diff --git a/Modules/PhotoacousticsLib/test/mitkSpectralUnmixingTest.cpp b/Modules/PhotoacousticsLib/test/mitkSpectralUnmixingTest.cpp index 9fa677fcc1..8bf6f264b5 100644 --- a/Modules/PhotoacousticsLib/test/mitkSpectralUnmixingTest.cpp +++ b/Modules/PhotoacousticsLib/test/mitkSpectralUnmixingTest.cpp @@ -1,636 +1,684 @@ //*=================================================================== //The Medical Imaging Interaction Toolkit (MITK) //Copyright (c) German Cancer Research Center, //Division of Medical and Biological Informatics. //All rights reserved. //This software is distributed WITHOUT ANY WARRANTY; without //even the implied warranty of MERCHANTABILITY or FITNESS FOR //A PARTICULAR PURPOSE. //See LICENSE.txt or http://www.mitk.org for details. //===================================================================*/ #include #include #include #include #include #include #include #include class mitkSpectralUnmixingTestSuite : public mitk::TestFixture { CPPUNIT_TEST_SUITE(mitkSpectralUnmixingTestSuite); MITK_TEST(testEigenSUAlgorithm); MITK_TEST(testVigraSUAlgorithm); MITK_TEST(testSimplexSUAlgorithm); MITK_TEST(testSO2); MITK_TEST(testExceptionSO2); MITK_TEST(testWavelengthExceptions); MITK_TEST(testNoChromophoresSelected); MITK_TEST(testInputImage); MITK_TEST(testAddOutput); MITK_TEST(testWeightsError); + MITK_TEST(testOutputs); CPPUNIT_TEST_SUITE_END(); private: mitk::pa::SpectralUnmixingFilterBase::Pointer m_SpectralUnmixingFilter; mitk::Image::Pointer inputImage; std::vector m_inputWavelengths; std::vector m_inputWeights; std::vector m_CorrectResult; float threshold; public: void setUp() override { //Set empty input image: inputImage = mitk::Image::New(); mitk::PixelType pixelType = mitk::MakeScalarPixelType(); const int NUMBER_OF_SPATIAL_DIMENSIONS = 3; auto* dimensions = new unsigned int[NUMBER_OF_SPATIAL_DIMENSIONS]; dimensions[0] = 1; dimensions[1] = 1; dimensions[2] = 5; inputImage->Initialize(pixelType, NUMBER_OF_SPATIAL_DIMENSIONS, dimensions); //Set wavelengths for unmixing: m_inputWavelengths.push_back(750); m_inputWavelengths.push_back(800); m_inputWeights.push_back(50); m_inputWeights.push_back(100); //Set fraction of Hb and HbO2 to unmix: float fracHb = 100; float fracHbO2 = 300; m_CorrectResult.push_back(fracHbO2); m_CorrectResult.push_back(fracHb); m_CorrectResult.push_back(fracHbO2 + 10); m_CorrectResult.push_back(fracHb - 10); threshold = 0.01; //Multiply values of wavelengths (750,800,850 nm) with fractions to get pixel values: float px1 = fracHb * 7.52 + fracHbO2 * 2.77; float px2 = fracHb * 4.08 + fracHbO2 * 4.37; float px3 = (fracHb - 10) * 7.52 + (fracHbO2 + 10) * 2.77; float px4 = (fracHb - 10) * 4.08 + (fracHbO2 + 10) * 4.37; float* data = new float[3]; data[0] = px1; data[1] = px2; data[2] = px3; data[3] = px4; data[5] = 0; inputImage->SetImportVolume(data, mitk::Image::ImportMemoryManagementType::CopyMemory); delete[] data; } // Tests implemented EIGEN algortihms with correct inputs void testEigenSUAlgorithm() { MITK_INFO << "START FILTER TEST ... "; // Set input image auto m_SpectralUnmixingFilter = mitk::pa::LinearSpectralUnmixingFilter::New(); m_SpectralUnmixingFilter->Verbose(false); m_SpectralUnmixingFilter->RelativeError(false); m_SpectralUnmixingFilter->SetInput(inputImage); m_SpectralUnmixingFilter->AddOutputs(2); //Set wavelengths to filter for (unsigned int imageIndex = 0; imageIndex < m_inputWavelengths.size(); imageIndex++) { unsigned int wavelength = m_inputWavelengths[imageIndex]; m_SpectralUnmixingFilter->AddWavelength(wavelength); } //Set Chromophores to filter m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::OXYGENATED); m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::DEOXYGENATED); ofstream myfile; myfile.open("EigenTestResult.txt"); std::vector m_Eigen = { mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::HOUSEHOLDERQR, /* mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::LDLT, mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::LLT,*/ mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::COLPIVHOUSEHOLDERQR, mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::JACOBISVD, mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::FULLPIVLU, mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::FULLPIVHOUSEHOLDERQR}; for (int Algorithmidx = 0; Algorithmidx < m_Eigen.size();++Algorithmidx) { m_SpectralUnmixingFilter->SetAlgorithm(m_Eigen[Algorithmidx]); m_SpectralUnmixingFilter->Update(); /*For printed pixel values and results look at: [...]\mitk-superbuild\MITK-build\Modules\PhotoacousticsLib\test\*/ for (int i = 0; i < 2; ++i) { mitk::Image::Pointer output = m_SpectralUnmixingFilter->GetOutput(i); mitk::ImageReadAccessor readAccess(output); const float* inputDataArray = ((const float*)readAccess.GetData()); auto pixel = inputDataArray[0]; auto pixel2 = inputDataArray[1]; myfile << "Algorithmidx: " << Algorithmidx << "\n Output " << i << ": " << "\n" << inputDataArray[0] << "\n" << inputDataArray[1] << "\n"; myfile << "Correct Result: " << "\n" << m_CorrectResult[i] << "\n" << m_CorrectResult[i + 2] << "\n"; CPPUNIT_ASSERT(std::abs(pixel - m_CorrectResult[i]) < threshold); CPPUNIT_ASSERT(std::abs(pixel2 - m_CorrectResult[i + 2]) < threshold); } } myfile.close(); MITK_INFO << "EIGEN FILTER TEST SUCCESFULL :)"; } // Tests implemented VIGRA algortihms with correct inputs void testVigraSUAlgorithm() { MITK_INFO << "START FILTER TEST ... "; // Set input image auto m_SpectralUnmixingFilter = mitk::pa::SpectralUnmixingFilterVigra::New(); m_SpectralUnmixingFilter->SetInput(inputImage); m_SpectralUnmixingFilter->AddOutputs(2); m_SpectralUnmixingFilter->Verbose(false); m_SpectralUnmixingFilter->RelativeError(false); //Set wavelengths to filter for (unsigned int imageIndex = 0; imageIndex < m_inputWavelengths.size(); imageIndex++) { unsigned int wavelength = m_inputWavelengths[imageIndex]; double Weight = m_inputWeights[imageIndex]; m_SpectralUnmixingFilter->AddWavelength(wavelength); m_SpectralUnmixingFilter->AddWeight(Weight); } //Set Chromophores to filter m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::OXYGENATED); m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::DEOXYGENATED); std::vector Vigra = { mitk::pa::SpectralUnmixingFilterVigra::VigraAlgortihmType::LARS, mitk::pa::SpectralUnmixingFilterVigra::VigraAlgortihmType::GOLDFARB, mitk::pa::SpectralUnmixingFilterVigra::VigraAlgortihmType::WEIGHTED, mitk::pa::SpectralUnmixingFilterVigra::VigraAlgortihmType::LS/*, mitk::pa::SpectralUnmixingFilterVigra::VigraAlgortihmType::vigratest*/}; ofstream myfile; myfile.open("VigraTestResult.txt"); for (int Algorithmidx = 0; Algorithmidx < Vigra.size();++Algorithmidx) { m_SpectralUnmixingFilter->SetAlgorithm(Vigra[0]); m_SpectralUnmixingFilter->Update(); /*For printed pixel values and results look at: [...]\mitk-superbuild\MITK-build\Modules\PhotoacousticsLib\test\*/ for (int i = 0; i < 2; ++i) { mitk::Image::Pointer output = m_SpectralUnmixingFilter->GetOutput(i); mitk::ImageReadAccessor readAccess(output); const float* inputDataArray = ((const float*)readAccess.GetData()); auto pixel = inputDataArray[0]; auto pixel2 = inputDataArray[1]; myfile << "Algorithmidx: " << Algorithmidx << "\n Output " << i << ": " << "\n" << inputDataArray[0] << "\n" << inputDataArray[1] << "\n"; myfile << "Correct Result: " << "\n" << m_CorrectResult[i] << "\n" << m_CorrectResult[i + 2] << "\n"; CPPUNIT_ASSERT(std::abs(pixel - m_CorrectResult[i]) < threshold); CPPUNIT_ASSERT(std::abs(pixel2 - m_CorrectResult[i + 2]) < threshold); } } myfile.close(); MITK_INFO << "VIGRA FILTER TEST SUCCESFULL :)"; } void testSimplexSUAlgorithm() { MITK_INFO << "START FILTER TEST ... "; // Set input image auto m_SpectralUnmixingFilter = mitk::pa::SpectralUnmixingFilterSimplex::New(); m_SpectralUnmixingFilter->SetInput(inputImage); m_SpectralUnmixingFilter->AddOutputs(2); m_SpectralUnmixingFilter->Verbose(true); m_SpectralUnmixingFilter->RelativeError(false); //Set wavelengths to filter for (unsigned int imageIndex = 0; imageIndex < m_inputWavelengths.size(); imageIndex++) { unsigned int wavelength = m_inputWavelengths[imageIndex]; m_SpectralUnmixingFilter->AddWavelength(wavelength); } //Set Chromophores to filter m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::OXYGENATED); m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::DEOXYGENATED); m_SpectralUnmixingFilter->Update(); /*For printed pixel values and results look at: [...]\mitk-superbuild\MITK-build\Modules\PhotoacousticsLib\test\*/ ofstream myfile; myfile.open("SimplexTestResult.txt"); for (int i = 0; i < 2; ++i) { mitk::Image::Pointer output = m_SpectralUnmixingFilter->GetOutput(i); mitk::ImageReadAccessor readAccess(output); const float* inputDataArray = ((const float*)readAccess.GetData()); auto pixel = inputDataArray[0]; auto pixel2 = inputDataArray[1]; myfile << "Output " << i << ": " << "\n" << inputDataArray[0] << "\n" << inputDataArray[1] << "\n"; myfile << "Correct Result: " << "\n" << m_CorrectResult[i] << "\n" << m_CorrectResult[i + 2] << "\n"; CPPUNIT_ASSERT(std::abs(pixel - m_CorrectResult[i])SetInput(0, inputImage); inputImage = nullptr; inputImage = mitk::Image::New(); mitk::PixelType pixelType = mitk::MakeScalarPixelType(); const int NUMBER_OF_SPATIAL_DIMENSIONS = 3; auto* dimensions = new unsigned int[NUMBER_OF_SPATIAL_DIMENSIONS]; dimensions[0] = 1; dimensions[1] = 1; dimensions[2] = 4; inputImage->Initialize(pixelType, NUMBER_OF_SPATIAL_DIMENSIONS, dimensions); float* data = new float[3]; data[0] = 1; data[1] = 2; data[2] = 3; data[3] = 4; inputImage->SetImportVolume(data, mitk::Image::ImportMemoryManagementType::CopyMemory); delete[] data; m_sO2->SetInput(1, inputImage); MITK_TEST_FOR_EXCEPTION_BEGIN(itk::ExceptionObject) m_sO2->Update(); MITK_TEST_FOR_EXCEPTION_END(itk::ExceptionObject) } // Tests SO2 Filter with correct inputs void testSO2() { MITK_INFO << "START SO2 TEST ... "; std::vector CorrectSO2Result1 = { 0, 0, 0, 0, 0 }; std::vector Test1 = { 0,0,0,51 }; std::vector CorrectSO2Result2 = { 0, 0.5, 0, 0.5, 0 }; std::vector Test2 = { 1584, 0, 0, 0 }; std::vector CorrectSO2Result3 = { 0.5, 0.5, 0, 0.5, 0 }; std::vector Test3 = { 0, 1536, 0, 0 }; std::vector CorrectSO2Result4 = { 0.5, 0.5, 0, 0.5, 0 }; std::vector Test4 = { 0, 0, 3072, 49 }; std::vector CorrectSO2Result5 = { 0.5, 0.5, 0.5, 0.5, 0 }; std::vector Test5 = { 1, 1, 1, 49 }; std::vector> TestList; std::vector> ResultList; TestList.push_back(Test1); TestList.push_back(Test2); TestList.push_back(Test3); TestList.push_back(Test4); TestList.push_back(Test5); ResultList.push_back(CorrectSO2Result1); ResultList.push_back(CorrectSO2Result2); ResultList.push_back(CorrectSO2Result3); ResultList.push_back(CorrectSO2Result4); ResultList.push_back(CorrectSO2Result5); /*For printed pixel values and results look at: [...]\mitk-superbuild\MITK-build\Modules\PhotoacousticsLib\test\*/ ofstream myfile; myfile.open("SO2TestResult.txt"); for (int k = 0; k < 5; ++k) { std::vector SO2Settings = TestList[k]; std::vector m_CorrectSO2Result = ResultList[k]; auto m_sO2 = mitk::pa::SpectralUnmixingSO2::New(); m_sO2->SetInput(0, inputImage); m_sO2->SetInput(1, inputImage); for (int i = 0; i < SO2Settings.size(); ++i) m_sO2->AddSO2Settings(SO2Settings[i]); m_sO2->Update(); mitk::Image::Pointer output = m_sO2->GetOutput(0); mitk::ImageReadAccessor readAccess(output); const float* inputDataArray = ((const float*)readAccess.GetData()); for (unsigned int Pixel = 0; Pixel < inputImage->GetDimensions()[2]; ++Pixel) { auto Value = inputDataArray[Pixel]; myfile << "Output(Test " << k << ") " << Pixel << ": " << "\n" << Value << "\n"; myfile << "Correct Result: " << "\n" << m_CorrectSO2Result[Pixel] << "\n"; CPPUNIT_ASSERT(std::abs(Value - m_CorrectSO2Result[Pixel]) < threshold); } } myfile.close(); MITK_INFO << "SO2 TEST SUCCESFULL :)"; } // Test exceptions for wrong wavelength inputs void testWavelengthExceptions() { MITK_INFO << "START WavelengthExceptions TEST ... "; // Set input image auto m_SpectralUnmixingFilter = mitk::pa::LinearSpectralUnmixingFilter::New(); m_SpectralUnmixingFilter->Verbose(false); m_SpectralUnmixingFilter->RelativeError(false); m_SpectralUnmixingFilter->SetInput(inputImage); m_SpectralUnmixingFilter->AddOutputs(2); m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::OXYGENATED); m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::DEOXYGENATED); m_SpectralUnmixingFilter->SetAlgorithm(mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::HOUSEHOLDERQR); MITK_TEST_FOR_EXCEPTION_BEGIN(itk::ExceptionObject) m_SpectralUnmixingFilter->Update(); MITK_TEST_FOR_EXCEPTION_END(itk::ExceptionObject) m_SpectralUnmixingFilter->AddWavelength(300); MITK_TEST_FOR_EXCEPTION_BEGIN(itk::ExceptionObject) m_SpectralUnmixingFilter->Update(); MITK_TEST_FOR_EXCEPTION_END(itk::ExceptionObject) m_SpectralUnmixingFilter->AddWavelength(299); MITK_TEST_FOR_EXCEPTION_BEGIN(itk::ExceptionObject) m_SpectralUnmixingFilter->Update(); MITK_TEST_FOR_EXCEPTION_END(itk::ExceptionObject) MITK_INFO << "DONE"; } // Test exceptions for wrong chromophore inputs void testNoChromophoresSelected() { MITK_INFO << "testNoChromophoresSelected"; // Set input image auto m_SpectralUnmixingFilter = mitk::pa::LinearSpectralUnmixingFilter::New(); m_SpectralUnmixingFilter->Verbose(false); m_SpectralUnmixingFilter->RelativeError(false); m_SpectralUnmixingFilter->SetInput(inputImage); m_SpectralUnmixingFilter->AddOutputs(2); //Set wavelengths to filter for (unsigned int imageIndex = 0; imageIndex < m_inputWavelengths.size(); imageIndex++) { unsigned int wavelength = m_inputWavelengths[imageIndex]; m_SpectralUnmixingFilter->AddWavelength(wavelength); } m_SpectralUnmixingFilter->SetAlgorithm(mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::HOUSEHOLDERQR); MITK_TEST_FOR_EXCEPTION_BEGIN(itk::ExceptionObject) m_SpectralUnmixingFilter->Update(); MITK_TEST_FOR_EXCEPTION_END(itk::ExceptionObject) } // Test exceptions for wrong input image void testInputImage() { MITK_INFO << "INPUT IMAGE TEST"; inputImage = nullptr; // Set input image auto m_SpectralUnmixingFilter = mitk::pa::LinearSpectralUnmixingFilter::New(); m_SpectralUnmixingFilter->Verbose(false); m_SpectralUnmixingFilter->RelativeError(false); //m_SpectralUnmixingFilter->SetInput(inputImage); m_SpectralUnmixingFilter->AddOutputs(2); //Set wavelengths to filter for (unsigned int imageIndex = 0; imageIndex < m_inputWavelengths.size(); imageIndex++) { unsigned int wavelength = m_inputWavelengths[imageIndex]; m_SpectralUnmixingFilter->AddWavelength(wavelength); } m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::OXYGENATED); m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::DEOXYGENATED); m_SpectralUnmixingFilter->SetAlgorithm(mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::HOUSEHOLDERQR); MITK_TEST_FOR_EXCEPTION_BEGIN(itk::ExceptionObject) m_SpectralUnmixingFilter->Update(); MITK_TEST_FOR_EXCEPTION_END(itk::ExceptionObject) inputImage = mitk::Image::New(); mitk::PixelType pixelType = mitk::MakeScalarPixelType(); const int NUMBER_OF_SPATIAL_DIMENSIONS = 3; auto* dimensions = new unsigned int[NUMBER_OF_SPATIAL_DIMENSIONS]; dimensions[0] = 1; dimensions[1] = 1; dimensions[2] = 5; inputImage->Initialize(pixelType, NUMBER_OF_SPATIAL_DIMENSIONS, dimensions); double* data = new double[3]; data[0] = 1; data[1] = 2; data[2] = 3; data[3] = 4; data[5] = 0; inputImage->SetImportVolume(data, mitk::Image::ImportMemoryManagementType::CopyMemory); delete[] data; m_SpectralUnmixingFilter->SetInput(inputImage); MITK_TEST_FOR_EXCEPTION_BEGIN(itk::ExceptionObject) m_SpectralUnmixingFilter->Update(); MITK_TEST_FOR_EXCEPTION_END(itk::ExceptionObject) } // Test exceptions for addOutputs method void testAddOutput() { MITK_INFO << "addOutputs TEST"; // Set input image auto m_SpectralUnmixingFilter = mitk::pa::LinearSpectralUnmixingFilter::New(); m_SpectralUnmixingFilter->Verbose(false); m_SpectralUnmixingFilter->RelativeError(false); m_SpectralUnmixingFilter->SetInput(inputImage); //Set wavelengths to filter for (unsigned int imageIndex = 0; imageIndex < m_inputWavelengths.size(); imageIndex++) { unsigned int wavelength = m_inputWavelengths[imageIndex]; m_SpectralUnmixingFilter->AddWavelength(wavelength); } m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::OXYGENATED); m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::DEOXYGENATED); m_SpectralUnmixingFilter->SetAlgorithm(mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::HOUSEHOLDERQR); for (int i = 0; i < 4; ++i) { MITK_INFO << "i: " << i; if (i != 2) { MITK_TEST_FOR_EXCEPTION_BEGIN(itk::ExceptionObject) m_SpectralUnmixingFilter->AddOutputs(i); m_SpectralUnmixingFilter->Update(); MITK_TEST_FOR_EXCEPTION_END(itk::ExceptionObject) } else { m_SpectralUnmixingFilter->AddOutputs(2); m_SpectralUnmixingFilter->Update(); for (int i = 0; i < 2; ++i) { mitk::Image::Pointer output = m_SpectralUnmixingFilter->GetOutput(i); mitk::ImageReadAccessor readAccess(output); const float* inputDataArray = ((const float*)readAccess.GetData()); auto pixel = inputDataArray[0]; auto pixel2 = inputDataArray[1]; CPPUNIT_ASSERT(std::abs(pixel - m_CorrectResult[i]) < threshold); CPPUNIT_ASSERT(std::abs(pixel2 - m_CorrectResult[i + 2]) < threshold); } } } } // Test exceptions for weights error void testWeightsError() { MITK_INFO << "testWeightsError"; // Set input image auto m_SpectralUnmixingFilter = mitk::pa::SpectralUnmixingFilterVigra::New(); m_SpectralUnmixingFilter->Verbose(false); m_SpectralUnmixingFilter->RelativeError(false); m_SpectralUnmixingFilter->SetInput(inputImage); m_SpectralUnmixingFilter->AddOutputs(2); //Set wavelengths to filter for (unsigned int imageIndex = 0; imageIndex < m_inputWavelengths.size(); imageIndex++) { unsigned int wavelength = m_inputWavelengths[imageIndex]; m_SpectralUnmixingFilter->AddWavelength(wavelength); } m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::OXYGENATED); m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::DEOXYGENATED); m_SpectralUnmixingFilter->SetAlgorithm(mitk::pa::SpectralUnmixingFilterVigra::VigraAlgortihmType::WEIGHTED); MITK_TEST_FOR_EXCEPTION_BEGIN(itk::ExceptionObject) m_SpectralUnmixingFilter->Update(); MITK_TEST_FOR_EXCEPTION_END(itk::ExceptionObject) m_SpectralUnmixingFilter->AddWeight(50); MITK_TEST_FOR_EXCEPTION_BEGIN(itk::ExceptionObject) m_SpectralUnmixingFilter->Update(); MITK_TEST_FOR_EXCEPTION_END(itk::ExceptionObject) m_SpectralUnmixingFilter->AddWeight(50); m_SpectralUnmixingFilter->Update(); for (int i = 0; i < 2; ++i) { mitk::Image::Pointer output = m_SpectralUnmixingFilter->GetOutput(i); mitk::ImageReadAccessor readAccess(output); const float* inputDataArray = ((const float*)readAccess.GetData()); auto pixel = inputDataArray[0]; auto pixel2 = inputDataArray[1]; CPPUNIT_ASSERT(std::abs(pixel - m_CorrectResult[i]) < threshold); CPPUNIT_ASSERT(std::abs(pixel2 - m_CorrectResult[i + 2]) < threshold); } } + // Test correct outputs + void testOutputs() + { + MITK_INFO << "TEST"; + + // Set input image + auto m_SpectralUnmixingFilter = mitk::pa::LinearSpectralUnmixingFilter::New(); + m_SpectralUnmixingFilter->Verbose(false); + m_SpectralUnmixingFilter->RelativeError(false); + m_SpectralUnmixingFilter->SetInput(inputImage); + m_SpectralUnmixingFilter->AddOutputs(2); + + //Set wavelengths to filter + for (unsigned int imageIndex = 0; imageIndex < m_inputWavelengths.size(); imageIndex++) + { + unsigned int wavelength = m_inputWavelengths[imageIndex]; + m_SpectralUnmixingFilter->AddWavelength(wavelength); + } + + m_SpectralUnmixingFilter->AddChromophore( + mitk::pa::PropertyCalculator::ChromophoreType::OXYGENATED); + m_SpectralUnmixingFilter->AddChromophore( + mitk::pa::PropertyCalculator::ChromophoreType::DEOXYGENATED); + + m_SpectralUnmixingFilter->SetAlgorithm(mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::HOUSEHOLDERQR); + + m_SpectralUnmixingFilter->Update(); + + for (int i = 0; i < 2; ++i) + { + mitk::Image::Pointer output = m_SpectralUnmixingFilter->GetOutput(i); + mitk::ImageReadAccessor readAccess(output); + const float* inputDataArray = ((const float*)readAccess.GetData()); + auto pixel = inputDataArray[0]; + auto pixel2 = inputDataArray[1]; + + CPPUNIT_ASSERT(std::abs(pixel - m_CorrectResult[i]) < threshold); + CPPUNIT_ASSERT(std::abs(pixel2 - m_CorrectResult[i + 2]) < threshold); + + // test correct output dimensions and pixel type + CPPUNIT_ASSERT(inputImage->GetDimensions()[0] == output->GetDimensions()[0]); + CPPUNIT_ASSERT(inputImage->GetDimensions()[0] == output->GetDimensions()[1]); + CPPUNIT_ASSERT(2 == output->GetDimensions()[2]); + CPPUNIT_ASSERT(output->GetPixelType() != mitk::MakeScalarPixelType()); + } + } + // TEST TEMPLATE: /* // Test exceptions for void test() { MITK_INFO << "TEST"; // Set input image auto m_SpectralUnmixingFilter = mitk::pa::LinearSpectralUnmixingFilter::New(); m_SpectralUnmixingFilter->Verbose(false); m_SpectralUnmixingFilter->RelativeError(false); m_SpectralUnmixingFilter->SetInput(inputImage); m_SpectralUnmixingFilter->AddOutputs(2); //Set wavelengths to filter for (unsigned int imageIndex = 0; imageIndex < m_inputWavelengths.size(); imageIndex++) { unsigned int wavelength = m_inputWavelengths[imageIndex]; m_SpectralUnmixingFilter->AddWavelength(wavelength); } m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::OXYGENATED); m_SpectralUnmixingFilter->AddChromophore( mitk::pa::PropertyCalculator::ChromophoreType::DEOXYGENATED); m_SpectralUnmixingFilter->SetAlgorithm(mitk::pa::LinearSpectralUnmixingFilter::AlgortihmType::HOUSEHOLDERQR); //MITK_TEST_FOR_EXCEPTION_BEGIN(itk::ExceptionObject) m_SpectralUnmixingFilter->Update(); //MITK_TEST_FOR_EXCEPTION_END(itk::ExceptionObject) }*/ void tearDown() override { m_SpectralUnmixingFilter = nullptr; inputImage = nullptr; m_inputWavelengths.clear(); m_CorrectResult.clear(); } }; MITK_TEST_SUITE_REGISTRATION(mitkSpectralUnmixing)