diff --git a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp index 78e1ec8b60..5213be5df8 100644 --- a/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp +++ b/Modules/DiffusionImaging/Reconstruction/itkDiffusionMultiShellQballReconstructionImageFilter.cpp @@ -1,1223 +1,1227 @@ /*========================================================================= Program: Medical Imaging & Interaction Toolkit Language: C++ Date: $Date: 2009-07-14 19:11:20 +0200 (Tue, 14 Jul 2009) $ Version: $Revision: 18127 $ Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. See MITKCopyright.txt or http://www.mitk.org/copyright.html for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #ifndef __itkDiffusionMultiShellQballReconstructionImageFilter_cpp #define __itkDiffusionMultiShellQballReconstructionImageFilter_cpp #include #include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include #include "mitkSphericalHarmonicsFunctions.h" #include "itkPointShell.h" #include namespace itk { #define QBALL_ANAL_RECON_PI M_PI template< class T, class TG, class TO, int L, int NODF> DiffusionMultiShellQballReconstructionImageFilter ::DiffusionMultiShellQballReconstructionImageFilter() : m_GradientDirectionContainer(NULL), m_NumberOfGradientDirections(0), m_NumberOfBaselineImages(1), m_Threshold(NumericTraits< ReferencePixelType >::NonpositiveMin()), m_BValue(1.0), m_Lambda(0.0), m_IsHemisphericalArrangementOfGradientDirections(false), m_IsArithmeticProgession(false), m_ReconstructionType(Standard1Shell) { // At least 1 inputs is necessary for a vector image. // For images added one at a time we need at least six this->SetNumberOfRequiredInputs( 1 ); } template< class TReferenceImagePixelType, class TGradientImagePixelType, class TOdfPixelType, int NOrderL, int NrOdfDirections> typename itk::DiffusionMultiShellQballReconstructionImageFilter< TReferenceImagePixelType,TGradientImagePixelType,TOdfPixelType, NOrderL,NrOdfDirections>::OdfPixelType itk::DiffusionMultiShellQballReconstructionImageFilter ::Normalize( OdfPixelType odf, typename NumericTraits::AccumulateType b0 ) { for(int i=0; i0) odf /= sum; return odf; } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::Threshold(vnl_vector & vec, float sigma) { for(int i = 0; i < vec.size(); i++) { if(vec[i] < 0) { vec[i] = sigma / 2 ; } if(0 <= vec[i] && vec[i] < sigma ) { vec[i] = sigma / 2 + (vec[i] * vec[i]) / 2 * sigma; } if( 1 - sigma <= vec[i] && vec[i] < 1 ) { vec[i] = 1-(sigma/2) - (( 1 - vec[i] * vec[i] ) / 2 * sigma ); } if( 1 <= vec[i] ) { vec[i] = 1 - (sigma / 2); } } } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::Threshold(vnl_matrix & mat, float sigma) { for(int i = 0; i < mat.rows(); i++) { for( int j = 0; j < mat.cols(); j++ ){ if(mat(i,j) < 0) { mat(i,j) = sigma / 2 ; } if(0 <= mat(i,j) && mat(i,j) < sigma ) { mat(i,j) = sigma / 2 + (mat(i,j) * mat(i,j)) / 2 * sigma; } if( 1 - sigma <= mat(i,j) && mat(i,j) < 1 ) { mat(i,j) = 1-(sigma/2) - (( 1 - mat(i,j) * mat(i,j) ) / 2 * sigma ); } if( 1 <= mat(i,j) ) { mat(i,j) = 1 - (sigma / 2); } } } } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::Projection1( vnl_matrix & E, float delta ) { const double sF = sqrt(5.0); vnl_vector vOnes(E.rows()); vOnes.fill(1.0); vnl_matrix T0(E.rows(), E.cols()); vnl_matrix C(E.rows(), 7); vnl_matrix A(E.rows(), 7); vnl_matrix B(E.rows(), 7); vnl_vector s0(E.rows()); vnl_vector a0(E.rows()); vnl_vector b0(E.rows()); vnl_vector ta(E.rows()); vnl_vector tb(E.rows()); vnl_vector e(E.rows()); vnl_vector m(E.rows()); vnl_vector a(E.rows()); vnl_vector b(E.rows()); // logarithmierung aller werte in E for(int i = 0 ; i < E.rows(); i++) { for(int j = 0 ; j < E.cols(); j++) { T0(i,j) = -log(E(i,j)); } } // Summeiere Zeilenweise über alle Shells sum = E1+E2+E3 for(int i = 0 ; i < E.rows(); i++) { s0[i] = T0(i,0) + T0(i,1) + T0(i,2); } for(int i = 0; i < E.rows(); i ++) { // Alle Signal-Werte auf der Ersten shell E(N,0) normiert auf s0 a0 = E(i,0) / s0[i]; // Alle Signal-Werte auf der Zweiten shell E(N,1) normiert auf s0 b0 = E(i,1) / s0[i]; } ta = a0 * 3.0; tb = b0 * 3.0; e = tb - (ta * 2.0); m = (tb * 2.0 ) + ta; for(int i = 0; i < E.rows(); i++) { C(i,0) = tb[i] < 1+3*delta && 0.5+1.5*(sF+1)*delta < ta[i] && ta[i] < 1-3* (sF+2) *delta; C(i,1) = e[i] <= -1 +3*(2*sF+5)* delta && ta[i] >= 1-3*(sF+2)*delta; C(i,2) = m[i] > 3 -3*sF*delta && -1+3*(2*sF+5)*delta < e[i] && e[i]<-3*sF*delta; C(i,3) = m[i] >= 3-3*sF*delta && e[i] >= -3 *sF * delta; C(i,4) = 2.5 + 1.5*(5+sF)*delta < m[i] && m[i] < 3-3*sF*delta && e[i] > -3*sF*delta; C(i,5) = ta[i] <= 0.5+1.5 *delta*(sF+1)*delta && m[i] <= 2.5 + 1.5 *(5+sF) * delta; C(i,6) = !( C(i,0) || C(i,1) || C(i,2) || C(i,3) || C(i,4) || C(i,5) ); // ~ANY(C(i,[0-5] ),2) } A.set_column(0, a0); A.set_column(1, vOnes * (1/3 - (sF+2) * delta )); A.set_column(2, (a0*0.8)+ 0.2 - (b0 * 0.4) -delta/sF); A.set_column(3, vOnes * (0.2 + delta /sF)); A.set_column(4, a0 * 0.2 + (b0 * 0.4) + 2*delta/sF); A.set_column(5, vOnes * (1/6+0.5*(sF+1)*delta)); A.set_column(6, a0); B.set_column(0, (1/3 +delta) * vOnes ); B.set_column(1, (1/3 +delta) * vOnes ); B.set_column(2, (-(a0 * 0.4)) + 0.4 + ((b0 * 0.2) - 2*delta/sF) ); //FLAG B.set_column(3, vOnes * (0.4 - 3* delta / sF)); B.set_column(4, a0 * 0.4 + (b0 * 0.8) - delta /sF); B.set_column(5, vOnes * (1/3+delta)); B.set_column(6, b0 ); for(int i = 0 ; i < E.rows(); i++) { double sumA = 0; double sumB = 0; for(int j = 0 ; j < 7; j++) { if(C(i,j)) { sumA += A(i,j); sumB += B(i,j); } } a[i] = sumA; b[i] = sumB; } for(int i = 0; i < E.rows(); i++) { E(i,0) = exp(-(a[i]*s0[i])); E(i,1) = exp(-(b[i]*s0[i])); E(i,2) = exp(-((1-a[i]-b[i])*s0[i])); } } double pow2(double val) { return val * val; } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::Projection2( vnl_vector & A, vnl_vector & a, vnl_vector & b, float delta0) { const double s6 = sqrt(6); const double s15 = s6/2; vnl_vector delta(a.size()); delta.fill(delta0); vnl_matrix AM(a.size(), 15); vnl_matrix aM(a.size(), 15); vnl_matrix bM(a.size(), 15); vnl_matrix B(a.size(), 15); AM.set_column(0, A); AM.set_column(1, A); AM.set_column(2, A); AM.set_column(3, delta); AM.set_column(4, (A+a-b) - (delta*s6)); AM.set_column(5, delta); AM.set_column(6, delta); AM.set_column(7, delta); AM.set_column(8, A); AM.set_column(9, (a*2+A - ( delta * (2 * (s6 + 1)) ))*0.2); AM.set_column(10, ((b*(-2)) + (A + 2) + (- delta * (2 * (s6 +1) ) ) ) *0.2); AM.set_column(11, delta); AM.set_column(12, delta); AM.set_column(13, delta); AM.set_column(14, (delta * (-(1 + s15))) + 0.5 ); aM.set_column(0, a); aM.set_column(1, a); aM.set_column(2, -delta + 1); aM.set_column(3, a); aM.set_column(4, ((A * 2) + (a * 5) + ( b ) + (delta * s6)) / 6); aM.set_column(5, a); aM.set_column(6, -delta + 1); aM.set_column(7, ((a+b) * 0.5) + (delta * (1 + s15))); aM.set_column(8, -delta + 1); aM.set_column(9, ( (a * 4) + (A * 2) + (delta * (s6 + 1)) )*0.2); aM.set_column(10, -delta + 1); aM.set_column(11, delta*(s6 +3)); aM.set_column(12, -delta + 1); aM.set_column(13, -delta + 1); aM.set_column(14, -delta + 1); bM.set_column(0, b); bM.set_column(1, delta); bM.set_column(2, b); bM.set_column(3, b); bM.set_column(4, (( A * (-2) ) + a + ( b * 5 ) - ( delta* s6 ) ) / 6); bM.set_column(5, delta); bM.set_column(6, b); bM.set_column(7, ((a+b) * 0.5) - (delta * (1 + s15))); bM.set_column(8, delta); bM.set_column(9, delta); bM.set_column(10, ( (b * 4) - (A * 2) + ((- (delta * (s6 + 1))) + 1) )*0.2); bM.set_column(11, delta); bM.set_column(12, delta); bM.set_column(13, (- (delta * (s6 + 3))) + 1); bM.set_column(14, delta); delta0 *= 0.99; for(int i = 0 ; i < a.size(); i ++) { for(int j = 0 ; j < 15; j ++) { B(i,j) = delta0 < AM(i,j) && 2 * (AM(i,j) + delta0 * s15) < aM(i,j) - bM(i,j) && bM(i,j) > delta0 && aM(i,j) < 1- delta0; } } vnl_matrix R2(a.size(), 15); vnl_matrix A_(a.size(), 15); vnl_matrix a_(a.size(), 15); vnl_matrix b_(a.size(), 15); vnl_matrix OnesVecMat(1, 15); OnesVecMat.fill(1.0); vnl_matrix AVecMat(a.size(), 1); AVecMat.set_column(0,A); vnl_matrix aVecMat(a.size(), 1); aVecMat.set_column(0,a); vnl_matrix bVecMat(a.size(), 1); bVecMat.set_column(0,b); A_ = AM - (AVecMat * OnesVecMat); a_ = aM - (aVecMat * OnesVecMat); b_ = bM - (bVecMat * OnesVecMat); for(int i = 0 ; i < a.size(); i++) for(int j = 0 ; j < 15; j++) { A_(i,j) *= A_(i,j); a_(i,j) *= a_(i,j); b_(i,j) *= b_(i,j); } R2 = A_ + a_ + b_; for(int i = 0 ; i < a.size(); i ++) { for(int j = 0 ; j < 15; j ++) { if(B(i,j) == 0) R2(i,j) = 9999; } } std::vector indicies(a.size()); // suche den spalten-index der zu der kleinsten Zahl einer Zeile korrespondiert for(int i = 0 ; i < a.size(); i++) { unsigned int index = 0; double minvalue = 999; for(int j = 0 ; j < 15 ; j++) { if(R2(i,j) < minvalue){ minvalue = R2(i,j); index = j; } } indicies[i] = index; } for(int i = 0 ; i < a.size(); i++) { A[i] = AM(i,indicies[i]); a[i] = aM(i,indicies[i]); b[i] = bM(i,indicies[i]); } } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::S_S0Normalization( vnl_vector & vec, typename NumericTraits::AccumulateType b0 ) { double b0f = (double)b0; for(int i = 0; i < vec.size(); i++) { if (b0f==0) b0f = 0.01; //if(vec[i] >= b0f) // vec[i] = b0f - 0.001; vec[i] /= b0f; } } template void itk::DiffusionMultiShellQballReconstructionImageFilter ::S_S0Normalization( vnl_matrix & mat, typename NumericTraits::AccumulateType b0 ) { double b0f = (double)b0; for(int i = 0; i < mat.rows(); i++) { for( int j = 0; j < mat.cols(); j++ ){ if (b0f==0) b0f = 0.01; //if(mat(i,j) >= b0f) // mat(i,j) = b0f - 0.001; mat(i,j) /= b0f; } } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::DoubleLogarithm(vnl_vector & vec) { for(int i = 0; i < vec.size(); i++) { vec[i] = log(-log(vec[i])); } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::SetGradientImage( GradientDirectionContainerType *gradientDirection, const GradientImagesType *gradientImage ) { this->m_GradientDirectionContainer = gradientDirection; this->m_NumberOfBaselineImages = 0; for(GradientDirectionContainerType::Iterator it = gradientDirection->Begin(); it != gradientDirection->End(); it++) { if( it.Value().one_norm() <= 0.0 ) this->m_NumberOfBaselineImages ++; else it.Value() = it.Value() / it.Value().two_norm(); } this->m_NumberOfGradientDirections = gradientDirection->Size() - this->m_NumberOfBaselineImages; // ensure that the gradient image we received has as many components as // the number of gradient directions if( gradientImage->GetVectorLength() != this->m_NumberOfBaselineImages + m_NumberOfGradientDirections ) { itkExceptionMacro( << m_NumberOfGradientDirections << " gradients + " << this->m_NumberOfBaselineImages << "baselines = " << m_NumberOfGradientDirections + this->m_NumberOfBaselineImages << " directions specified but image has " << gradientImage->GetVectorLength() << " components."); } this->ProcessObject::SetNthInput( 0, const_cast< GradientImagesType* >(gradientImage) ); } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::BeforeThreadedGenerateData() { if( m_NumberOfGradientDirections < (((L+1)*(L+2))/2) /* && m_NumberOfGradientDirections < 6 */ ) { itkExceptionMacro( << "At least " << ((L+1)*(L+2))/2 << " gradient directions are required" ); } // Input must be an itk::VectorImage. std::string gradientImageClassName(this->ProcessObject::GetInput(0)->GetNameOfClass()); if ( strcmp(gradientImageClassName.c_str(),"VectorImage") != 0 ) itkExceptionMacro( << "There is only one Gradient image. I expect that to be a VectorImage. But its of type: " << gradientImageClassName ); m_BZeroImage = BZeroImageType::New(); typename GradientImagesType::Pointer img = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); m_BZeroImage->SetSpacing( img->GetSpacing() ); // Set the image spacing m_BZeroImage->SetOrigin( img->GetOrigin() ); // Set the image origin m_BZeroImage->SetDirection( img->GetDirection() ); // Set the image direction m_BZeroImage->SetLargestPossibleRegion( img->GetLargestPossibleRegion()); m_BZeroImage->SetBufferedRegion( img->GetLargestPossibleRegion() ); m_BZeroImage->Allocate(); // if no GradientIndexMap is set take all Gradients to GradientIndicies-Vector and add this to GradientIndexMap[ALL] // add All Bzero if(m_GradientIndexMap.size() == 0){ // split for all gradient directions the image in baseline-indicies and gradient-indicies for a fast access GradientDirectionContainerType::ConstIterator gdcit; for( gdcit = this->m_GradientDirectionContainer->Begin(); gdcit != this->m_GradientDirectionContainer->End(); ++gdcit) { if(gdcit.Value().one_norm() <= 0.0) // if vector length at current position is 0, it is a basline signal { m_GradientIndexMap[0].push_back(gdcit.Index()); }else{ // it is a gradient signal of length != 0 m_GradientIndexMap[1].push_back(gdcit.Index()); } } m_ReconstructionType = Standard1Shell; }else if(m_GradientIndexMap.size() == 4){ GradientIndexMapIteraotr it = m_GradientIndexMap.begin(); it++; int b1 = (*it).first; it++; int b2 = (*it).first; it++; int b3 = (*it).first; if(b2 - b1 == b1 && b3 - b2 == b1 ) { m_ReconstructionType = Analytical3Shells; }else { m_ReconstructionType = NumericalNShells; } }else if(m_GradientIndexMap.size() > 2) { m_ReconstructionType = NumericalNShells; } switch(m_ReconstructionType) { case Analytical3Shells: { GradientIndexMapIteraotr it = m_GradientIndexMap.begin(); it++; this->ComputeReconstructionMatrix((*it).second); break; } case NumericalNShells: this->ComputeReconstructionMatrix(m_GradientIndexMap[1]); break; case Standard1Shell: this->ComputeReconstructionMatrix(m_GradientIndexMap[1]); break; } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::StandardOneShellReconstruction(const OutputImageRegionType& outputRegionForThread) { // Get output image pointer typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); // ImageRegionIterator for the output image ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); oit.GoToBegin(); // ImageRegionIterator for the BZero (output) image ImageRegionIterator< BZeroImageType > oit2(m_BZeroImage, outputRegionForThread); oit2.GoToBegin(); IndiciesVector BZeroIndicies = m_GradientIndexMap[0]; IndiciesVector SignalIndicies = m_GradientIndexMap[1]; // if the gradient directiosn aragement is hemispherical, duplicate all gradient directions // alone, interested in the value, the direction can be neglected if(m_IsHemisphericalArrangementOfGradientDirections){ int NumbersOfGradientIndicies = SignalIndicies.size(); for (int i = 0 ; i < NumbersOfGradientIndicies; i++) SignalIndicies.push_back(SignalIndicies[i]); } // Get input gradient image pointer typename GradientImagesType::Pointer gradientImagePointer = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); // Const ImageRegionIterator for input gradient image typedef ImageRegionConstIterator< GradientImagesType > GradientIteratorType; GradientIteratorType git(gradientImagePointer, outputRegionForThread ); git.GoToBegin(); typedef typename GradientImagesType::PixelType GradientVectorType; // iterate overall voxels of the gradient image region while( ! git.IsAtEnd() ) { GradientVectorType b = git.Get(); // compute the average bzero signal typename NumericTraits::AccumulateType b0 = NumericTraits::Zero; for(unsigned int i = 0; i < BZeroIndicies.size(); ++i) { b0 += b[BZeroIndicies[i]]; } b0 /= this->m_NumberOfBaselineImages; // ODF Vector OdfPixelType odf(0.0); // Create the Signal Vector vnl_vector SignalVector(m_NumberOfGradientDirections); if( (b0 != 0) && (b0 >= m_Threshold) ) { for( unsigned int i = 0; i< SignalIndicies.size(); i++ ) { SignalVector[i] = static_cast(b[SignalIndicies[i]]); } // apply threashold an generate ln(-ln(E)) signal // Replace SignalVector with PreNormalized SignalVector S_S0Normalization(SignalVector, b0); DoubleLogarithm(SignalVector); // ODF coeffs-vector vnl_vector coeffs(m_NumberCoefficients); // approximate ODF coeffs coeffs = ( (*m_CoeffReconstructionMatrix) * SignalVector ); coeffs[0] += 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); odf = ( (*m_ODFSphericalHarmonicBasisMatrix) * coeffs ).data_block(); } // set ODF to ODF-Image oit.Set( odf ); ++oit; // set b0(average) to b0-Image oit2.Set( b0 ); ++oit2; ++git; } MITK_INFO << "One Thread finished reconstruction"; } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::AnalyticalThreeShellReconstruction(const OutputImageRegionType& outputRegionForThread) { int wrongODF = 0; typename OutputImageType::Pointer outputImage = static_cast< OutputImageType * >(this->ProcessObject::GetOutput(0)); ImageRegionIterator< OutputImageType > oit(outputImage, outputRegionForThread); oit.GoToBegin(); ImageRegionIterator< BZeroImageType > oit2(m_BZeroImage, outputRegionForThread); oit2.GoToBegin(); IndiciesVector BZeroIndicies = m_GradientIndexMap[0]; GradientIndexMapIteraotr it = m_GradientIndexMap.begin(); it++; IndiciesVector Shell1Indiecies = (*it).second; it++; IndiciesVector Shell2Indiecies = (*it).second; it++; IndiciesVector Shell3Indiecies = (*it).second; //assert(Shell1Indiecies.size() == Shell2Indiecies.size() && Shell1Indiecies.size() == Shell3Indiecies.size()); if(m_IsHemisphericalArrangementOfGradientDirections){ int NumbersOfGradientIndicies = Shell1Indiecies.size(); for (int i = 0 ; i < NumbersOfGradientIndicies; i++){ Shell1Indiecies.push_back(Shell1Indiecies[i]); Shell2Indiecies.push_back(Shell2Indiecies[i]); Shell3Indiecies.push_back(Shell3Indiecies[i]); } } // Get input gradient image pointer typename GradientImagesType::Pointer gradientImagePointer = static_cast< GradientImagesType * >( this->ProcessObject::GetInput(0) ); // Const ImageRegionIterator for input gradient image typedef ImageRegionConstIterator< GradientImagesType > GradientIteratorType; GradientIteratorType git(gradientImagePointer, outputRegionForThread ); git.GoToBegin(); typedef typename GradientImagesType::PixelType GradientVectorType; //------------------------- Preperations Zone ------------------------------------ vnl_matrix SHBasis(m_SHBasisMatrix->rows(),m_SHBasisMatrix->cols()); SHBasis.fill(0.0); for(int i=0; i ReconstructionMatrix(m_SignalReonstructionMatrix->rows(),m_SignalReonstructionMatrix->cols()); ReconstructionMatrix.fill(0.0); for(int i=0; i < ReconstructionMatrix.rows(); i++) for(unsigned int j=0; j < ReconstructionMatrix.cols(); j++) ReconstructionMatrix(i,j) = (TO)(*m_SignalReonstructionMatrix)(i,j); // N x 3 // x E1 , E2 , E3 // // N : : : // : : : // vnl_matrix< TO > E(Shell1Indiecies.size(), 3); vnl_vector< TO > Shell1OriginalSignal(Shell1Indiecies.size()); //E1 vnl_vector< TO > Shell2OriginalSignal(Shell1Indiecies.size()); //E2 vnl_vector< TO > Shell3OriginalSignal(Shell1Indiecies.size()); //E3 vnl_vector< TO > Shell2Coefficients(Shell1Indiecies.size()); vnl_vector< TO > Shell3Coefficients(Shell1Indiecies.size()); vnl_vector< TO > SHApproximatedSignal2(Shell1Indiecies.size()); vnl_vector< TO > SHApproximatedSignal3(Shell1Indiecies.size()); //------------------------- Preperations Zone END --------------------------------- // iterate overall voxels of the gradient image region while( ! git.IsAtEnd() ) { Shell1OriginalSignal.fill(0.0); Shell2OriginalSignal.fill(0.0); Shell3OriginalSignal.fill(0.0); SHApproximatedSignal3.fill(0.0); SHApproximatedSignal2.fill(0.0); Shell2Coefficients.fill(0.0); Shell3Coefficients.fill(0.0); GradientVectorType b = git.Get(); // compute the average bzero signal typename NumericTraits::AccumulateType b0 = NumericTraits::Zero; for(unsigned int i = 0; i < BZeroIndicies.size(); ++i) { b0 += b[BZeroIndicies[i]]; } b0 /= this->m_NumberOfBaselineImages; // ODF Vector OdfPixelType odf(0.0); // Create the Signal Vector //vnl_vector SignalVector(m_NumberOfGradientDirections); if( (b0 != 0) && (b0 >= m_Threshold) ) { for(int i = 0 ; i < Shell2Indiecies.size(); i++) { Shell1OriginalSignal[i] = static_cast(b[Shell1Indiecies[i]]); Shell2OriginalSignal[i] = static_cast(b[Shell2Indiecies[i]]); Shell3OriginalSignal[i] = static_cast(b[Shell3Indiecies[i]]); } Shell2Coefficients = ReconstructionMatrix * Shell2OriginalSignal; Shell3Coefficients = ReconstructionMatrix * Shell3OriginalSignal; SHApproximatedSignal2 = SHBasis * Shell2Coefficients; SHApproximatedSignal3 = SHBasis * Shell3Coefficients; E.set_column(0,Shell1OriginalSignal); E.set_column(1,SHApproximatedSignal2); E.set_column(2,SHApproximatedSignal3); // Si/S0 S_S0Normalization(E,b0); //MITK_INFO << E; //exit(0); //Implements Eq. [19] and Fig. 4. Threshold(E, m_Lambda); //inqualities [31]. Taking the lograithm of th first tree inqualities //convert the quadratic inqualities to linear ones. Projection1(E, m_Lambda); vnl_vector AlphaValues(Shell1Indiecies.size()); vnl_vector BetaValues(Shell1Indiecies.size()); vnl_vector LAValues(Shell1Indiecies.size()); vnl_vector PValues(Shell1Indiecies.size()); - bool notCompliedWithConditions = false; + + for( unsigned int i = 0; i< Shell1Indiecies.size(); i++ ) { - float E1 = E(i,0); - float E2 = E(i,1); - float E3 = E(i,2); + TO E1 = E(i,0); + TO E2 = E(i,1); + TO E3 = E(i,2); - float P2 = E2-E1*E1; - float A = (E3 -E1*E2) / ( 2* P2); - float B2 = A * A -(E1 * E3 - E2 * E2) /P2; - float B = 0; - if(B2 > 0) B = sqrt(B2); + /* if(!(0 < E3) || (!(E3 < E2)) || (!(E2 < E1)) || (!(E1 < 1)) || (!(E1 * E1 < E2)) || (!(E2 * E2 < E1 * E3)) || (!(E3-E1*E2 < E2 - E1*E1 + E1*E3 -E2*E2))) + { + MITK_INFO << "0 < " << E3 << " < " << E2 << " < " << E1 << " < 1 " ; + }*/ + TO P2 = E2-E1*E1; + TO A = (E3 -E1*E2) / ( 2* P2); + TO B2 = A * A -(E1 * E3 - E2 * E2) /P2; + TO B = 0; + if(B2 > 0) B = sqrt(B2); - AlphaValues[i] = A + B; - BetaValues[i] = A - B; - LAValues[i] = 0.5 + ((E1 - A)/(2*B)); - // Needed for Projection 2 - { - float P = 0; + TO P = 0; if(P2 > 0) P = sqrt(P2); PValues[i] = P; - } - } + TO alpha = A + B; + TO beta = A - B; + AlphaValues[i] = alpha; + BetaValues[i] = beta; - Projection2(PValues, AlphaValues, BetaValues, m_Lambda); + TO lambda = 0.5 + 0.5 * sqrt(1-(((2*P)/(alpha - beta)) * ((2*P)/(alpha - beta))) ); + TO ER1 = std::fabs(lambda * (alpha - beta) + beta - E1) + std::fabs(lambda * (alpha * alpha - beta * beta) + beta * beta - E2) + std::fabs(lambda * (alpha * alpha * alpha - beta * beta * beta) + beta* beta *beta - E3 ); + TO ER2 = std::fabs((1-lambda) * (alpha - beta) + beta - E1) + std::fabs((1-lambda) * (alpha * alpha - beta * beta) + beta * beta - E2) + std::fabs((1-lambda) * (alpha * alpha * alpha - beta * beta * beta) + beta* beta *beta - E3 ); + // Needed for Projection 2 - if(!notCompliedWithConditions){ + if(ER1 < ER2) LAValues[i] = lambda; + if(ER1 >= ER2) LAValues[i] = 1 - lambda; + } - Threshold(AlphaValues); - Threshold(BetaValues); + Projection2(PValues, AlphaValues, BetaValues, m_Lambda); - DoubleLogarithm(AlphaValues); - DoubleLogarithm(BetaValues); + Threshold(AlphaValues); + Threshold(BetaValues); - vnl_vector SignalVector(Shell1Indiecies.size()); - for( unsigned int i = 0; i< AlphaValues.size(); i++ ) - { - SignalVector = LAValues[i] * AlphaValues + LAValues[i] * BetaValues; - } + DoubleLogarithm(AlphaValues); + DoubleLogarithm(BetaValues); - vnl_vector coeffs(m_NumberCoefficients); + vnl_vector SignalVector(Shell1Indiecies.size()); + for( unsigned int i = 0; i< AlphaValues.size(); i++ ) + { + SignalVector = LAValues[i] * AlphaValues + LAValues[i] * BetaValues; + } - coeffs = ( (*m_CoeffReconstructionMatrix) * SignalVector ); - coeffs[0] += 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); + vnl_vector coeffs(m_NumberCoefficients); - odf = ( (*m_ODFSphericalHarmonicBasisMatrix) * coeffs ).data_block(); - }else{ - odf.Fill(1/252); - wrongODF ++; - } + coeffs = ( (*m_CoeffReconstructionMatrix) * SignalVector ); + coeffs[0] += 1.0/(2.0*sqrt(QBALL_ANAL_RECON_PI)); + odf = ( (*m_ODFSphericalHarmonicBasisMatrix) * coeffs ).data_block(); } // set ODF to ODF-Image oit.Set( odf ); ++oit; // MITK_INFO << odf; // set b0(average) to b0-Image oit2.Set( b0 ); ++oit2; ++git; } MITK_INFO << "THREAD FINISHED with " << wrongODF << " WrongODFs"; } template< class T, class TG, class TO, int L, int NODF> vnl_vector DiffusionMultiShellQballReconstructionImageFilter ::AnalyticalThreeShellParameterEstimation(const IndiciesVector * shell1Indicies,const IndiciesVector * shell2Indicies ,const IndiciesVector * shell3Indicies, vnl_vector) { } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, int NumberOfThreads) { switch(m_ReconstructionType) { case Standard1Shell: StandardOneShellReconstruction(outputRegionForThread); break; case Analytical3Shells: AnalyticalThreeShellReconstruction(outputRegionForThread); break; case NumericalNShells: break; } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter:: ComputeSphericalHarmonicsBasis(vnl_matrix * QBallReference, vnl_matrix *SHBasisOutput, vnl_matrix* LaplaciaBaltramiOutput, vnl_vector* SHOrderAssociation, vnl_matrix* SHEigenvalues ) { for(unsigned int i=0; i< (*SHBasisOutput).rows(); i++) { for(int k = 0; k <= L; k += 2) { for(int m =- k; m <= k; m++) { int j = ( k * k + k + 2 ) / 2 + m - 1; // Compute SHBasisFunctions double phi = (*QBallReference)(0,i); double th = (*QBallReference)(1,i); (*SHBasisOutput)(i,j) = mitk::ShericalHarmonicsFunctions::Yj(m,k,th,phi); // Laplacian Baltrami Order Association if(LaplaciaBaltramiOutput) (*LaplaciaBaltramiOutput)(j,j) = k*k*(k + 1)*(k+1); // SHEigenvalues with order Accosiation kj if(SHEigenvalues) (*SHEigenvalues)(j,j) = -k* (k+1); // Order Association if(SHOrderAssociation) (*SHOrderAssociation)[j] = k; } } } } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::ComputeFunkRadonTransformationMatrix(vnl_vector* SHOrderAssociationReference, vnl_matrix* FRTMatrixOutput ) { for(int i=0; i bool DiffusionMultiShellQballReconstructionImageFilter ::CheckHemisphericalArrangementOfGradientDirections() { // handle acquisition schemes where only half of the spherical // shell is sampled by the gradient directions. In this case, // each gradient direction is duplicated in negative direction. vnl_vector centerMass(3); centerMass.fill(0.0); int count = 0; GradientDirectionContainerType::ConstIterator gdcit1; for( gdcit1 = this->m_GradientDirectionContainer->Begin(); gdcit1 != this->m_GradientDirectionContainer->End(); ++gdcit1) { if(gdcit1.Value().one_norm() > 0.0) { centerMass += gdcit1.Value(); count ++; } } centerMass /= count; if(centerMass.two_norm() > 0.1) { return false; } return true; } template< class T, class TG, class TO, int L, int NOdfDirections> void DiffusionMultiShellQballReconstructionImageFilter ::ComputeReconstructionMatrix(std::vector< unsigned int > gradientIndiciesVector) { typedef std::auto_ptr< vnl_matrix< double> > MatrixDoublePtr; typedef std::auto_ptr< vnl_vector< int > > VectorIntPtr; typedef std::auto_ptr< vnl_matrix_inverse< double > > InverseMatrixDoublePtr; int numberOfGradientDirections = gradientIndiciesVector.size(); if( numberOfGradientDirections < (((L+1)*(L+2))/2) || numberOfGradientDirections < 6 ) { itkExceptionMacro( << "At least (L+1)(L+2)/2 gradient directions are required" ); } CheckDuplicateDiffusionGradients(); // check if gradient directions are arrangement as a hemisphere(true) or sphere(false) m_IsHemisphericalArrangementOfGradientDirections = CheckHemisphericalArrangementOfGradientDirections(); if(m_IsHemisphericalArrangementOfGradientDirections) numberOfGradientDirections *= 2; MatrixDoublePtr Q(new vnl_matrix(3, numberOfGradientDirections)); Q->fill(0.0); // Cartesian to spherical coordinates { int j = 0; for(int i = 0; i < gradientIndiciesVector.size(); i++) { double x = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(0); double y = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(1); double z = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(2); double cart[3]; mitk::ShericalHarmonicsFunctions::Cart2Sph(x,y,z,cart); (*Q)(0,j) = cart[0]; (*Q)(1,j) = cart[1]; (*Q)(2,j++) = cart[2]; } if(m_IsHemisphericalArrangementOfGradientDirections) { for(int i = 0; i < gradientIndiciesVector.size(); i++) { double x = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(0); double y = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(1); double z = this->m_GradientDirectionContainer->ElementAt(gradientIndiciesVector[i]).get(2); double cart[3]; mitk::ShericalHarmonicsFunctions::Cart2Sph(x,y,z,cart); (*Q)(0,j) = cart[0]; (*Q)(1,j) = cart[1]; (*Q)(2,j++) = cart[2]; } } } int LOrder = L; m_NumberCoefficients = (int)(LOrder*LOrder + LOrder + 2.0)/2.0 + LOrder; m_SHBasisMatrix = new vnl_matrix(numberOfGradientDirections,m_NumberCoefficients); m_SHBasisMatrix->fill(0.0); VectorIntPtr SHOrderAssociation(new vnl_vector(m_NumberCoefficients)); SHOrderAssociation->fill(0.0); MatrixDoublePtr LaplacianBaltrami(new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients)); LaplacianBaltrami->fill(0.0); MatrixDoublePtr FRTMatrix(new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients)); FRTMatrix->fill(0.0); MatrixDoublePtr SHEigenvalues(new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients)); SHEigenvalues->fill(0.0); // SHBasis-Matrix + LaplacianBaltrami-Matrix + SHOrderAssociationVector ComputeSphericalHarmonicsBasis(Q.get() ,m_SHBasisMatrix, LaplacianBaltrami.get(), SHOrderAssociation.get(), SHEigenvalues.get()); // Compute FunkRadon Transformation Matrix Associated to SHBasis Order lj ComputeFunkRadonTransformationMatrix(SHOrderAssociation.get() ,FRTMatrix.get()); MatrixDoublePtr temp(new vnl_matrix(((m_SHBasisMatrix->transpose()) * (*m_SHBasisMatrix)) + (m_Lambda * (*LaplacianBaltrami)))); InverseMatrixDoublePtr pseudo_inv(new vnl_matrix_inverse((*temp))); MatrixDoublePtr inverse(new vnl_matrix(m_NumberCoefficients,m_NumberCoefficients)); inverse->fill(0.0); (*inverse) = pseudo_inv->inverse(); // ODF Factor ( missing 1/4PI ?? ) double factor = (1.0/(16.0*QBALL_ANAL_RECON_PI*QBALL_ANAL_RECON_PI)); m_SignalReonstructionMatrix = new vnl_matrix(); m_SignalReonstructionMatrix->fill(0.0); (*m_SignalReonstructionMatrix) = (*inverse) * (m_SHBasisMatrix->transpose()); MatrixDoublePtr TransformationMatrix(new vnl_matrix( factor * ((*FRTMatrix) * ((*SHEigenvalues) * (*m_SignalReonstructionMatrix))) ) ); m_CoeffReconstructionMatrix = new vnl_matrix(m_NumberCoefficients,numberOfGradientDirections); // Cast double to float for(int i=0; iodfs later vnl_matrix_fixed* U = itk::PointShell >::DistributePointShell(); m_ODFSphericalHarmonicBasisMatrix = new vnl_matrix(NOdfDirections,m_NumberCoefficients); for(int i=0; i((*m_ODFSphericalHarmonicBasisMatrix) * (*m_CoeffReconstructionMatrix)); } template< class T, class TG, class TO, int L, int NODF> template< class VNLType > void DiffusionMultiShellQballReconstructionImageFilter ::printMatrix( VNLType * mat ) { std::stringstream stream; for(int i = 0 ; i < mat->rows(); i++) { stream.str(""); for(int j = 0; j < mat->cols(); j++) { stream << (*mat)(i,j) << " "; } } MITK_INFO << stream.str(); } template< class T, class TG, class TO, int L, int NODF> bool DiffusionMultiShellQballReconstructionImageFilter ::CheckDuplicateDiffusionGradients() { GradientDirectionContainerType::ConstIterator gdcit1; GradientDirectionContainerType::ConstIterator gdcit2; for(gdcit1 = this->m_GradientDirectionContainer->Begin(); gdcit1 != this->m_GradientDirectionContainer->End(); ++gdcit1) { for(gdcit2 = this->m_GradientDirectionContainer->Begin(); gdcit2 != this->m_GradientDirectionContainer->End(); ++gdcit2) { if(gdcit1.Value() == gdcit2.Value() && gdcit1.Index() != gdcit2.Index()) { itkWarningMacro( << "Some of the Diffusion Gradients equal each other. Corresponding image data should be averaged before calling this filter." ); return true; } } } return false; } template< class T, class TG, class TO, int L, int NODF> void DiffusionMultiShellQballReconstructionImageFilter ::PrintSelf(std::ostream& os, Indent indent) const { std::locale C("C"); std::locale originalLocale = os.getloc(); os.imbue(C); Superclass::PrintSelf(os,indent); os << indent << "OdfReconstructionMatrix: " << m_ReconstructionMatrix << std::endl; if ( m_GradientDirectionContainer ) { os << indent << "GradientDirectionContainer: " << m_GradientDirectionContainer << std::endl; } else { os << indent << "GradientDirectionContainer: (Gradient directions not set)" << std::endl; } os << indent << "NumberOfGradientDirections: " << m_NumberOfGradientDirections << std::endl; os << indent << "NumberOfBaselineImages: " << m_NumberOfBaselineImages << std::endl; os << indent << "Threshold for reference B0 image: " << m_Threshold << std::endl; os << indent << "BValue: " << m_BValue << std::endl; os.imbue( originalLocale ); } } #endif // __itkDiffusionMultiShellQballReconstructionImageFilter_cpp