diff --git a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Reconstruction/itkOrientationDistributionFunction.txx b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Reconstruction/itkOrientationDistributionFunction.txx index 0fc67392e9..b7c851a456 100644 --- a/Modules/DiffusionImaging/DiffusionCore/Algorithms/Reconstruction/itkOrientationDistributionFunction.txx +++ b/Modules/DiffusionImaging/DiffusionCore/Algorithms/Reconstruction/itkOrientationDistributionFunction.txx @@ -1,1220 +1,1220 @@ /*=================================================================== The Medical Imaging Interaction Toolkit (MITK) Copyright (c) German Cancer Research Center, Division of Medical and Biological Informatics. All rights reserved. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See LICENSE.txt or http://www.mitk.org for details. ===================================================================*/ #ifndef _itkOrientationDistributionFunction_txx #define _itkOrientationDistributionFunction_txx #include #include #include #include #include #include #include "itkPointShell.h" #define _USE_MATH_DEFINES #include namespace itk { template vtkPolyData* itk::OrientationDistributionFunction::m_BaseMesh = NULL; template double itk::OrientationDistributionFunction::m_MaxChordLength = -1.0; template vnl_matrix_fixed* itk::OrientationDistributionFunction::m_Directions = itk::PointShell >::DistributePointShell(); template std::vector< std::vector* >* itk::OrientationDistributionFunction::m_NeighborIdxs = NULL; template std::vector< std::vector* >* itk::OrientationDistributionFunction::m_AngularRangeIdxs = NULL; template std::vector* itk::OrientationDistributionFunction::m_HalfSphereIdxs = NULL; template itk::SimpleFastMutexLock itk::OrientationDistributionFunction::m_MutexBaseMesh; template itk::SimpleFastMutexLock itk::OrientationDistributionFunction::m_MutexHalfSphereIdxs; template itk::SimpleFastMutexLock itk::OrientationDistributionFunction::m_MutexNeighbors; template itk::SimpleFastMutexLock itk::OrientationDistributionFunction::m_MutexAngularRange; #define ODF_PI M_PI /** * Assignment Operator */ template OrientationDistributionFunction& OrientationDistributionFunction ::operator= (const Self& r) { BaseArray::operator=(r); return *this; } /** * Assignment Operator from a scalar constant */ template OrientationDistributionFunction& OrientationDistributionFunction ::operator= (const ComponentType & r) { BaseArray::operator=(&r); return *this; } /** * Assigment from a plain array */ template OrientationDistributionFunction& OrientationDistributionFunction ::operator= (const ComponentArrayType r ) { BaseArray::operator=(r); return *this; } /** * Returns a temporary copy of a vector */ template OrientationDistributionFunction OrientationDistributionFunction ::operator+(const Self & r) const { Self result; for( unsigned int i=0; i OrientationDistributionFunction OrientationDistributionFunction ::operator-(const Self & r) const { Self result; for( unsigned int i=0; i const OrientationDistributionFunction & OrientationDistributionFunction ::operator+=(const Self & r) { for( unsigned int i=0; i const OrientationDistributionFunction & OrientationDistributionFunction ::operator-=(const Self & r) { for( unsigned int i=0; i const OrientationDistributionFunction & OrientationDistributionFunction ::operator*=(const RealValueType & r) { for( unsigned int i=0; i const OrientationDistributionFunction & OrientationDistributionFunction ::operator/=(const RealValueType & r) { for( unsigned int i=0; i OrientationDistributionFunction OrientationDistributionFunction ::operator*(const RealValueType & r) const { Self result; for( unsigned int i=0; i OrientationDistributionFunction OrientationDistributionFunction ::operator/(const RealValueType & r) const { Self result; for( unsigned int i=0; i const typename OrientationDistributionFunction::ValueType & OrientationDistributionFunction ::operator()(unsigned int row, unsigned int col) const { unsigned int k; if( row < col ) { k = row * InternalDimension + col - row * ( row + 1 ) / 2; } else { k = col * InternalDimension + row - col * ( col + 1 ) / 2; } if( k >= InternalDimension ) { k = 0; } return (*this)[k]; } /** * Matrix notation access to elements */ template typename OrientationDistributionFunction::ValueType & OrientationDistributionFunction ::operator()(unsigned int row, unsigned int col) { unsigned int k; if( row < col ) { k = row * InternalDimension + col - row * ( row + 1 ) / 2; } else { k = col * InternalDimension + row - col * ( col + 1 ) / 2; } if( k >= InternalDimension ) { k = 0; } return (*this)[k]; } /** * Set the Tensor to an Identity. * Set ones in the diagonal and zeroes every where else. */ template void OrientationDistributionFunction ::SetIsotropic() { this->Fill(NumericTraits< T >::One / NOdfDirections); } /** * Set the Tensor to an Identity. * Set ones in the diagonal and zeroes every where else. */ template void OrientationDistributionFunction ::InitFromTensor(itk::DiffusionTensor3D tensor) { for(unsigned int i=0; i void OrientationDistributionFunction ::L2Normalize() { T sum = 0; for( unsigned int i=0; i void OrientationDistributionFunction ::Normalize() { T sum = 0; for( unsigned int i=0; i0) { for( unsigned int i=0; i OrientationDistributionFunction OrientationDistributionFunction ::MinMaxNormalize() const { T max = NumericTraits::NonpositiveMin(); T min = NumericTraits::max(); for( unsigned int i=0; i max ? (*this)[i] : max; min = (*this)[i] < min ? (*this)[i] : min; } Self retval; for( unsigned int i=0; i OrientationDistributionFunction OrientationDistributionFunction ::MaxNormalize() const { T max = NumericTraits::NonpositiveMin(); for( unsigned int i=0; i max ? (*this)[i] : max; } Self retval; for( unsigned int i=0; i T OrientationDistributionFunction ::GetMaxValue() const { T max = NumericTraits::NonpositiveMin(); for( unsigned int i=0; i= max ) { max = (*this)[i]; } } return max; } template T OrientationDistributionFunction ::GetMinValue() const { T min = NumericTraits::max(); for( unsigned int i=0; i= min ) { min = (*this)[i]; } } return min; } template T OrientationDistributionFunction ::GetMeanValue() const { T sum = 0; for( unsigned int i=0; i double OrientationDistributionFunction ::GetMaxChordLength() { if(m_MaxChordLength<0.0) { ComputeBaseMesh(); double max_dist = -1; vtkPoints* points = m_BaseMesh->GetPoints(); for(int i=0; iGetPoint(i,p); std::vector neighbors = GetNeighbors(i); for(std::size_t j=0; jGetPoint(neighbors[j],n); double d = sqrt( (p[0]-n[0])*(p[0]-n[0]) + (p[1]-n[1])*(p[1]-n[1]) + (p[2]-n[2])*(p[2]-n[2])); max_dist = d>max_dist ? d : max_dist; } } m_MaxChordLength = max_dist; } return m_MaxChordLength; } template void OrientationDistributionFunction ::ComputeBaseMesh() { m_MutexBaseMesh.Lock(); if(m_BaseMesh == NULL) { vtkPoints* points = vtkPoints::New(); for(unsigned int j=0; jInsertNextPoint(az,elev,r); } vtkPolyData* polydata = vtkPolyData::New(); polydata->SetPoints( points ); vtkDelaunay2D *delaunay = vtkDelaunay2D::New(); delaunay->SetInputData( polydata ); delaunay->Update(); vtkCellArray* vtkpolys = delaunay->GetOutput()->GetPolys(); vtkCellArray* vtknewpolys = vtkCellArray::New(); vtkIdType npts; vtkIdType *pts; while(vtkpolys->GetNextCell(npts,pts)) { bool insert = true; for(int i=0; iGetPoint(pts[i]); double az = tmpPoint[0]; double elev = tmpPoint[1]; - if((abs(az)>ODF_PI-0.5) || (abs(elev)>ODF_PI/2-0.5)) + if((std::abs(az)>ODF_PI-0.5) || (std::abs(elev)>ODF_PI/2-0.5)) insert = false; } if(insert) vtknewpolys->InsertNextCell(npts, pts); } vtkPoints* points2 = vtkPoints::New(); for(unsigned int j=0; jInsertNextPoint(az,elev,r); } vtkPolyData* polydata2 = vtkPolyData::New(); polydata2->SetPoints( points2 ); vtkDelaunay2D *delaunay2 = vtkDelaunay2D::New(); delaunay2->SetInputData( polydata2 ); delaunay2->Update(); vtkpolys = delaunay2->GetOutput()->GetPolys(); while(vtkpolys->GetNextCell(npts,pts)) { bool insert = true; for(int i=0; iGetPoint(pts[i]); double az = tmpPoint[0]; double elev = tmpPoint[1]; - if((abs(az)>ODF_PI-0.5) || (abs(elev)>ODF_PI/2-0.5)) + if((std::abs(az)>ODF_PI-0.5) || (std::abs(elev)>ODF_PI/2-0.5)) insert = false; } if(insert) vtknewpolys->InsertNextCell(npts, pts); } polydata->SetPolys(vtknewpolys); for (unsigned int p = 0; p < NOdfDirections; p++) { points->SetPoint(p,m_Directions->get_column(p).data_block()); } polydata->SetPoints( points ); m_BaseMesh = polydata; } m_MutexBaseMesh.Unlock(); } /** * Extract the principle diffusion direction */ template int OrientationDistributionFunction ::GetPrincipleDiffusionDirection() const { T max = NumericTraits::NonpositiveMin(); int maxidx = -1; for( unsigned int i=0; i= max ) { max = (*this)[i]; maxidx = i; } } return maxidx; } template std::vector OrientationDistributionFunction ::GetNeighbors(int idx) { ComputeBaseMesh(); m_MutexNeighbors.Lock(); if(m_NeighborIdxs == NULL) { m_NeighborIdxs = new std::vector< std::vector* >(); vtkCellArray* polys = m_BaseMesh->GetPolys(); for(unsigned int i=0; i *idxs = new std::vector(); polys->InitTraversal(); vtkIdType npts; vtkIdType *pts; while(polys->GetNextCell(npts,pts)) { if( pts[0] == i ) { idxs->push_back(pts[1]); idxs->push_back(pts[2]); } else if( pts[1] == i ) { idxs->push_back(pts[0]); idxs->push_back(pts[2]); } else if( pts[2] == i ) { idxs->push_back(pts[0]); idxs->push_back(pts[1]); } } std::sort(idxs->begin(), idxs->end()); std::vector< int >::iterator endLocation; endLocation = std::unique( idxs->begin(), idxs->end() ); idxs->erase(endLocation, idxs->end()); m_NeighborIdxs->push_back(idxs); } } m_MutexNeighbors.Unlock(); return *m_NeighborIdxs->at(idx); } /** * Extract the n-th diffusion direction */ template int OrientationDistributionFunction ::GetNthDiffusionDirection(int n, vnl_vector_fixed rndVec) const { if( n == 0 ) return GetPrincipleDiffusionDirection(); m_MutexHalfSphereIdxs.Lock(); if( !m_HalfSphereIdxs ) { m_HalfSphereIdxs = new std::vector(); for( unsigned int i=0; iget_column(i),rndVec) > 0.0) { m_HalfSphereIdxs->push_back(i); } } } m_MutexHalfSphereIdxs.Unlock(); // collect indices of directions // that are local maxima std::vector localMaxima; std::vector::iterator it; for( it=m_HalfSphereIdxs->begin(); it!=m_HalfSphereIdxs->end(); it++) { std::vector nbs = GetNeighbors(*it); std::vector::iterator it2; bool max = true; for(it2 = nbs.begin(); it2 != nbs.end(); it2++) { if((*this)[*it2] > (*this)[*it]) { max = false; break; } } if(max) localMaxima.push_back(*it); } // delete n highest local maxima from list // and return remaining highest int maxidx = -1; std::vector::iterator itMax; for( int i=0; i<=n; i++ ) { maxidx = -1; T max = NumericTraits::NonpositiveMin(); for(it = localMaxima.begin(); it != localMaxima.end(); it++) { if((*this)[*it]>max) { max = (*this)[*it]; maxidx = *it; } } it = find(localMaxima.begin(), localMaxima.end(), maxidx); if(it!=localMaxima.end()) localMaxima.erase(it); } return maxidx; } template < typename TComponent, unsigned int NOdfDirections > vnl_vector_fixed itk::OrientationDistributionFunction ::GetDirection( int i ) { return m_Directions->get_column(i); } /** * Interpolate a position between sampled directions */ template T OrientationDistributionFunction ::GetInterpolatedComponent(vnl_vector_fixed dir, InterpolationMethods method) const { ComputeBaseMesh(); double retval = -1.0; switch(method) { case ODF_NEAREST_NEIGHBOR_INTERP: { vtkPoints* points = m_BaseMesh->GetPoints(); double current_min = NumericTraits::max(); int current_min_idx = -1; for(int i=0; i P(points->GetPoint(i)); double dist = (dir-P).two_norm(); current_min_idx = distGetNthComponent(current_min_idx); break; } case ODF_TRILINEAR_BARYCENTRIC_INTERP: { double maxChordLength = GetMaxChordLength(); vtkCellArray* polys = m_BaseMesh->GetPolys(); vtkPoints* points = m_BaseMesh->GetPoints(); vtkIdType npts; vtkIdType *pts; double current_min = NumericTraits::max(); polys->InitTraversal(); while(polys->GetNextCell(npts,pts)) { vnl_vector_fixed A(points->GetPoint(pts[0])); vnl_vector_fixed B(points->GetPoint(pts[1])); vnl_vector_fixed C(points->GetPoint(pts[2])); vnl_vector_fixed d1; d1.put(0,(dir-A).two_norm()); d1.put(1,(dir-B).two_norm()); d1.put(2,(dir-C).two_norm()); double maxval = d1.max_value(); if(maxval>maxChordLength) { continue; } // Compute vectors vnl_vector_fixed v0 = C - A; vnl_vector_fixed v1 = B - A; // Project direction to plane ABC vnl_vector_fixed v6 = dir; vnl_vector_fixed cross = vnl_cross_3d(v0, v1); cross = cross.normalize(); vtkPlane::ProjectPoint(v6.data_block(),A.data_block(),cross.data_block(),v6.data_block()); v6 = v6-A; // Calculate barycentric coords vnl_matrix_fixed mat; mat.set_column(0, v0); mat.set_column(1, v1); vnl_matrix_inverse inv(mat); vnl_matrix_fixed inver = inv.pinverse(); vnl_vector uv = inv.pinverse()*v6; // Check if point is in triangle double eps = 0.01; if( (uv(0) >= 0-eps) && (uv(1) >= 0-eps) && (uv(0) + uv(1) <= 1+eps) ) { // check if minimum angle is the max so far if(d1.two_norm() < current_min) { current_min = d1.two_norm(); vnl_vector barycentricCoords(3); barycentricCoords[2] = uv[0]<0 ? 0 : (uv[0]>1?1:uv[0]); barycentricCoords[1] = uv[1]<0 ? 0 : (uv[1]>1?1:uv[1]); barycentricCoords[0] = 1-(barycentricCoords[1]+barycentricCoords[2]); retval = barycentricCoords[0]*this->GetNthComponent(pts[0]) + barycentricCoords[1]*this->GetNthComponent(pts[1]) + barycentricCoords[2]*this->GetNthComponent(pts[2]); } } } break; } case ODF_SPHERICAL_GAUSSIAN_BASIS_FUNCTIONS: { double maxChordLength = GetMaxChordLength(); double sigma = asin(maxChordLength/2); // this is the contribution of each kernel to each sampling point on the // equator vnl_vector contrib; contrib.set_size(NOdfDirections); vtkPoints* points = m_BaseMesh->GetPoints(); double sum = 0; for(int i=0; i P(points->GetPoint(i)); double stv = dir[0]*P[0] + dir[1]*P[1] + dir[2]*P[2]; stv = (stv<-1.0) ? -1.0 : ( (stv>1.0) ? 1.0 : stv); double x = acos(stv); contrib[i] = (1.0/(sigma*sqrt(2.0*ODF_PI))) *exp((-x*x)/(2*sigma*sigma)); sum += contrib[i]; } retval = 0; for(int i=0; iGetNthComponent(i); } break; } } if(retval==-1) { std::cout << "Interpolation failed" << std::endl; return 0; } return retval; } /** * Calculate Generalized Fractional Anisotropy */ template T OrientationDistributionFunction ::GetGeneralizedFractionalAnisotropy() const { double mean = 0; double std = 0; double rms = 0; for( unsigned int i=0; i T itk::OrientationDistributionFunction ::GetGeneralizedGFA( int k, int p ) const { double mean = 0; double std = 0; double rms = 0; double max = NumericTraits::NonpositiveMin(); for( unsigned int i=0; i max ? val : max; } max = pow(max,(double)p); mean /= N; for( unsigned int i=0; i0) { rms += pow(val,(double)(p*k)); } } std /= N - 1; std = sqrt(std); if(k>0) { rms /= N; rms = pow(rms,(double)(1.0/k)); } else if(k<0) // lim k->inf gives us the maximum { rms = max; } else // k==0 undefined, we define zeros root from 1 as 1 { rms = 1; } if(rms == 0) { return 0; } else { return (T)(std/rms); } } /** * Calculate Nematic Order Parameter */ template < typename T, unsigned int N > T itk::OrientationDistributionFunction ::GetNematicOrderParameter() const { // not yet implemented return 0; } /** * Calculate StdDev by MaxValue */ template < typename T, unsigned int N > T itk::OrientationDistributionFunction ::GetStdDevByMaxValue() const { double mean = 0; double std = 0; T max = NumericTraits::NonpositiveMin(); for( unsigned int i=0; i max ? (*this)[i] : max; } mean /= InternalDimension; for( unsigned int i=0; i T itk::OrientationDistributionFunction ::GetPrincipleCurvature(double alphaMinDegree, double alphaMaxDegree, int invert) const { // following loop only performed once // (computing indices of each angular range) m_MutexAngularRange.Lock(); if(m_AngularRangeIdxs == NULL) { m_AngularRangeIdxs = new std::vector< std::vector* >(); for(unsigned int i=0; i pDir = GetDirection(i); std::vector *idxs = new std::vector(); for(unsigned int j=0; j cDir = GetDirection(j); double angle = ( 180 / ODF_PI ) * acos( dot_product(pDir, cDir) ); if( (angle < alphaMaxDegree) && (angle > alphaMinDegree) ) { idxs->push_back(j); } } m_AngularRangeIdxs->push_back(idxs); } } m_MutexAngularRange.Unlock(); // find the maximum (or minimum) direction (remember index and value) T mode; int pIdx = -1; if(invert == 0) { pIdx = GetPrincipleDiffusionDirection(); mode = (*this)[pIdx]; } else { mode = NumericTraits::max(); for( unsigned int i=0; i nbs = GetNeighbors(pIdx); //////std::vector modeAndNeighborVals; //////modeAndNeighborVals.push_back(mode); //////int numNeighbors = nbs.size(); //////for(int i=0; i odfValuesInAngularRange; int numInRange = m_AngularRangeIdxs->at(pIdx)->size(); for(int i=0; iat(pIdx))[i] ]); } // sort them by value std::sort( odfValuesInAngularRange.begin(), odfValuesInAngularRange.end() ); // median of angular range T median = odfValuesInAngularRange[floor(quantile*(double)numInRange+0.5)]; // compute and return final value if(mode > median) { return mode/median - 1.0; } else { return median/mode - 1.0; } } /** * Calculate Normalized Entropy */ template < typename T, unsigned int N > T itk::OrientationDistributionFunction ::GetNormalizedEntropy() const { double mean = 0; for( unsigned int i=0; i OrientationDistributionFunction OrientationDistributionFunction ::PreMultiply( const MatrixType & m ) const { Self result; typedef typename NumericTraits::AccumulateType AccumulateType; for(unsigned int r=0; r::ZeroValue(); for(unsigned int t=0; t( sum ); } } return result; } /** * Post-multiply the Tensor by a Matrix */ template OrientationDistributionFunction OrientationDistributionFunction ::PostMultiply( const MatrixType & m ) const { Self result; typedef typename NumericTraits::AccumulateType AccumulateType; for(unsigned int r=0; r::ZeroValue(); for(unsigned int t=0; t( sum ); } } return result; } /** * Print content to an ostream */ template std::ostream & operator<<(std::ostream& os,const OrientationDistributionFunction & c ) { for(unsigned int i=0; i::PrintType>(c[i]) << " "; } return os; } /** * Read content from an istream */ template std::istream & operator>>(std::istream& is, OrientationDistributionFunction & dt ) { for(unsigned int i=0; i < dt.GetNumberOfComponents(); i++) { is >> dt[i]; } return is; } } // end namespace itk #endif diff --git a/Modules/DiffusionImaging/DiffusionCore/Rendering/vtkThickPlane.cxx b/Modules/DiffusionImaging/DiffusionCore/Rendering/vtkThickPlane.cxx index 1f4f54499d..8ee87c7f96 100644 --- a/Modules/DiffusionImaging/DiffusionCore/Rendering/vtkThickPlane.cxx +++ b/Modules/DiffusionImaging/DiffusionCore/Rendering/vtkThickPlane.cxx @@ -1,139 +1,139 @@ /*========================================================================= Program: Visualization Toolkit Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkThickPlane.h" #include "vtkMath.h" #include "vtkObjectFactory.h" vtkStandardNewMacro(vtkThickPlane); // Construct plane passing through origin and normal to z-axis. vtkThickPlane::vtkThickPlane() { this->Normal[0] = 0.0; this->Normal[1] = 0.0; this->Normal[2] = 1.0; this->Origin[0] = 0.0; this->Origin[1] = 0.0; this->Origin[2] = 0.0; } // Evaluate plane equation for point x[3]. double vtkThickPlane::EvaluateFunction(double x[3]) { return this->EvaluateFunction(x[0],x[1],x[2]); } // Evaluate plane equation for point x,y,z. double vtkThickPlane::EvaluateFunction(double x,double y,double z) { // PointPlaneDistance = Distance - Normal*Point double ppd = Distance - ( this->Normal[0]*x + this->Normal[1]*y + this->Normal[2]*z ); - if( abs(ppd) <= Thickness ) + if( std::abs(ppd) <= Thickness ) { count++; return 0; } if( ppd >= 0 ) return ppd - Thickness; - return abs(ppd + Thickness); + return std::abs(ppd + Thickness); } // Evaluate function gradient at point x[3]. void vtkThickPlane::EvaluateGradient(double vtkNotUsed(x)[3], double n[3]) { for (int i=0; i<3; i++) { n[i] = this->Normal[i]; } } void vtkThickPlane::SetPose (double _n1, double _n2, double _n3, double _o1, double _o2, double _o3) { SetNormal(_n1,_n2,_n3); SetOrigin(_o1,_o2,_o3); Distance = Normal[0]*Origin[0]+Normal[1]*Origin[1]+Normal[2]*Origin[2]; if(Distance < 0.0) { Distance = -Distance; Normal[0] = -Normal[0]; Normal[1] = -Normal[1]; Normal[2] = -Normal[2]; } } void vtkThickPlane::SetPose (double _n[3], double _o[3]) { SetPose(_n[0],_n[1],_n[2],_o[0],_o[1],_o[2]); } void vtkThickPlane::SetNormal (double _arg1, double _arg2, double _arg3) { vtkDebugMacro(<< this->GetClassName() << " (" << this << "): setting " << Normal << " to (" << _arg1 << "," << _arg2 << "," << _arg3 << ")"); if ((this->Normal[0] != _arg1)||(this->Normal[1] != _arg2)||(this->Normal[2] != _arg3)) { double length = sqrt(_arg1*_arg1+_arg2*_arg2+_arg3*_arg3); this->Normal[0] = _arg1/length; this->Normal[1] = _arg2/length; this->Normal[2] = _arg3/length; this->Modified(); } }; void vtkThickPlane::SetNormal (double _arg[3]) { this->SetNormal (_arg[0], _arg[1], _arg[2]); } void vtkThickPlane::SetOrigin (double _arg1, double _arg2, double _arg3) { vtkDebugMacro(<< this->GetClassName() << " (" << this << "): setting " << Origin << " to (" << _arg1 << "," << _arg2 << "," << _arg3 << ")"); if ((this->Normal[0] != _arg1)||(this->Normal[1] != _arg2)||(this->Normal[2] != _arg3)) { this->Origin[0] = _arg1; this->Origin[1] = _arg2; this->Origin[2] = _arg3; this->Modified(); } }; void vtkThickPlane::SetOrigin (double _arg[3]) { this->SetOrigin (_arg[0], _arg[1], _arg[2]); } void vtkThickPlane::SetThickness (double _arg) { - Thickness = abs(_arg); + Thickness = std::abs(_arg); } #define VTK_PLANE_TOL 1.0e-06 void vtkThickPlane::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Normal: (" << this->Normal[0] << ", " << this->Normal[1] << ", " << this->Normal[2] << ")\n"; os << indent << "Origin: (" << this->Origin[0] << ", " << this->Origin[1] << ", " << this->Origin[2] << ")\n"; os << indent << "Thickness: " << this->Thickness << "\n"; }