plane vectors double p1[3]; double p2[3]; double p3[3]; //The plane vectors double v1[3]; double v2[3]; //The plane normal double normal[3]; //Create first Vector poly->GetPoint(anotherInputPolygonIDs[0], p1); poly->GetPoint(anotherInputPolygonIDs[1], p2); v1[0] = p2[0]-p1[0]; v1[1] = p2[1]-p1[1]; v1[2] = p2[2]-p1[2]; //Find 3rd point for 2nd vector (The angle between the two plane vectors should be bigger than 30 degrees) double maxDistance (0); double minDistance (10000); for (unsigned int j = 2; j < anotherInputPolygonSize; j++) { poly->GetPoint(anotherInputPolygonIDs[j], p3); v2[0] = p3[0]-p1[0]; v2[1] = p3[1]-p1[1]; v2[2] = p3[2]-p1[2]; //Calculate the angle between the two vector for the current point double dotV1V2 = vtkMath::Dot(v1,v2); double absV1 = sqrt(vtkMath::Dot(v1,v1)); double absV2 = sqrt(vtkMath::Dot(v2,v2)); double cosV1V2 = dotV1V2/(absV1*absV2); double arccos = acos(cosV1V2); double degree = vtkMath::DegreesFromRadians(arccos); //If angle is bigger than 30 degrees break if (degree > 30) break; }//for (to find 3rd point) //Calculate normal of the plane by taking the cross product of the two vectors vtkMath::Cross(v1,v2,normal); vtkMath::Normalize(normal); //Determine position of the plane double lambda = vtkMath::Dot(normal, p1); /* Calculate the distance to the plane for each point of the current polygon If the distance is zero then save the currentPoint as intersection point */ for (unsigned int k = 0; k < currentCellSize; k++) { double currentPoint[3]; currentPoints->GetPoint(currentCell[k], currentPoint); double tempPoint[3]; tempPoint[0] = normal[0]*currentPoint[0]; tempPoint[1] = normal[1]*currentPoint[1]; tempPoint[2] = normal[2]*currentPoint[2]; double temp = tempPoint[0]+tempPoint[1]+tempPoint[2]-lambda; double distance = fabs(temp); if (distance > maxDistance) { maxDistance = distance; } if (distance < minDistance) { minDistance = distance; } }//for (to calculate distance and intersections with currentPolygon) if (maxDistance < 1.5*m_MaxSpacing && minDistance < 0.5*m_MinSpacing) { return false; } //Because we are considering the plane defined by the acual input polygon only one iteration is sufficient //We do not need to consider each cell of the plane break; }//for (to traverse through all cells of actualInputPolyData) }//for (to iterate through all inputs) return true; } void mitk::ReduceContourSetFilter::GenerateOutputInformation() { Superclass::GenerateOutputInformation(); } void mitk::ReduceContourSetFilter::Reset() { for (unsigned int i = 0; i < this->GetNumberOfInputs(); i++) { this->PopBackInput(); } this->SetNumberOfInputs(0); this->SetNumberOfOutputs(0); } diff --git a/Modules/QmitkExt/QmitkSlicesInterpolator.cpp b/Modules/QmitkExt/QmitkSlicesInterpolator.cpp index 4dba29197c..0748685057 100644 --- a/Modules/QmitkExt/QmitkSlicesInterpolator.cpp +++ b/Modules/QmitkExt/QmitkSlicesInterpolator.cpp @@ -1,1003 +1,1004 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2008-10-30 12:33:31 +0100 (Do, 30 Okt 2008) $ Version: $Revision: 15606 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #include "QmitkSlicesInterpolator.h" #include "QmitkStdMultiWidget.h" #include "QmitkSelectableGLWidget.h" #include "mitkToolManager.h" #include "mitkDataNodeFactory.h" #include "mitkLevelWindowProperty.h" #include "mitkColorProperty.h" #include "mitkProperties.h" #include "mitkRenderingManager.h" #include "mitkOverwriteSliceImageFilter.h" #include "mitkProgressBar.h" #include "mitkGlobalInteraction.h" #include "mitkOperationEvent.h" #include "mitkUndoController.h" #include "mitkInteractionConst.h" #include "mitkApplyDiffImageOperation.h" #include "mitkDiffImageApplier.h" #include "mitkSegTool2D.h" #include "mitkCoreObjectFactory.h" #include "mitkSurfaceToImageFilter.h" #include #include #include #include #include #include #include #define ROUND(a) ((a)>0 ? (int)((a)+0.5) : -(int)(0.5-(a))) const std::map QmitkSlicesInterpolator::createActionToSliceDimension() { std::map actionToSliceDimension; actionToSliceDimension[new QAction("Transversal (red window)", 0)] = 2; actionToSliceDimension[new QAction("Sagittal (green window)", 0)] = 0; actionToSliceDimension[new QAction("Coronal (blue window)", 0)] = 1; return actionToSliceDimension; } QmitkSlicesInterpolator::QmitkSlicesInterpolator(QWidget* parent, const char* /*name*/) :QWidget(parent), ACTION_TO_SLICEDIMENSION( createActionToSliceDimension() ), m_Interpolator( mitk::SegmentationInterpolationController::New() ), m_MultiWidget(NULL), m_ToolManager(NULL), m_Initialized(false), m_LastSliceDimension(2), m_LastSliceIndex(0), m_2DInterpolationEnabled(false), m_3DInterpolationEnabled(false) { m_SurfaceInterpolator = mitk::SurfaceInterpolationController::GetInstance(); //Changes due to intergration of 3D interpolation QHBoxLayout* layout = new QHBoxLayout(this); QGridLayout* grid = new QGridLayout(this); m_CbShowMarkers = new QCheckBox("Show Position Nodes", this); m_CbShowMarkers->setChecked(true); connect(m_CbShowMarkers, SIGNAL(toggled(bool)), this, SLOT(OnShowMarkers(bool))); connect(m_CbShowMarkers, SIGNAL(toggled(bool)), this, SIGNAL(SignalShowMarkerNodes(bool))); grid->addWidget(m_CbShowMarkers,0,2); m_BtnAccept3DInterpolation = new QPushButton("Accept...", this); m_BtnAccept3DInterpolation->setEnabled(false); connect(m_BtnAccept3DInterpolation, SIGNAL(clicked()), this, SLOT(OnAccept3DInterpolationClicked())); grid->addWidget(m_BtnAccept3DInterpolation, 0,1); m_BtnAcceptInterpolation = new QPushButton("Accept...", this); m_BtnAcceptInterpolation->setEnabled( false ); connect( m_BtnAcceptInterpolation, SIGNAL(clicked()), this, SLOT(OnAcceptInterpolationClicked()) ); grid->addWidget(m_BtnAcceptInterpolation,1,1); m_BtnAcceptAllInterpolations = new QPushButton("... for all slices", this); m_BtnAcceptAllInterpolations->setEnabled( false ); connect( m_BtnAcceptAllInterpolations, SIGNAL(clicked()), this, SLOT(OnAcceptAllInterpolationsClicked()) ); grid->addWidget(m_BtnAcceptAllInterpolations,1,2); m_RBtnEnable3DInterpolation = new QRadioButton("3D",this); connect(m_RBtnEnable3DInterpolation, SIGNAL(toggled(bool)), this, SLOT(On3DInterpolationEnabled(bool))); connect(m_RBtnEnable3DInterpolation, SIGNAL(toggled(bool)), this, SIGNAL(Signal3DInterpolationEnabled(bool))); m_RBtnEnable3DInterpolation->setChecked(true); grid->addWidget(m_RBtnEnable3DInterpolation,0,0); m_RBtnEnable2DInterpolation = new QRadioButton("2D",this); connect(m_RBtnEnable2DInterpolation, SIGNAL(toggled(bool)), this, SLOT(On2DInterpolationEnabled(bool))); grid->addWidget(m_RBtnEnable2DInterpolation,1,0); m_RBtnDisableInterpolation = new QRadioButton("Disable Interpolation", this); m_RBtnDisableInterpolation->setEnabled(true); grid->addWidget(m_RBtnDisableInterpolation, 2,0,1,2); m_GroupBoxEnableExclusiveInterpolationMode = new QGroupBox("Interpolation", this); m_GroupBoxEnableExclusiveInterpolationMode->setLayout(grid); layout->addWidget(m_GroupBoxEnableExclusiveInterpolationMode); itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnInterpolationInfoChanged ); InterpolationInfoChangedObserverTag = m_Interpolator->AddObserver( itk::ModifiedEvent(), command ); itk::ReceptorMemberCommand::Pointer command2 = itk::ReceptorMemberCommand::New(); command2->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnSurfaceInterpolationInfoChanged ); SurfaceInterpolationInfoChangedObserverTag = m_SurfaceInterpolator->AddObserver( itk::ModifiedEvent(), command2 ); // feedback node and its visualization properties m_FeedbackNode = mitk::DataNode::New(); mitk::CoreObjectFactory::GetInstance()->SetDefaultProperties( m_FeedbackNode ); m_FeedbackNode->SetProperty( "binary", mitk::BoolProperty::New(true) ); m_FeedbackNode->SetProperty( "outline binary", mitk::BoolProperty::New(true) ); m_FeedbackNode->SetProperty( "color", mitk::ColorProperty::New(255.0, 255.0, 0.0) ); m_FeedbackNode->SetProperty( "texture interpolation", mitk::BoolProperty::New(false) ); m_FeedbackNode->SetProperty( "layer", mitk::IntProperty::New( 20 ) ); m_FeedbackNode->SetProperty( "levelwindow", mitk::LevelWindowProperty::New( mitk::LevelWindow(0, 1) ) ); m_FeedbackNode->SetProperty( "name", mitk::StringProperty::New("Interpolation feedback") ); m_FeedbackNode->SetProperty( "opacity", mitk::FloatProperty::New(0.8) ); m_FeedbackNode->SetProperty( "helper object", mitk::BoolProperty::New(true) ); m_InterpolatedSurfaceNode = mitk::DataNode::New(); m_InterpolatedSurfaceNode->SetProperty( "color", mitk::ColorProperty::New(255.0,255.0,0.0) ); m_InterpolatedSurfaceNode->SetProperty( "name", mitk::StringProperty::New("Surface Interpolation feedback") ); m_InterpolatedSurfaceNode->SetProperty( "opacity", mitk::FloatProperty::New(0.5) ); m_InterpolatedSurfaceNode->SetProperty( "includeInBoundingBox", mitk::BoolProperty::New(false)); m_InterpolatedSurfaceNode->SetProperty( "helper object", mitk::BoolProperty::New(true) ); m_InterpolatedSurfaceNode->SetVisibility(false); m_3DContourNode = mitk::DataNode::New(); m_3DContourNode->SetProperty( "color", mitk::ColorProperty::New(0.0, 0.0, 0.0) ); m_3DContourNode->SetProperty("helper object", mitk::BoolProperty::New(true)); m_3DContourNode->SetProperty( "name", mitk::StringProperty::New("Drawn Contours") ); m_3DContourNode->SetProperty("material.representation", mitk::VtkRepresentationProperty::New(VTK_WIREFRAME)); m_3DContourNode->SetProperty("material.wireframeLineWidth", mitk::FloatProperty::New(2.0f)); m_3DContourNode->SetProperty("3DContourContainer", mitk::BoolProperty::New(true)); m_3DContourNode->SetProperty( "includeInBoundingBox", mitk::BoolProperty::New(false)); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget1"))); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget2"))); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3"))); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))); QWidget::setContentsMargins(0, 0, 0, 0); if ( QWidget::layout() != NULL ) { QWidget::layout()->setContentsMargins(0, 0, 0, 0); } //For running 3D Interpolation in background // create a QFuture and a QFutureWatcher connect(&m_Watcher, SIGNAL(started()), this, SLOT(StartUpdateInterpolationTimer())); connect(&m_Watcher, SIGNAL(finished()), this, SLOT(SurfaceInterpolationFinished())); connect(&m_Watcher, SIGNAL(finished()), this, SLOT(StopUpdateInterpolationTimer())); m_Timer = new QTimer(this); connect(m_Timer, SIGNAL(timeout()), this, SLOT(ChangeSurfaceColor())); } void QmitkSlicesInterpolator::SetDataStorage( mitk::DataStorage& storage ) { m_DataStorage = &storage; m_SurfaceInterpolator->SetDataStorage(storage); } mitk::DataStorage* QmitkSlicesInterpolator::GetDataStorage() { if ( m_DataStorage.IsNotNull() ) { return m_DataStorage; } else { return NULL; } } void QmitkSlicesInterpolator::Initialize(mitk::ToolManager* toolManager, QmitkStdMultiWidget* multiWidget) { if (m_Initialized) { // remove old observers if (m_ToolManager) { m_ToolManager->WorkingDataChanged -= mitk::MessageDelegate( this, &QmitkSlicesInterpolator::OnToolManagerWorkingDataModified ); m_ToolManager->ReferenceDataChanged -= mitk::MessageDelegate( this, &QmitkSlicesInterpolator::OnToolManagerReferenceDataModified ); } if (m_MultiWidget) { disconnect( m_MultiWidget, SIGNAL(destroyed(QObject*)), this, SLOT(OnMultiWidgetDeleted(QObject*)) ); mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget1->GetSliceNavigationController(); slicer->RemoveObserver( TSliceObserverTag ); slicer->RemoveObserver( TTimeObserverTag ); slicer = m_MultiWidget->mitkWidget2->GetSliceNavigationController(); slicer->RemoveObserver( SSliceObserverTag ); slicer->RemoveObserver( STimeObserverTag ); slicer = m_MultiWidget->mitkWidget3->GetSliceNavigationController(); slicer->RemoveObserver( FSliceObserverTag ); slicer->RemoveObserver( FTimeObserverTag ); } //return; } m_MultiWidget = multiWidget; connect( m_MultiWidget, SIGNAL(destroyed(QObject*)), this, SLOT(OnMultiWidgetDeleted(QObject*)) ); m_ToolManager = toolManager; if (m_ToolManager) { // set enabled only if a segmentation is selected mitk::DataNode* node = m_ToolManager->GetWorkingData(0); QWidget::setEnabled( node != NULL ); // react whenever the set of selected segmentation changes m_ToolManager->WorkingDataChanged += mitk::MessageDelegate( this, &QmitkSlicesInterpolator::OnToolManagerWorkingDataModified ); m_ToolManager->ReferenceDataChanged += mitk::MessageDelegate( this, &QmitkSlicesInterpolator::OnToolManagerReferenceDataModified ); // connect to the steppers of the three multi widget widgets. after each change, call the interpolator if (m_MultiWidget) { mitk::SliceNavigationController* slicer = m_MultiWidget->mitkWidget1->GetSliceNavigationController(); m_TimeStep.resize(3); m_TimeStep[2] = slicer->GetTime()->GetPos(); { itk::MemberCommand::Pointer command = itk::MemberCommand::New(); command->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnTransversalTimeChanged ); TTimeObserverTag = slicer->AddObserver( mitk::SliceNavigationController::GeometryTimeEvent(NULL, 0), command ); } { itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnTransversalSliceChanged ); TSliceObserverTag = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } // connect to the steppers of the three multi widget widgets. after each change, call the interpolator slicer = m_MultiWidget->mitkWidget2->GetSliceNavigationController(); m_TimeStep[0] = slicer->GetTime()->GetPos(); { itk::MemberCommand::Pointer command = itk::MemberCommand::New(); command->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnSagittalTimeChanged ); STimeObserverTag = slicer->AddObserver( mitk::SliceNavigationController::GeometryTimeEvent(NULL, 0), command ); } { itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnSagittalSliceChanged ); SSliceObserverTag = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } // connect to the steppers of the three multi widget widgets. after each change, call the interpolator slicer = m_MultiWidget->mitkWidget3->GetSliceNavigationController(); m_TimeStep[1] = slicer->GetTime()->GetPos(); { itk::MemberCommand::Pointer command = itk::MemberCommand::New(); command->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnFrontalTimeChanged ); FTimeObserverTag = slicer->AddObserver( mitk::SliceNavigationController::GeometryTimeEvent(NULL, 0), command ); } { itk::ReceptorMemberCommand::Pointer command = itk::ReceptorMemberCommand::New(); command->SetCallbackFunction( this, &QmitkSlicesInterpolator::OnFrontalSliceChanged ); FSliceObserverTag = slicer->AddObserver( mitk::SliceNavigationController::GeometrySliceEvent(NULL, 0), command ); } } } m_Initialized = true; } QmitkSlicesInterpolator::~QmitkSlicesInterpolator() { if (m_MultiWidget) { mitk::SliceNavigationController* slicer; if(m_MultiWidget->mitkWidget1 != NULL) { slicer = m_MultiWidget->mitkWidget1->GetSliceNavigationController(); slicer->RemoveObserver( TSliceObserverTag ); slicer->RemoveObserver( TTimeObserverTag ); } if(m_MultiWidget->mitkWidget2 != NULL) { slicer = m_MultiWidget->mitkWidget2->GetSliceNavigationController(); slicer->RemoveObserver( SSliceObserverTag ); slicer->RemoveObserver( STimeObserverTag ); } if(m_MultiWidget->mitkWidget3 != NULL) { slicer = m_MultiWidget->mitkWidget3->GetSliceNavigationController(); slicer->RemoveObserver( FSliceObserverTag ); slicer->RemoveObserver( FTimeObserverTag ); } } if(m_DataStorage->Exists(m_3DContourNode)) m_DataStorage->Remove(m_3DContourNode); if(m_DataStorage->Exists(m_InterpolatedSurfaceNode)) m_DataStorage->Remove(m_InterpolatedSurfaceNode); delete m_Timer; } void QmitkSlicesInterpolator::On2DInterpolationEnabled(bool status) { OnInterpolationActivated(status); On3DInterpolationActivated(!status); } void QmitkSlicesInterpolator::On3DInterpolationEnabled(bool status) { On3DInterpolationActivated(status); OnInterpolationActivated(!status); } void QmitkSlicesInterpolator::OnInterpolationDisabled(bool status) { OnInterpolationActivated(!status); On3DInterpolationActivated(!status); } void QmitkSlicesInterpolator::OnShowMarkers(bool state) { mitk::DataStorage::SetOfObjects::ConstPointer allContourMarkers = m_DataStorage->GetSubset(mitk::NodePredicateProperty::New("isContourMarker" , mitk::BoolProperty::New(true))); for (mitk::DataStorage::SetOfObjects::ConstIterator it = allContourMarkers->Begin(); it != allContourMarkers->End(); ++it) { it->Value()->SetProperty("helper object", mitk::BoolProperty::New(!state)); } } void QmitkSlicesInterpolator::OnToolManagerWorkingDataModified() { if (m_2DInterpolationEnabled) { OnInterpolationActivated( true ); // re-initialize if needed } if (m_3DInterpolationEnabled) { On3DInterpolationActivated( true); } } void QmitkSlicesInterpolator::OnToolManagerReferenceDataModified() { if (m_2DInterpolationEnabled) { OnInterpolationActivated( true ); // re-initialize if needed } if (m_3DInterpolationEnabled) { m_InterpolatedSurfaceNode->SetVisibility(false); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))); } } void QmitkSlicesInterpolator::OnTransversalTimeChanged(itk::Object* sender, const itk::EventObject& e) { const mitk::SliceNavigationController::GeometryTimeEvent& event = dynamic_cast(e); m_TimeStep[2] = event.GetPos(); if (m_LastSliceDimension == 2) { mitk::SliceNavigationController* snc = dynamic_cast( sender ); if (snc) snc->SendSlice(); // will trigger a new interpolation } } void QmitkSlicesInterpolator::OnSagittalTimeChanged(itk::Object* sender, const itk::EventObject& e) { const mitk::SliceNavigationController::GeometryTimeEvent& event = dynamic_cast(e); m_TimeStep[0] = event.GetPos(); if (m_LastSliceDimension == 0) { mitk::SliceNavigationController* snc = dynamic_cast( sender ); if (snc) snc->SendSlice(); // will trigger a new interpolation } } void QmitkSlicesInterpolator::OnFrontalTimeChanged(itk::Object* sender, const itk::EventObject& e) { const mitk::SliceNavigationController::GeometryTimeEvent& event = dynamic_cast(e); m_TimeStep[1] = event.GetPos(); if (m_LastSliceDimension == 1) { mitk::SliceNavigationController* snc = dynamic_cast( sender ); if (snc) snc->SendSlice(); // will trigger a new interpolation } } void QmitkSlicesInterpolator::OnTransversalSliceChanged(const itk::EventObject& e) { if ( TranslateAndInterpolateChangedSlice( e, 2 ) ) { if (m_MultiWidget) { mitk::BaseRenderer::GetInstance(m_MultiWidget->mitkWidget1->GetRenderWindow())->RequestUpdate(); } } } void QmitkSlicesInterpolator::OnSagittalSliceChanged(const itk::EventObject& e) { if ( TranslateAndInterpolateChangedSlice( e, 0 ) ) { if (m_MultiWidget) { mitk::BaseRenderer::GetInstance(m_MultiWidget->mitkWidget2->GetRenderWindow())->RequestUpdate(); } } } void QmitkSlicesInterpolator::OnFrontalSliceChanged(const itk::EventObject& e) { if ( TranslateAndInterpolateChangedSlice( e, 1 ) ) { if (m_MultiWidget) { mitk::BaseRenderer::GetInstance(m_MultiWidget->mitkWidget3->GetRenderWindow())->RequestUpdate(); } } } bool QmitkSlicesInterpolator::TranslateAndInterpolateChangedSlice(const itk::EventObject& e, unsigned int windowID) { if (!m_2DInterpolationEnabled) return false; try { const mitk::SliceNavigationController::GeometrySliceEvent& event = dynamic_cast(e); mitk::TimeSlicedGeometry* tsg = event.GetTimeSlicedGeometry(); if (tsg && m_TimeStep.size() > windowID) { mitk::SlicedGeometry3D* slicedGeometry = dynamic_cast(tsg->GetGeometry3D(m_TimeStep[windowID])); if (slicedGeometry) { mitk::PlaneGeometry* plane = dynamic_cast(slicedGeometry->GetGeometry2D( event.GetPos() )); if (plane) Interpolate( plane, m_TimeStep[windowID] ); return true; } } } catch(std::bad_cast) { return false; // so what } return false; } void QmitkSlicesInterpolator::Interpolate( mitk::PlaneGeometry* plane, unsigned int timeStep ) { if (m_ToolManager) { mitk::DataNode* node = m_ToolManager->GetWorkingData(0); if (node) { m_Segmentation = dynamic_cast(node->GetData()); if (m_Segmentation) { int clickedSliceDimension(-1); int clickedSliceIndex(-1); // calculate real slice position, i.e. slice of the image and not slice of the TimeSlicedGeometry mitk::SegTool2D::DetermineAffectedImageSlice( m_Segmentation, plane, clickedSliceDimension, clickedSliceIndex ); mitk::Image::Pointer interpolation = m_Interpolator->Interpolate( clickedSliceDimension, clickedSliceIndex, timeStep ); m_FeedbackNode->SetData( interpolation ); m_LastSliceDimension = clickedSliceDimension; m_LastSliceIndex = clickedSliceIndex; } } } } -void QmitkSlicesInterpolator::SurfaceInterpolationFinished/*InterpolateSurface*/() +void QmitkSlicesInterpolator::SurfaceInterpolationFinished() { mitk::Surface::Pointer interpolatedSurface = m_SurfaceInterpolator->GetInterpolationResult(); if(interpolatedSurface.IsNotNull()) { m_BtnAccept3DInterpolation->setEnabled(true); m_InterpolatedSurfaceNode->SetData(interpolatedSurface); m_3DContourNode->SetData(m_SurfaceInterpolator->GetContoursAsSurface()); m_InterpolatedSurfaceNode->SetVisibility(true); m_3DContourNode->SetVisibility(true, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))); if( !m_DataStorage->Exists(m_InterpolatedSurfaceNode) && !m_DataStorage->Exists(m_3DContourNode)) { m_DataStorage->Add(m_3DContourNode); m_DataStorage->Add(m_InterpolatedSurfaceNode); } } else if (interpolatedSurface.IsNull()) { m_BtnAccept3DInterpolation->setEnabled(false); if (m_DataStorage->Exists(m_InterpolatedSurfaceNode)) { m_InterpolatedSurfaceNode->SetVisibility(false); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))); } } if (m_MultiWidget) { mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkSlicesInterpolator::OnAcceptInterpolationClicked() { if (m_Segmentation && m_FeedbackNode->GetData()) { //making interpolation separately undoable mitk::UndoStackItem::IncCurrObjectEventId(); mitk::UndoStackItem::IncCurrGroupEventId(); mitk::UndoStackItem::ExecuteIncrement(); mitk::OverwriteSliceImageFilter::Pointer slicewriter = mitk::OverwriteSliceImageFilter::New(); slicewriter->SetInput( m_Segmentation ); slicewriter->SetCreateUndoInformation( true ); slicewriter->SetSliceImage( dynamic_cast(m_FeedbackNode->GetData()) ); slicewriter->SetSliceDimension( m_LastSliceDimension ); slicewriter->SetSliceIndex( m_LastSliceIndex ); slicewriter->SetTimeStep( m_TimeStep[m_LastSliceDimension] ); slicewriter->Update(); m_FeedbackNode->SetData(NULL); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkSlicesInterpolator::AcceptAllInterpolations(unsigned int windowID) { // first creates a 3D diff image, then applies this diff to the segmentation if (m_Segmentation) { int sliceDimension(-1); int dummySliceIndex(-1); if (!GetSliceForWindowsID(windowID, sliceDimension, dummySliceIndex)) { return; // cannot determine slice orientation } //making interpolation separately undoable mitk::UndoStackItem::IncCurrObjectEventId(); mitk::UndoStackItem::IncCurrGroupEventId(); mitk::UndoStackItem::ExecuteIncrement(); // create a diff image for the undo operation mitk::Image::Pointer diffImage = mitk::Image::New(); diffImage->Initialize( m_Segmentation ); mitk::PixelType pixelType( typeid(short signed int) ); diffImage->Initialize( pixelType, 3, m_Segmentation->GetDimensions() ); memset( diffImage->GetData(), 0, (pixelType.GetBpe() >> 3) * diffImage->GetDimension(0) * diffImage->GetDimension(1) * diffImage->GetDimension(2) ); // now the diff image is all 0 unsigned int timeStep( m_TimeStep[windowID] ); // a slicewriter to create the diff image mitk::OverwriteSliceImageFilter::Pointer diffslicewriter = mitk::OverwriteSliceImageFilter::New(); diffslicewriter->SetCreateUndoInformation( false ); diffslicewriter->SetInput( diffImage ); diffslicewriter->SetSliceDimension( sliceDimension ); diffslicewriter->SetTimeStep( timeStep ); unsigned int totalChangedSlices(0); unsigned int zslices = m_Segmentation->GetDimension( sliceDimension ); mitk::ProgressBar::GetInstance()->AddStepsToDo(zslices); for (unsigned int sliceIndex = 0; sliceIndex < zslices; ++sliceIndex) { mitk::Image::Pointer interpolation = m_Interpolator->Interpolate( sliceDimension, sliceIndex, timeStep ); if (interpolation.IsNotNull()) // we don't check if interpolation is necessary/sensible - but m_Interpolator does { diffslicewriter->SetSliceImage( interpolation ); diffslicewriter->SetSliceIndex( sliceIndex ); diffslicewriter->Update(); ++totalChangedSlices; } mitk::ProgressBar::GetInstance()->Progress(); } if (totalChangedSlices > 0) { // store undo stack items if ( true ) { // create do/undo operations (we don't execute the doOp here, because it has already been executed during calculation of the diff image mitk::ApplyDiffImageOperation* doOp = new mitk::ApplyDiffImageOperation( mitk::OpTEST, m_Segmentation, diffImage, timeStep ); mitk::ApplyDiffImageOperation* undoOp = new mitk::ApplyDiffImageOperation( mitk::OpTEST, m_Segmentation, diffImage, timeStep ); undoOp->SetFactor( -1.0 ); std::stringstream comment; comment << "Accept all interpolations (" << totalChangedSlices << ")"; mitk::OperationEvent* undoStackItem = new mitk::OperationEvent( mitk::DiffImageApplier::GetInstanceForUndo(), doOp, undoOp, comment.str() ); mitk::UndoController::GetCurrentUndoModel()->SetOperationEvent( undoStackItem ); // acutally apply the changes here mitk::DiffImageApplier::GetInstanceForUndo()->ExecuteOperation( doOp ); } } m_FeedbackNode->SetData(NULL); mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } } void QmitkSlicesInterpolator::FinishInterpolation(int windowID) { //this redirect is for calling from outside if (windowID < 0) OnAcceptAllInterpolationsClicked(); else AcceptAllInterpolations( (unsigned int)windowID ); } void QmitkSlicesInterpolator::OnAcceptAllInterpolationsClicked() { QMenu orientationPopup(this); std::map::const_iterator it; for(it = ACTION_TO_SLICEDIMENSION.begin(); it != ACTION_TO_SLICEDIMENSION.end(); it++) orientationPopup.addAction(it->first); connect( &orientationPopup, SIGNAL(triggered(QAction*)), this, SLOT(OnAcceptAllPopupActivated(QAction*)) ); orientationPopup.exec( QCursor::pos() ); } void QmitkSlicesInterpolator::OnAccept3DInterpolationClicked() { if (m_InterpolatedSurfaceNode.IsNotNull() && m_InterpolatedSurfaceNode->GetData()) { mitk::SurfaceToImageFilter::Pointer s2iFilter = mitk::SurfaceToImageFilter::New(); s2iFilter->MakeOutputBinaryOn(); s2iFilter->SetInput(dynamic_cast(m_InterpolatedSurfaceNode->GetData())); s2iFilter->SetImage(dynamic_cast(m_ToolManager->GetReferenceData(0)->GetData())); s2iFilter->Update(); mitk::DataNode* refImageNode = m_ToolManager->GetReferenceData(0); mitk::DataNode::Pointer resultNode = mitk::DataNode::New(); std::string nameOfResultImage = refImageNode->GetName(); nameOfResultImage.append(m_InterpolatedSurfaceNode->GetName()); resultNode->SetProperty("name", mitk::StringProperty::New(nameOfResultImage) ); resultNode->SetProperty("binary", mitk::BoolProperty::New(true) ); resultNode->SetProperty("3DInterpolationResult", mitk::BoolProperty::New(true)); resultNode->SetData( s2iFilter->GetOutput() ); this->GetDataStorage()->Add(resultNode, refImageNode); m_RBtnDisableInterpolation->toggle(); } } void QmitkSlicesInterpolator::OnAcceptAllPopupActivated(QAction* action) { try { std::map::const_iterator iter = ACTION_TO_SLICEDIMENSION.find( action ); if (iter != ACTION_TO_SLICEDIMENSION.end()) { int windowID = iter->second; AcceptAllInterpolations( windowID ); } } catch(...) { /* Showing message box with possible memory error */ QMessageBox errorInfo; errorInfo.setWindowTitle("Interpolation Process"); errorInfo.setIcon(QMessageBox::Critical); errorInfo.setText("An error occurred during interpolation. Possible cause: Not enough memory!"); errorInfo.exec(); //additional error message on std::cerr std::cerr << "Ill construction in " __FILE__ " l. " << __LINE__ << std::endl; } } void QmitkSlicesInterpolator::OnInterpolationActivated(bool on) { m_2DInterpolationEnabled = on; try { if ( m_DataStorage.IsNotNull() ) { if (on && !m_DataStorage->Exists(m_FeedbackNode)) { m_DataStorage->Add( m_FeedbackNode ); } //else //{ // m_DataStorage->Remove( m_FeedbackNode ); //} } } catch(...) { // don't care (double add/remove) } if (m_ToolManager) { mitk::DataNode* workingNode = m_ToolManager->GetWorkingData(0); mitk::DataNode* referenceNode = m_ToolManager->GetReferenceData(0); QWidget::setEnabled( workingNode != NULL ); m_BtnAcceptAllInterpolations->setEnabled( on ); m_BtnAcceptInterpolation->setEnabled( on ); m_FeedbackNode->SetVisibility( on ); if (!on) { mitk::RenderingManager::GetInstance()->RequestUpdateAll(); return; } if (workingNode) { mitk::Image* segmentation = dynamic_cast(workingNode->GetData()); if (segmentation) { m_Interpolator->SetSegmentationVolume( segmentation ); if (referenceNode) { mitk::Image* referenceImage = dynamic_cast(referenceNode->GetData()); m_Interpolator->SetReferenceVolume( referenceImage ); // may be NULL } } } } UpdateVisibleSuggestion(); } void QmitkSlicesInterpolator::Run3DInterpolation() { - m_SurfaceInterpolator->Interpolate(); + m_SurfaceInterpolator->Interpolate(); } void QmitkSlicesInterpolator::StartUpdateInterpolationTimer() { m_Timer->start(500); } void QmitkSlicesInterpolator::StopUpdateInterpolationTimer() { m_Timer->stop(); m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(255.0,255.0,0.0)); mitk::RenderingManager::GetInstance()->RequestUpdate(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))->GetRenderWindow()); } void QmitkSlicesInterpolator::ChangeSurfaceColor() { float currentColor[3]; m_InterpolatedSurfaceNode->GetColor(currentColor); float yellow[3] = {255.0,255.0,0.0}; if( currentColor[2] == yellow[2]) { m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(255.0,255.0,255.0)); } else { m_InterpolatedSurfaceNode->SetProperty("color", mitk::ColorProperty::New(yellow)); } m_InterpolatedSurfaceNode->Update(); mitk::RenderingManager::GetInstance()->RequestUpdate(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))->GetRenderWindow()); } void QmitkSlicesInterpolator::On3DInterpolationActivated(bool on) { m_3DInterpolationEnabled = on; try { if ( m_DataStorage.IsNotNull() && m_ToolManager && m_3DInterpolationEnabled) { mitk::DataNode* workingNode = m_ToolManager->GetWorkingData(0); if (workingNode) { int listID; bool isInterpolationResult(false); workingNode->GetBoolProperty("3DInterpolationResult",isInterpolationResult); if ((workingNode->IsSelected() && workingNode->IsVisible(mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget3")))) && !isInterpolationResult) { if (workingNode->GetIntProperty("3DInterpolationListID", listID)) { m_SurfaceInterpolator->SetCurrentListID(listID); if (m_Watcher.isRunning()) m_Watcher.waitForFinished(); + m_Future = QtConcurrent::run(this, &QmitkSlicesInterpolator::Run3DInterpolation); m_Watcher.setFuture(m_Future); } else { listID = m_SurfaceInterpolator->CreateNewContourList(); workingNode->SetIntProperty("3DInterpolationListID", listID); m_InterpolatedSurfaceNode->SetVisibility(false); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))); m_BtnAccept3DInterpolation->setEnabled(false); } mitk::Vector3D spacing = workingNode->GetData()->GetGeometry( m_MultiWidget->GetRenderWindow3()->GetRenderer()->GetTimeStep() )->GetSpacing(); double minSpacing (100); double maxSpacing (0); for (int i =0; i < 3; i++) { if (spacing[i] < minSpacing) { minSpacing = spacing[i]; } else if (spacing[i] > maxSpacing) { maxSpacing = spacing[i]; } } m_SurfaceInterpolator->SetWorkingImage(dynamic_cast(workingNode->GetData())); m_SurfaceInterpolator->SetMaxSpacing(maxSpacing); m_SurfaceInterpolator->SetMinSpacing(minSpacing); m_SurfaceInterpolator->SetDistanceImageVolume(50000); } } QWidget::setEnabled( workingNode != NULL ); m_CbShowMarkers->setEnabled(m_3DInterpolationEnabled); } else if (!m_3DInterpolationEnabled) { m_InterpolatedSurfaceNode->SetVisibility(false); m_3DContourNode->SetVisibility(false, mitk::BaseRenderer::GetInstance( mitk::BaseRenderer::GetRenderWindowByName("stdmulti.widget4"))); m_BtnAccept3DInterpolation->setEnabled(m_3DInterpolationEnabled); } } catch(...) { MITK_ERROR<<"Error with 3D surface interpolation!"; } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSlicesInterpolator::EnableInterpolation(bool on) { // only to be called from the outside world // just a redirection to OnInterpolationActivated OnInterpolationActivated(on); } void QmitkSlicesInterpolator::Enable3DInterpolation(bool on) { // only to be called from the outside world // just a redirection to OnInterpolationActivated On3DInterpolationActivated(on); } void QmitkSlicesInterpolator::UpdateVisibleSuggestion() { if (m_2DInterpolationEnabled) { // determine which one is the current view, try to do an initial interpolation mitk::BaseRenderer* renderer = mitk::GlobalInteraction::GetInstance()->GetFocus(); if (renderer && renderer->GetMapperID() == mitk::BaseRenderer::Standard2D) { const mitk::TimeSlicedGeometry* timeSlicedGeometry = dynamic_cast( renderer->GetWorldGeometry() ); if (timeSlicedGeometry) { mitk::SliceNavigationController::GeometrySliceEvent event( const_cast(timeSlicedGeometry), renderer->GetSlice() ); std::string s; if ( renderer->GetCurrentWorldGeometry2DNode() && renderer->GetCurrentWorldGeometry2DNode()->GetName(s) ) { if (s == "widget1Plane") { TranslateAndInterpolateChangedSlice( event, 2 ); } else if (s == "widget2Plane") { TranslateAndInterpolateChangedSlice( event, 0 ); } else if (s == "widget3Plane") { TranslateAndInterpolateChangedSlice( event, 1 ); } } } } } mitk::RenderingManager::GetInstance()->RequestUpdateAll(); } void QmitkSlicesInterpolator::OnInterpolationInfoChanged(const itk::EventObject& /*e*/) { // something (e.g. undo) changed the interpolation info, we should refresh our display UpdateVisibleSuggestion(); } void QmitkSlicesInterpolator::OnSurfaceInterpolationInfoChanged(const itk::EventObject& /*e*/) { if(m_3DInterpolationEnabled) { if (m_Watcher.isRunning()) m_Watcher.waitForFinished(); m_Future = QtConcurrent::run(this, &QmitkSlicesInterpolator::Run3DInterpolation); m_Watcher.setFuture(m_Future); } } bool QmitkSlicesInterpolator::GetSliceForWindowsID(unsigned windowID, int& sliceDimension, int& sliceIndex) { mitk::BaseRenderer* renderer(NULL); // find sliceDimension for windowID: // windowID 2: transversal window = renderWindow1 // windowID 1: frontal window = renderWindow3 // windowID 0: sagittal window = renderWindow2 if ( m_MultiWidget ) { switch (windowID) { case 2: default: renderer = m_MultiWidget->mitkWidget1->GetRenderer(); break; case 1: renderer = m_MultiWidget->mitkWidget3->GetRenderer(); break; case 0: renderer = m_MultiWidget->mitkWidget2->GetRenderer(); break; } } if ( m_Segmentation && renderer && renderer->GetMapperID() == mitk::BaseRenderer::Standard2D) { const mitk::TimeSlicedGeometry* timeSlicedGeometry = dynamic_cast( renderer->GetWorldGeometry() ); if (timeSlicedGeometry) { mitk::SlicedGeometry3D* slicedGeometry = dynamic_cast(timeSlicedGeometry->GetGeometry3D(m_TimeStep[windowID])); if (slicedGeometry) { mitk::PlaneGeometry* plane = dynamic_cast(slicedGeometry->GetGeometry2D( renderer->GetSlice() )); Interpolate( plane, m_TimeStep[windowID] ); return mitk::SegTool2D::DetermineAffectedImageSlice( m_Segmentation, plane, sliceDimension, sliceIndex ); } } } return false; } void QmitkSlicesInterpolator::OnMultiWidgetDeleted(QObject*) { if (m_MultiWidget) { m_MultiWidget = NULL; } }