diff --git a/examples/solver_comparison.py b/examples/solver_comparison.py index f4743b0..84d061b 100644 --- a/examples/solver_comparison.py +++ b/examples/solver_comparison.py @@ -1,364 +1,363 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import os import sys import time import pickle import numpy as np from math import pi import matplotlib.pyplot as plt from hyppopy.SolverPool import SolverPool from hyppopy.HyppopyProject import HyppopyProject from hyppopy.VirtualFunction import VirtualFunction from hyppopy.BlackboxFunction import BlackboxFunction #OUTPUTDIR = "C:\\Users\\s635r\\Desktop\\solver_comparison" OUTPUTDIR = "D:\\Projects\\Python\\hyppopy\\examples\\solver_comparison\\gfx" SOLVER = [] SOLVER.append("quasirandomsearch") SOLVER.append("randomsearch") SOLVER.append("hyperopt") SOLVER.append("optunity") SOLVER.append("optuna") ITERATIONS = [] ITERATIONS.append(15) ITERATIONS.append(50) ITERATIONS.append(300) ITERATIONS.append(1000) STATREPEATS = 50 OVERWRITE = False def compute_deviation(solver_name, vfunc_id, iterations, N, fname): project = HyppopyProject() project.add_hyperparameter(name="axis_00", domain="uniform", data=[0, 1], type=float) project.add_hyperparameter(name="axis_01", domain="uniform", data=[0, 1], type=float) project.add_hyperparameter(name="axis_02", domain="uniform", data=[0, 1], type=float) project.add_hyperparameter(name="axis_03", domain="uniform", data=[0, 1], type=float) project.add_hyperparameter(name="axis_04", domain="uniform", data=[0, 1], type=float) vfunc = VirtualFunction() vfunc.load_default(vfunc_id) minima = vfunc.minima() def my_loss_function(data, params): return vfunc(**params) blackbox = BlackboxFunction(data=[], blackbox_func=my_loss_function) results = {} results["gt"] = [] for mini in minima: results["gt"].append(np.median(mini[0])) for iter in iterations: results[iter] = {"minima": {}, "distance": {}, "duration": None, "set_difference": None, "loss": None, "loss_history": {}} for i in range(vfunc.dims()): results[iter]["minima"]["axis_0{}".format(i)] = [] results[iter]["distance"]["axis_0{}".format(i)] = [] project.add_setting("max_iterations", iter) project.add_setting("solver", solver_name) solver = SolverPool.get(project=project) solver.blackbox = blackbox axis_minima = [] best_losses = [] best_sets_diff = [] for i in range(vfunc.dims()): axis_minima.append([]) loss_history = [] durations = [] for n in range(N): print("\rSolver={} iteration={} round={}".format(solver, iter, n), end="") start = time.time() solver.run(print_stats=False) end = time.time() durations.append(end-start) df, best = solver.get_results() loss_history.append(np.flip(np.sort(df['losses'].values))) best_row = df['losses'].idxmin() best_losses.append(df['losses'][best_row]) best_sets_diff.append(abs(df['axis_00'][best_row] - best['axis_00'])+ abs(df['axis_01'][best_row] - best['axis_01'])+ abs(df['axis_02'][best_row] - best['axis_02'])+ abs(df['axis_03'][best_row] - best['axis_03'])+ abs(df['axis_04'][best_row] - best['axis_04'])) for i in range(vfunc.dims()): tmp = df['axis_0{}'.format(i)][best_row] axis_minima[i].append(tmp) results[iter]["loss_history"] = loss_history for i in range(vfunc.dims()): results[iter]["minima"]["axis_0{}".format(i)] = [np.mean(axis_minima[i]), np.std(axis_minima[i])] dist = np.sqrt((axis_minima[i]-results["gt"][i])**2) results[iter]["distance"]["axis_0{}".format(i)] = [np.mean(dist), np.std(dist)] results[iter]["loss"] = [np.mean(best_losses), np.std(best_losses)] results[iter]["set_difference"] = sum(best_sets_diff) results[iter]["duration"] = np.mean(durations) file = open(fname, 'wb') pickle.dump(results, file) file.close() def make_radarplot(results, title, fname=None): gt = results.pop("gt") categories = list(results[list(results.keys())[0]]["minima"].keys()) N = len(categories) angles = [n / float(N) * 2 * pi for n in range(N)] angles += angles[:1] ax = plt.subplot(1, 1, 1, polar=True, ) ax.set_theta_offset(pi / 2) ax.set_theta_direction(-1) plt.xticks(angles[:-1], categories, color='grey', size=8) ax.set_rlabel_position(0) plt.yticks([0.2, 0.4, 0.6, 0.8, 1.0], ["0.2", "0.4", "0.6", "0.8", "1.0"], color="grey", size=7) plt.ylim(0, 1) gt += gt[:1] ax.fill(angles, gt, color=(0.2, 0.8, 0.2), alpha=0.2) colors = [] cm = plt.get_cmap('Set1') if len(results) > 2: indices = list(range(0, len(results) + 1)) indices.pop(2) else: indices = list(range(0, len(results))) for i in range(len(results)): colors.append(cm(indices[i])) for iter, data in results.items(): values = [] for i in range(len(categories)): values.append(data["minima"]["axis_0{}".format(i)][0]) values += values[:1] color = colors.pop(0) ax.plot(angles, values, color=color, linewidth=2, linestyle='solid', label="iterations {}".format(iter)) plt.title(title, size=11, color=(0.1, 0.1, 0.1), y=1.1) plt.legend(bbox_to_anchor=(0.08, 1.12)) if fname is None: plt.show() else: plt.savefig(fname + ".png") #plt.savefig(fname + ".svg") plt.clf() def make_errrorbars_plot(results, fname=None): n_groups = len(results) for iter in ITERATIONS: means = [] stds = [] names = [] colors = [] axis = [] fig = plt.figure(figsize=(10, 8)) for solver_name, numbers in results.items(): names.append(solver_name) means.append([]) stds.append([]) for axis_name, data in numbers[iter]["distance"].items(): means[-1].append(data[0]) stds[-1].append(data[1]) if len(axis) < 5: axis.append(axis_name) for c in range(len(names)): colors.append(plt.cm.Set2(c/len(names))) index = np.arange(len(axis)) bar_width = 0.14 opacity = 0.8 error_config = {'ecolor': '0.3'} for k, name in enumerate(names): plt.bar(index + k*bar_width, means[k], bar_width, alpha=opacity, color=colors[k], yerr=stds[k], error_kw=error_config, label=name) plt.xlabel('Axis') plt.ylabel('Mean [+/- std]') plt.title('Deviation per Axis and Solver for {} Iterations'.format(iter)) plt.xticks(index + 2*bar_width, axis) plt.legend() if fname is None: plt.show() else: plt.savefig(fname + "_{}.png".format(iter)) #plt.savefig(fname + "_{}.svg".format(iter)) plt.clf() def plot_loss_histories(results, fname=None): colors = [] for c in range(len(SOLVER)): colors.append(plt.cm.Set2(c / len(SOLVER))) for iter in ITERATIONS: fig = plt.figure(figsize=(10, 8)) added_solver = [] for n, solver_name in enumerate(results.keys()): for history in results[solver_name][iter]["loss_history"]: if solver_name not in added_solver: plt.plot(history, color=colors[n], label=solver_name, alpha=0.5) added_solver.append(solver_name) else: plt.plot(history, color=colors[n], alpha=0.5) plt.legend() plt.ylabel('Loss') plt.xlabel('Iteration') if fname is None: plt.show() else: plt.savefig(fname + "_{}.png".format(iter)) plt.clf() def print_durations(results, fname=None): # colors = [] # for c in range(len(SOLVER)): # colors.append(plt.cm.Set2(c / len(SOLVER))) f = open(fname + ".txt", "w") lines = ["iterations\t"+"\t".join(SOLVER)+"\n"] for iter in ITERATIONS: txt = str(iter) + "\t" for solver_name in SOLVER: duration = results[solver_name][iter]["duration"] txt += str(duration) + "\t" txt += "\n" lines.append(txt) f.writelines(lines) f.close() durations = {} for iter in ITERATIONS: for solver_name in SOLVER: duration = results[solver_name][iter]["duration"] if not solver_name in durations: durations[solver_name] = duration/iter else: durations[solver_name] += duration/iter for name in durations.keys(): durations[name] /= len(ITERATIONS) fig, ax = plt.subplots(figsize=(14, 6)) # Example data y_pos = np.arange(len(durations.keys())) t = [] for solver in SOLVER: t.append(durations[solver]) print(SOLVER) print(t) ax.barh(y_pos, t, align='center', color='green') ax.set_yticks(y_pos) ax.set_yticklabels(SOLVER) ax.invert_yaxis() ax.set_xscale('log') ax.set_xlabel('Duration in [s]') ax.set_title('Mean Solver Computation Time per Iteration') if fname is None: plt.show() else: plt.savefig(fname + ".png") # plt.savefig(fname + "_{}.svg".format(iter)) plt.clf() id2dirmapping = {"5D": "data_I", "5D2": "data_II", "5D3": "data_III"} if __name__ == "__main__": vfunc_ID = "5D" if len(sys.argv) == 2: vfunc_ID = sys.argv[1] print("Start Evaluation on {}".format(vfunc_ID)) OUTPUTDIR = os.path.join(OUTPUTDIR, id2dirmapping[vfunc_ID]) if not os.path.isdir(OUTPUTDIR): os.makedirs(OUTPUTDIR) ################################################## ############### create datasets ################## fnames = [] for solver_name in SOLVER: fname = os.path.join(OUTPUTDIR, solver_name) fnames.append(fname) if OVERWRITE or not os.path.isfile(fname): compute_deviation(solver_name, vfunc_ID, ITERATIONS, N=STATREPEATS, fname=fname) ################################################## ################################################## ################################################## ############## create radarplots ################# all_results = {} for solver_name, fname in zip(SOLVER, fnames): file = open(fname, 'rb') results = pickle.load(file) file.close() make_radarplot(results, solver_name, fname + "_deviation") all_results[solver_name] = results fname = os.path.join(OUTPUTDIR, "errorbars") make_errrorbars_plot(all_results, fname) fname = os.path.join(OUTPUTDIR, "losshistory") plot_loss_histories(all_results, fname) fname = os.path.join(OUTPUTDIR, "durations") print_durations(all_results, fname) for solver_name, iterations in all_results.items(): for iter, numbers in iterations.items(): if numbers["set_difference"] != 0: print("solver {} has a different parameter set match in iteration {}".format(solver_name, iter)) ################################################## ################################################## plt.imsave(fname=os.path.join(OUTPUTDIR, "dummy.png"), arr=np.ones((800, 1000, 3), dtype=np.uint8)*255) diff --git a/examples/tutorial_custom_visualization.py b/examples/tutorial_custom_visualization.py index 1b624ab..f40cde5 100644 --- a/examples/tutorial_custom_visualization.py +++ b/examples/tutorial_custom_visualization.py @@ -1,105 +1,104 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import matplotlib.pylab as plt from hyppopy.SolverPool import SolverPool from hyppopy.HyppopyProject import HyppopyProject from hyppopy.VirtualFunction import VirtualFunction from hyppopy.BlackboxFunction import BlackboxFunction project = HyppopyProject() project.add_hyperparameter(name="axis_00", domain="uniform", data=[0, 1], type=float) project.add_hyperparameter(name="axis_01", domain="uniform", data=[0, 1], type=float) project.add_hyperparameter(name="axis_02", domain="uniform", data=[0, 1], type=float) project.add_hyperparameter(name="axis_03", domain="uniform", data=[0, 1], type=float) project.add_hyperparameter(name="axis_04", domain="uniform", data=[0, 1], type=float) project.add_setting("max_iterations", 500) project.add_setting("solver", "randomsearch") plt.ion() fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(12, 8), sharey=True) plot_data = {"iterations": [], "loss": [], "axis_00": [], "axis_01": [], "axis_02": [], "axis_03": [], "axis_04": []} def my_visualization_function(**kwargs): print("\r{}".format(kwargs), end="") plot_data["iterations"].append(kwargs['iterations']) plot_data["loss"].append(kwargs['loss']) plot_data["axis_00"].append(kwargs['axis_00']) plot_data["axis_01"].append(kwargs['axis_01']) plot_data["axis_02"].append(kwargs['axis_02']) plot_data["axis_03"].append(kwargs['axis_03']) plot_data["axis_04"].append(kwargs['axis_04']) axes[0, 0].clear() axes[0, 0].scatter(plot_data["axis_00"], plot_data["loss"], c=plot_data["loss"], cmap="jet", marker='.') axes[0, 0].set_ylabel("loss") axes[0, 0].set_xlabel("axis_00") axes[0, 1].clear() axes[0, 1].scatter(plot_data["axis_01"], plot_data["loss"], c=plot_data["loss"], cmap="jet", marker='.') axes[0, 1].set_xlabel("axis_01") axes[0, 2].clear() axes[0, 2].scatter(plot_data["axis_02"], plot_data["loss"], c=plot_data["loss"], cmap="jet", marker='.') axes[0, 2].set_xlabel("axis_02") axes[1, 0].clear() axes[1, 0].scatter(plot_data["axis_03"], plot_data["loss"], c=plot_data["loss"], cmap="jet", marker='.') axes[1, 0].set_ylabel("loss") axes[1, 0].set_xlabel("axis_03") axes[1, 1].clear() axes[1, 1].scatter(plot_data["axis_04"], plot_data["loss"], c=plot_data["loss"], cmap="jet", marker='.') axes[1, 1].set_xlabel("axis_04") axes[1, 2].clear() axes[1, 2].plot(plot_data["iterations"], plot_data["loss"], "--", c=(0.8, 0.8, 0.8, 0.5)) axes[1, 2].scatter(plot_data["iterations"], plot_data["loss"], marker='.', c=(0.2, 0.2, 0.2)) axes[1, 2].set_xlabel("iterations") plt.draw() plt.tight_layout() plt.pause(0.001) def my_loss_function(data, params): vfunc = VirtualFunction() vfunc.load_default("5D") return vfunc(**params) blackbox = BlackboxFunction(data=[], blackbox_func=my_loss_function, callback_func=my_visualization_function) solver = SolverPool.get(project=project) solver.blackbox = blackbox solver.run() df, best = solver.get_results() print("\n") print("*" * 100) print("Best Parameter Set:\n{}".format(best)) print("*" * 100) print("") save_plot = input("Save Plot? [y/n] ") if save_plot == "y": plt.savefig('plot_{}.png'.format(project.custom_use_solver)) diff --git a/examples/tutorial_gridsearch.py b/examples/tutorial_gridsearch.py index 6f45995..1f8a9ec 100644 --- a/examples/tutorial_gridsearch.py +++ b/examples/tutorial_gridsearch.py @@ -1,128 +1,127 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE # In this tutorial we solve an optimization problem using the GridsearchSolver # Gridsearch is very inefficient a Randomsearch might most of the time be the # better choice. # import the HyppopyProject class keeping track of inputs from hyppopy.HyppopyProject import HyppopyProject # import the GridsearchSolver classes from hyppopy.solvers.GridsearchSolver import GridsearchSolver # import the Blackboxfunction class wrapping your problem for Hyppopy from hyppopy.BlackboxFunction import BlackboxFunction # To configure the GridsearchSolver we only need the hyperparameter section. Another # difference to the other solvers is that we need to define a gridsampling in addition # to the range: 'data': [0, 1, 100] which means sampling the space from 0 to 1 in 100 # intervals. Gridsearch also supports categorical, uniform, normal and lognormal sampling config = { "hyperparameter": { "C": { "domain": "uniform", "data": [0.0001, 20], "type": float, "frequency": 20 }, "gamma": { "domain": "uniform", "data": [0.0001, 20.0], "type": float, "frequency": 20 }, "kernel": { "domain": "categorical", "data": ["linear", "sigmoid", "poly", "rbf"], "type": str, "frequency": 1 } }} # When creating a HyppopyProject instance we # pass the config dictionary to the constructor. project = HyppopyProject(config=config) # Hyppopy offers a class called BlackboxFunction to wrap your problem for Hyppopy. # The function signature is as follows: # BlackboxFunction(blackbox_func=None, # dataloader_func=None, # preprocess_func=None, # callback_func=None, # data=None, # **kwargs) # # Means we can set a couple of function pointers, a data object and an arbitrary number of custom parameter via kwargs. # # - blackbox_func: a function pointer to the actual, user defined, blackbox function that is computing our loss # - dataloader_func: a function pointer to a function handling the dataloading # - preprocess_func: a function pointer to a function automatically executed before starting the optimization process # - callback_func: a function pointer to a function that is called after each iteration with the trail object as input # - data: setting data can be done via dataloader_func or directly # - kwargs are passed to all functions above and thus can be used for parameter sharing between the functions # # (more details see in the documentation) # # Below we demonstrate the usage of all the above by defining a my_dataloader_function which in fact only grabs the # iris dataset from sklearn and returns it. A my_preprocess_function which also does nothing useful here but # demonstrating that a custom parameter can be set via kwargs and used in all of our functions when called within # Hyppopy. The my_callback_function gets as input the dictionary containing the state of the iteration and thus can be # used to access the current state of each solver iteration. Finally we define the actual loss_function # my_loss_function, which gets as input a data object and params. Both parameter are fixed, the first is defined by # the user depending on what is dataloader returns or the data object set in the constructor, the second is a dictionary # with a sample of your hyperparameter space which content is in the choice of the solver. from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.model_selection import cross_val_score def my_dataloader_function(**kwargs): print("Dataloading...") iris_data = load_iris() return [iris_data.data, iris_data.target] def my_callback_function(**kwargs): print("\r{}".format(kwargs), end="") def my_loss_function(data, params): clf = SVC(**params) return -cross_val_score(estimator=clf, X=data[0], y=data[1], cv=3).mean() # We now create the BlackboxFunction object and pass all function pointers defined above, # as well as 2 dummy parameter (my_preproc_param, my_dataloader_input) for demonstration purposes. blackbox = BlackboxFunction(blackbox_func=my_loss_function, dataloader_func=my_dataloader_function, callback_func=my_callback_function) # create a solver instance solver = GridsearchSolver(project) # pass the loss function to the solver solver.blackbox = blackbox # run the solver solver.run() # get the result via get_result() which returns a pandas dataframe # containing the complete history and a dict best containing the # best parameter set. df, best = solver.get_results() print("\n") print("*"*100) print("Best Parameter Set:\n{}".format(best)) print("*"*100) diff --git a/examples/tutorial_hyppopyprojectclass.py b/examples/tutorial_hyppopyprojectclass.py index ec98ad7..b6d89a4 100644 --- a/examples/tutorial_hyppopyprojectclass.py +++ b/examples/tutorial_hyppopyprojectclass.py @@ -1,64 +1,63 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE # In this tutorial we demonstrate the HyppopyProject class usage # import the HyppopyProject class from hyppopy.HyppopyProject import HyppopyProject # To configure a solver we need to instanciate a HyppopyProject class. # This class can be configured using a nested dict. This dict has two # obligatory sections, hyperparameter and settings. A hyperparameter # is described using a dict containing a section, data and type field # and thus the hyperparameter section is a collection of hyperparameter # dicts. The settings section keeps solver settings. These might depend # on the solver used and need to be checked for each. E.g. Randomsearch, # Hyperopt and Optunity need a solver setting max_iterations, the Grid- # searchSolver don't. config = { "hyperparameter": { "C": { "domain": "uniform", "data": [0.0001, 20], "type": float }, "gamma": { "domain": "uniform", "data": [0.0001, 20.0], "type": float }, "kernel": { "domain": "categorical", "data": ["linear", "sigmoid", "poly", "rbf"], "type": str }}, "max_iterations": 500 } # When creating a HyppopyProject instance we # pass the config dictionary to the constructor. project = HyppopyProject(config=config) # When building the project programmatically we can also use the methods # add_hyperparameter and add_settings project = HyppopyProject() project.add_hyperparameter(name="C", domain="uniform", data=[0.0001, 20], dtype="float") project.add_hyperparameter(name="kernel", domain="categorical", data=["linear", "sigmoid"], dtype="str") project.set_settings(max_iterations=500) # The custom section can be used freely project.add_setting("my_var", 10) # Settings are automatically transformed to member variables of the project class with the section as prefix if project.max_iterations < 1000 and project.my_var == 10: print("Project configured!") diff --git a/examples/tutorial_multisolver.py b/examples/tutorial_multisolver.py index c1e0d96..8ef9581 100644 --- a/examples/tutorial_multisolver.py +++ b/examples/tutorial_multisolver.py @@ -1,183 +1,182 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE # In this tutorial we solve an optimization problem using the Hyperopt Solver (http://hyperopt.github.io/hyperopt/). # Hyperopt uses a Baysian - Tree Parzen Estimator - Optimization approach, which means that each iteration computes a # new function value of the blackbox, interpolates a guess for the whole energy function and predicts a point to # compute the next function value at. This next point is not necessarily a "better" value, it's only the value with # the highest uncertainty for the function interpolation. # # See a visual explanation e.g. here (http://philipperemy.github.io/visualization/) # import the HyppopyProject class keeping track of inputs from hyppopy.HyppopyProject import HyppopyProject # import the SolverPool singleton class from hyppopy.SolverPool import SolverPool # import the Blackboxfunction class wrapping your problem for Hyppopy from hyppopy.BlackboxFunction import BlackboxFunction # Next step is defining the problem space and all settings Hyppopy needs to optimize your problem. # The config is a simple nested dictionary with two obligatory main sections, hyperparameter and settings. # The hyperparameter section defines your searchspace. Each hyperparameter is again a dictionary with: # # - a domain ['categorical', 'uniform', 'normal', 'loguniform'] # - the domain data [left bound, right bound] and # - a type of your domain ['str', 'int', 'float'] # # The settings section has two subcategories, solver and custom. The first contains settings for the solver, # here 'max_iterations' - is the maximum number of iteration. # # The custom section allows defining custom parameter. An entry here is transformed to a member variable of the # HyppopyProject class. These can be useful when implementing new solver classes or for control your hyppopy script. # Here we use it as a solver switch to control the usage of our solver via the config. This means with the script # below your can try out every solver by changing use_solver to 'optunity', 'randomsearch', 'gridsearch',... # It can be used like so: project.custom_use_plugin (see below) If using the gridsearch solver, max_iterations is # ignored, instead each hyperparameter must specifiy a number of samples additionally to the range like so: # 'data': [0, 1, 100] which means sampling the space from 0 to 1 in 100 intervals. config = { "hyperparameter": { "C": { "domain": "uniform", "data": [0.0001, 20], "type": float }, "gamma": { "domain": "uniform", "data": [0.0001, 20.0], "type": float }, "kernel": { "domain": "categorical", "data": ["linear", "sigmoid", "poly", "rbf"], "type": str }, "decision_function_shape": { "domain": "categorical", "data": ["ovo", "ovr"], "type": str } }, "max_iterations": 300, "solver": "quasirandomsearch" } # When creating a HyppopyProject instance we # pass the config dictionary to the constructor. project = HyppopyProject(config=config) # demonstration of the custom parameter access print("-"*30) print("max_iterations:\t{}".format(project.max_iterations)) print("solver chosen -> {}".format(project.solver)) print("-"*30) # The BlackboxFunction signature is as follows: # BlackboxFunction(blackbox_func=None, # dataloader_func=None, # preprocess_func=None, # callback_func=None, # data=None, # **kwargs) # # - blackbox_func: a function pointer to the users loss function # - dataloader_func: a function pointer for handling dataloading. The function is called once before # optimizing. What it returns is passed as first argument to your loss functions # data argument. # - preprocess_func: a function pointer for data preprocessing. The function is called once before # optimizing and gets via kwargs['data'] the raw data object set directly or returned # from dataloader_func. What this function returns is then what is passed as first # argument to your loss function. # - callback_func: a function pointer called after each iteration. The input kwargs is a dictionary # keeping the parameters used in this iteration, the 'iteration' index, the 'loss' # and the 'status'. The function in this example is used for realtime printing it's # input but can also be used for realtime visualization. # - data: if not done via dataloader_func one can set a raw_data object directly # - kwargs: dict that whose content is passed to all functions above. from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.model_selection import cross_val_score def my_dataloader_function(**kwargs): print("Dataloading...") # kwargs['params'] allows accessing additional parameter passed, see below my_preproc_param, my_dataloader_input. print("my loading argument: {}".format(kwargs['params']['my_dataloader_input'])) iris_data = load_iris() return [iris_data.data, iris_data.target] def my_preprocess_function(**kwargs): print("Preprocessing...") # kwargs['data'] allows accessing the input data print("data:", kwargs['data'][0].shape, kwargs['data'][1].shape) # kwargs['params'] allows accessing additional parameter passed, see below my_preproc_param, my_dataloader_input. print("kwargs['params']['my_preproc_param']={}".format(kwargs['params']['my_preproc_param']), "\n") # if the preprocessing function returns something, # the input data will be replaced with the data returned by this function. x = kwargs['data'][0] y = kwargs['data'][1] for i in range(x.shape[0]): x[i, :] += kwargs['params']['my_preproc_param'] return [x, y] def my_callback_function(**kwargs): print("\r{}".format(kwargs), end="") def my_loss_function(data, params): clf = SVC(**params) return -cross_val_score(estimator=clf, X=data[0], y=data[1], cv=3).mean() # We now create the BlackboxFunction object and pass all function pointers defined above, # as well as 2 dummy parameter (my_preproc_param, my_dataloader_input) for demonstration purposes. blackbox = BlackboxFunction(blackbox_func=my_loss_function, dataloader_func=my_dataloader_function, preprocess_func=my_preprocess_function, callback_func=my_callback_function, my_preproc_param=1, my_dataloader_input='could/be/a/path') # Last step, is we use our SolverPool which automatically returns the correct solver. # There are multiple ways to get the desired solver from the solver pool. # 1. solver = SolverPool.get('hyperopt') # solver.project = project # 2. solver = SolverPool.get('hyperopt', project) # 3. The SolverPool will look for the field 'use_solver' in the project instance, if # it is present it will be used to specify the solver so that in this case it is enough # to pass the project instance. solver = SolverPool.get(project=project) # Give the solver your blackbox and run it. After execution we can get the result # via get_result() which returns a pandas dataframe containing the complete history # The dict best contains the best parameter set. solver.blackbox = blackbox #solver.start_viewer() solver.run() df, best = solver.get_results() print("\n") print("*"*100) print("Best Parameter Set:\n{}".format(best)) print("*"*100) diff --git a/examples/tutorial_simple.py b/examples/tutorial_simple.py index 199bc9e..0e7b8f8 100644 --- a/examples/tutorial_simple.py +++ b/examples/tutorial_simple.py @@ -1,80 +1,79 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE # A hyppopy minimal example optimizing a simple demo function f(x,y) = x**2+y**2 # import the HyppopyProject class keeping track of inputs from hyppopy.HyppopyProject import HyppopyProject # import the HyperoptSolver class from hyppopy.solvers.HyperoptSolver import HyperoptSolver # To configure the Hyppopy solver we use a simple nested dictionary with two obligatory main sections, # hyperparameter and settings. The hyperparameter section defines your searchspace. Each hyperparameter # is again a dictionary with: # # - a domain ['categorical', 'uniform', 'normal', 'loguniform'] # - the domain data [left bound, right bound] and # - a type of your domain ['str', 'int', 'float'] # # The settings section has two subcategories, solver and custom. The first contains settings for the solver, # here 'max_iterations' - is the maximum number of iteration. # # The custom section allows defining custom parameter. An entry here is transformed to a member variable of the # HyppopyProject class. These can be useful when implementing new solver classes or for control your hyppopy script. # Here we use it as a solver switch to control the usage of our solver via the config. This means with the script # below your can try out every solver by changing use_solver to 'optunity', 'randomsearch', 'gridsearch',... # It can be used like so: project.custom_use_plugin (see below) If using the gridsearch solver, max_iterations is # ignored, instead each hyperparameter must specifiy a number of samples additionally to the range like so: # 'data': [0, 1, 100] which means sampling the space from 0 to 1 in 100 intervals. config = { "hyperparameter": { "x": { "domain": "normal", "data": [-10.0, 10.0], "type": float }, "y": { "domain": "uniform", "data": [-10.0, 10.0], "type": float } }, "max_iterations": 500 } # When creating a HyppopyProject instance we # pass the config dictionary to the constructor. project = HyppopyProject(config=config) # The user defined loss function def my_loss_function(x, y): return x**2+y**2 # create a solver instance solver = HyperoptSolver(project) # pass the loss function to the solver solver.blackbox = my_loss_function # run the solver solver.run() df, best = solver.get_results() print("\n") print("*"*100) print("Best Parameter Set:\n{}".format(best)) print("*"*100) diff --git a/hyppopy/BlackboxFunction.py b/hyppopy/BlackboxFunction.py index 1348d4f..b907d28 100644 --- a/hyppopy/BlackboxFunction.py +++ b/hyppopy/BlackboxFunction.py @@ -1,96 +1,95 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import os import logging import functools from hyppopy.globals import DEBUGLEVEL LOG = logging.getLogger(os.path.basename(__file__)) LOG.setLevel(DEBUGLEVEL) def default_kwargs(**defaultKwargs): def actual_decorator(fn): @functools.wraps(fn) def g(*args, **kwargs): defaultKwargs.update(kwargs) return fn(*args, **defaultKwargs) return g return actual_decorator class BlackboxFunction(object): @default_kwargs(blackbox_func=None, dataloader_func=None, preprocess_func=None, callback_func=None, data=None) def __init__(self, **kwargs): self._blackbox_func = None self._preprocess_func = None self._dataloader_func = None self._callback_func = None self._raw_data = None self._data = None self.setup(kwargs) def __call__(self, **kwargs): return self.blackbox_func(self.data, kwargs) def setup(self, kwargs): self._blackbox_func = kwargs['blackbox_func'] self._preprocess_func = kwargs['preprocess_func'] self._dataloader_func = kwargs['dataloader_func'] self._callback_func = kwargs['callback_func'] self._raw_data = kwargs['data'] self._data = self._raw_data del kwargs['blackbox_func'] del kwargs['preprocess_func'] del kwargs['dataloader_func'] del kwargs['data'] params = kwargs if self.dataloader_func is not None: self._raw_data = self.dataloader_func(params=params) assert self._raw_data is not None, "Missing data exception!" assert self.blackbox_func is not None, "Missing blackbox fucntion exception!" if self.preprocess_func is not None: result = self.preprocess_func(data=self._raw_data, params=params) if result is not None: self._data = result else: self._data = self._raw_data else: self._data = self._raw_data @property def blackbox_func(self): return self._blackbox_func @property def preprocess_func(self): return self._preprocess_func @property def dataloader_func(self): return self._dataloader_func @property def callback_func(self): return self._callback_func @property def raw_data(self): return self._raw_data @property def data(self): return self._data diff --git a/hyppopy/HyppopyProject.py b/hyppopy/HyppopyProject.py index 7bfdc93..8da4843 100644 --- a/hyppopy/HyppopyProject.py +++ b/hyppopy/HyppopyProject.py @@ -1,77 +1,76 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import copy from hyppopy.globals import * LOG = logging.getLogger(os.path.basename(__file__)) LOG.setLevel(DEBUGLEVEL) class HyppopyProject(object): def __init__(self, config=None): self._data = {HYPERPARAMETERPATH: {}, SETTINGSPATH: {}} if config is not None: self.set_config(config) def set_config(self, config): assert isinstance(config, dict), "precondition violation, config needs to be of type dict, got {}".format(type(config)) confic_cp = copy.deepcopy(config) if HYPERPARAMETERPATH in confic_cp.keys(): self._data[HYPERPARAMETERPATH] = confic_cp[HYPERPARAMETERPATH] del confic_cp[HYPERPARAMETERPATH] self._data[SETTINGSPATH] = confic_cp self.parse_members() def set_hyperparameter(self, params): assert isinstance(params, dict), "precondition violation, params needs to be of type dict, got {}".format(type(params)) self._data[HYPERPARAMETERPATH] = params def set_settings(self, **kwargs): self._data[SETTINGSPATH] = kwargs self.parse_members() def add_hyperparameter(self, name, **kwargs): assert isinstance(name, str), "precondition violation, name needs to be of type str, got {}".format(type(name)) self._data[HYPERPARAMETERPATH][name] = kwargs def add_setting(self, name, value): assert isinstance(name, str), "precondition violation, name needs to be of type str, got {}".format(type(name)) self._data[SETTINGSPATH][name] = value self.parse_members() def parse_members(self): for name, value in self.settings.items(): if name not in self.__dict__.keys(): setattr(self, name, value) else: self.__dict__[name] = value def get_typeof(self, name): if not name in self.hyperparameter.keys(): raise LookupError("Typechecking failed, couldn't find hyperparameter {}!".format(name)) if not "type" in self.hyperparameter[name].keys(): raise LookupError("Typechecking failed, couldn't find hyperparameter signature type!") dtype = self.hyperparameter[name]["type"] return dtype @property def hyperparameter(self): return self._data[HYPERPARAMETERPATH] @property def settings(self): return self._data[SETTINGSPATH] diff --git a/hyppopy/ProjectManager.py b/hyppopy/ProjectManager.py index 0d072dd..fe29a8e 100644 --- a/hyppopy/ProjectManager.py +++ b/hyppopy/ProjectManager.py @@ -1,67 +1,66 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE from .Singleton import * import os import logging from hyppopy.HyppopyProject import HyppopyProject from hyppopy.globals import DEBUGLEVEL LOG = logging.getLogger(os.path.basename(__file__)) LOG.setLevel(DEBUGLEVEL) @singleton_object class ProjectManager(metaclass=Singleton): def __init__(self): self._current_project = None self._projects = {} def clear_all(self): pass def new_project(self, name="HyppopyProject", config=None): if name in self._projects.keys(): name = self.check_projectname(name) self._projects[name] = HyppopyProject(config) self._current_project = self._projects[name] return self._current_project def check_projectname(self, name): split = name.split(".") if len(split) == 0: return split[0] + "." + str(0).zfill(3) else: try: number = int(split[-1]) del split[-1] except: number = 0 return '.'.join(split) + "." + str(number).zfill(3) def get_current(self): if self._current_project is None: self.new_project() return self._current_project def get_project(self, name): if name in self._projects.keys(): self._current_project = self._projects[name] return self.get_current() return self.new_project(name) def get_projectnames(self): return self._projects.keys() diff --git a/hyppopy/Singleton.py b/hyppopy/Singleton.py index fac0bc8..39bd2b2 100644 --- a/hyppopy/Singleton.py +++ b/hyppopy/Singleton.py @@ -1,50 +1,49 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] @classmethod def __instancecheck__(mcs, instance): if instance.__class__ is mcs: return True else: return isinstance(instance.__class__, mcs) def singleton_object(cls): """Class decorator that transforms (and replaces) a class definition (which must have a Singleton metaclass) with the actual singleton object. Ensures that the resulting object can still be "instantiated" (i.e., called), returning the same object. Also ensures the object can be pickled, is hashable, and has the correct string representation (the name of the singleton) """ assert isinstance(cls, Singleton), cls.__name__ + " must use Singleton metaclass" def self_instantiate(self): return self cls.__call__ = self_instantiate cls.__hash__ = lambda self: hash(cls) cls.__repr__ = lambda self: cls.__name__ cls.__reduce__ = lambda self: cls.__name__ obj = cls() obj.__name__ = cls.__name__ return obj diff --git a/hyppopy/SolverPool.py b/hyppopy/SolverPool.py index 1e4fd6b..74ffcee 100644 --- a/hyppopy/SolverPool.py +++ b/hyppopy/SolverPool.py @@ -1,79 +1,78 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE from .Singleton import * import os import logging from hyppopy.HyppopyProject import HyppopyProject from hyppopy.solvers.OptunaSolver import OptunaSolver from hyppopy.solvers.HyperoptSolver import HyperoptSolver from hyppopy.solvers.OptunitySolver import OptunitySolver from hyppopy.solvers.GridsearchSolver import GridsearchSolver from hyppopy.solvers.RandomsearchSolver import RandomsearchSolver from hyppopy.solvers.QuasiRandomsearchSolver import QuasiRandomsearchSolver from hyppopy.globals import DEBUGLEVEL LOG = logging.getLogger(os.path.basename(__file__)) LOG.setLevel(DEBUGLEVEL) @singleton_object class SolverPool(metaclass=Singleton): def __init__(self): self._solver_list = ["hyperopt", "optunity", "optuna", "randomsearch", "quasirandomsearch", "gridsearch"] def get_solver_names(self): return self._solver_list def get(self, solver_name=None, project=None): if solver_name is not None: assert isinstance(solver_name, str), "precondition violation, solver_name type str expected, got {} instead!".format(type(solver_name)) if project is not None: assert isinstance(project, HyppopyProject), "precondition violation, project type HyppopyProject expected, got {} instead!".format(type(project)) if "solver" in project.__dict__: solver_name = project.solver if solver_name not in self._solver_list: raise AssertionError("Solver named [{}] not implemented!".format(solver_name)) if solver_name == "hyperopt": if project is not None: return HyperoptSolver(project) return HyperoptSolver() elif solver_name == "optunity": if project is not None: return OptunitySolver(project) return OptunitySolver() elif solver_name == "optuna": if project is not None: return OptunaSolver(project) return OptunaSolver() elif solver_name == "gridsearch": if project is not None: return GridsearchSolver(project) return GridsearchSolver() elif solver_name == "randomsearch": if project is not None: return RandomsearchSolver(project) return RandomsearchSolver() elif solver_name == "quasirandomsearch": if project is not None: return QuasiRandomsearchSolver(project) return QuasiRandomsearchSolver() diff --git a/hyppopy/VirtualFunction.py b/hyppopy/VirtualFunction.py index b7af171..295fcda 100644 --- a/hyppopy/VirtualFunction.py +++ b/hyppopy/VirtualFunction.py @@ -1,223 +1,222 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE ######################################################################################################################## # USAGE # # The class VirtualFunction is meant to be a virtual energy function with an arbitrary dimensionality. The user can # simply scribble functions as a binary image using e.g. Gimp, defining their ranges using .cfg file and loading them # into the VirtualFunction. An instance of the class can then be used like a normal function returning the sampling of # each dimension loaded. # # 1. create binary images (IMPORTANT same shape for each), background black the function signature white, ensure that # each column has a white pixel. If more than one pixel appears in a column, only the lowest will be used. # # 2. create a .cfg file, see an example in hyppopy/virtualparameterspace # # 3. vfunc = VirtualFunction() # vfunc.load_images(path/of/your/binaryfiles/and/the/configfile) # # 4. use vfunc like a normal function, if you loaded 4 dimension binary images use it like f = vfunc(a,b,c,d) ######################################################################################################################## import os import sys import numpy as np import configparser from glob import glob import matplotlib.pyplot as plt import matplotlib.image as mpimg from hyppopy.globals import VFUNCDATAPATH class VirtualFunction(object): def __init__(self): self.config = None self.data = None self.axis = [] def __call__(self, *args, **kwargs): if len(kwargs) == self.dims(): args = [0]*len(kwargs) for key, value in kwargs.items(): index = int(key.split("_")[1]) args[index] = value assert len(args) == self.dims(), "wrong number of arguments!" for i in range(len(args)): assert self.axis[i][0] <= args[i] <= self.axis[i][1], "out of range access on axis {}!".format(i) lpos, rpos, fracs = self.pos_to_indices(args) fl = self.data[(list(range(self.dims())), lpos)] fr = self.data[(list(range(self.dims())), rpos)] return np.sum(fl*np.array(fracs) + fr*(1-np.array(fracs))) def clear(self): self.axis.clear() self.data = None self.config = None def dims(self): return self.data.shape[0] def size(self): return self.data.shape[1] def range(self, dim): return np.abs(self.axis[dim][1] - self.axis[dim][0]) def minima(self): glob_mins = [] for dim in range(self.dims()): x = [] fmin = np.min(self.data[dim, :]) for _x in range(self.size()): if self.data[dim, _x] <= fmin: x.append(_x/self.size()*(self.axis[dim][1]-self.axis[dim][0])+self.axis[dim][0]) glob_mins.append([x, fmin]) return glob_mins def pos_to_indices(self, positions): lpos = [] rpos = [] pfracs = [] for n in range(self.dims()): pos = positions[n] pos -= self.axis[n][0] pos /= np.abs(self.axis[n][1]-self.axis[n][0]) pos *= self.data.shape[1]-1 lp = int(np.floor(pos)) if lp < 0: lp = 0 rp = int(np.ceil(pos)) if rp > self.data.shape[1]-1: rp = self.data.shape[1]-1 pfracs.append(1.0-(pos-np.floor(pos))) lpos.append(lp) rpos.append(rp) return lpos, rpos, pfracs def plot(self, dim=None, title=""): if dim is None: dim = list(range(self.dims())) else: dim = [dim] fig = plt.figure(figsize=(10, 8)) for i in range(len(dim)): width = np.abs(self.axis[dim[i]][1]-self.axis[dim[i]][0]) ax = np.arange(self.axis[dim[i]][0], self.axis[dim[i]][1], width/self.size()) plt.plot(ax, self.data[dim[i], :], '.', label='axis_{}'.format(str(dim[i]).zfill(2))) plt.legend() plt.grid() plt.title(title) plt.show() def add_dimension(self, data, x_range): if self.data is None: self.data = data if len(self.data.shape) == 1: self.data = self.data.reshape((1, self.data.shape[0])) else: if len(data.shape) == 1: data = data.reshape((1, data.shape[0])) assert self.data.shape[1] == data.shape[1], "shape mismatch while adding dimension!" dims = self.data.shape[0] size = self.data.shape[1] tmp = np.append(self.data, data) self.data = tmp.reshape((dims+1, size)) self.axis.append(x_range) def load_default(self, name="3D"): path = os.path.join(VFUNCDATAPATH, "{}".format(name)) if os.path.exists(path): self.load_images(path) else: raise FileExistsError("No virtualfunction of dimension {} available".format(name)) def load_images(self, path): self.config = None self.data = None self.axis.clear() img_fnames = [] for f in glob(path + os.sep + "*"): if f.endswith(".png"): img_fnames.append(f) elif f.endswith(".cfg"): self.config = self.read_config(f) else: print("WARNING: files of type {} not supported, the file {} is ignored!".format(f.split(".")[-1], os.path.basename(f))) if self.config is None: print("Aborted, failed to read configfile!") sys.exit() sections = self.config.sections() if len(sections) != len(img_fnames): print("Aborted, inconsistent number of image tmplates and axis specifications!") sys.exit() img_fnames.sort() size_x = None size_y = None for n, fname in enumerate(img_fnames): img = mpimg.imread(fname) if len(img.shape) > 2: img = img[:, :, 0] if size_x is None: size_x = img.shape[1] if size_y is None: size_y = img.shape[0] self.data = np.zeros((len(img_fnames), size_x), dtype=np.float32) assert img.shape[0] == size_y, "Shape mismatch in dimension y {} is not {}".format(img.shape[0], size_y) assert img.shape[1] == size_x, "Shape mismatch in dimension x {} is not {}".format(img.shape[1], size_x) self.sample_image(img, n) def sample_image(self, img, dim): sec_name = "axis_{}".format(str(dim).zfill(2)) assert sec_name in self.config.sections(), "config section {} not found!".format(sec_name) settings = self.get_axis_settings(sec_name) self.axis.append([float(settings['min_x']), float(settings['max_x'])]) y_range = [float(settings['min_y']), float(settings['max_y'])] for x in range(img.shape[1]): candidates = np.where(img[:, x] > 0) assert len(candidates[0]) > 0, "non function value in image detected, ensure each column has at least one value > 0!" y_pos = candidates[0][0]/img.shape[0] self.data[dim, x] = 1-y_pos self.data[dim, :] *= np.abs(y_range[1] - y_range[0]) self.data[dim, :] += y_range[0] def read_config(self, fname): try: config = configparser.ConfigParser() config.read(fname) return config except Exception as e: print(e) return None def get_axis_settings(self, section): dict1 = {} options = self.config.options(section) for option in options: try: dict1[option] = self.config.get(section, option) if dict1[option] == -1: print("skip: %s" % option) except: print("exception on %s!" % option) dict1[option] = None return dict1 diff --git a/hyppopy/VisdomViewer.py b/hyppopy/VisdomViewer.py index b10d151..95d37d2 100644 --- a/hyppopy/VisdomViewer.py +++ b/hyppopy/VisdomViewer.py @@ -1,114 +1,126 @@ +# Hyppopy - A Hyper-Parameter Optimization Toolbox +# +# Copyright (c) German Cancer Research Center, +# Division of Medical Image Computing. +# All rights reserved. +# +# This software is distributed WITHOUT ANY WARRANTY; without +# even the implied warranty of MERCHANTABILITY or FITNESS FOR +# A PARTICULAR PURPOSE. +# +# See LICENSE + import warnings import numpy as np from visdom import Visdom import matplotlib.pyplot as plt def time_formatter(time_s): if time_s < 0.01: return int(time_s * 1000.0 * 1000) / 1000.0, "ms" elif 100 < time_s < 3600: return int(time_s / 60 * 1000) / 1000.0, "min" elif time_s >= 3600: return int(time_s / 3600 * 1000) / 1000.0, "h" else: return int(time_s * 1000) / 1000.0, "s" class VisdomViewer(object): def __init__(self, project, port=8097, server="http://localhost"): self._viz = Visdom(port=port, server=server) self._enabled = self._viz.check_connection(timeout_seconds=3) if not self._enabled: warnings.warn("No connection to visdom server established. Visualization cannot be displayed!") self._project = project self._best_win = None self._best_loss = None self._loss_iter_plot = None self._status_report = None self._axis_tags = None self._axis_plots = None def plot_losshistory(self, input_data): loss = np.array([input_data["loss"]]) iter = np.array([input_data["iterations"]]) if self._loss_iter_plot is None: self._loss_iter_plot = self._viz.line(loss, X=iter, opts=dict( markers=True, markersize=5, dash=np.array(['dashdot']), title="Loss History", xlabel='iteration', ylabel='loss' )) else: self._viz.line(loss, X=iter, win=self._loss_iter_plot, update='append') def plot_hyperparameter(self, input_data): if self._axis_plots is None: self._axis_tags = [] self._axis_plots = {} for item in input_data.keys(): if item == "refresh_time" or item == "book_time" or item == "iterations" or item == "status" or item == "loss": continue self._axis_tags.append(item) for axis in self._axis_tags: xlabel = "value" if isinstance(input_data[axis], str): if self._project.hyperparameter[axis]["domain"] == "categorical": xlabel = '-'.join(self._project.hyperparameter[axis]["data"]) input_data[axis] = self._project.hyperparameter[axis]["data"].index(input_data[axis]) axis_loss = np.array([input_data[axis], input_data["loss"]]).reshape(1, -1) self._axis_plots[axis] = self._viz.scatter(axis_loss, opts=dict( markersize=5, title=axis, xlabel=xlabel, ylabel='loss')) else: for axis in self._axis_tags: if isinstance(input_data[axis], str): if self._project.hyperparameter[axis]["domain"] == "categorical": input_data[axis] = self._project.hyperparameter[axis]["data"].index(input_data[axis]) axis_loss = np.array([input_data[axis], input_data["loss"]]).reshape(1, -1) self._viz.scatter(axis_loss, win=self._axis_plots[axis], update='append') def show_statusreport(self, input_data): duration = input_data['refresh_time'] - input_data['book_time'] duration, time_format = time_formatter(duration.total_seconds()) report = "Iteration {}: {}{} -> {}\n".format(input_data["iterations"], duration, time_format, input_data["status"]) if self._status_report is None: self._status_report = self._viz.text(report) else: self._viz.text(report, win=self._status_report, append=True) def show_best(self, input_data): if self._best_win is None: self._best_loss = input_data["loss"] txt = "Best Parameter Set:
Loss: {}
" self._best_win = self._viz.text(txt) else: if input_data["loss"] < self._best_loss: self._best_loss = input_data["loss"] txt = "Best Parameter Set:
Loss: {}
" self._viz.text(txt, win=self._best_win, append=False) def update(self, input_data): if self._enabled: self.show_statusreport(input_data) self.plot_losshistory(input_data) self.plot_hyperparameter(input_data) self.show_best(input_data) diff --git a/hyppopy/__init__.py b/hyppopy/__init__.py index bea4fb7..34a3a76 100644 --- a/hyppopy/__init__.py +++ b/hyppopy/__init__.py @@ -1,14 +1,13 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE __version__ = '0.5.0.0' diff --git a/hyppopy/globals.py b/hyppopy/globals.py index ff68aba..0daa665 100644 --- a/hyppopy/globals.py +++ b/hyppopy/globals.py @@ -1,36 +1,35 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import os import sys import logging ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.insert(0, ROOT) LIBNAME = "hyppopy" TESTDATA_DIR = os.path.join(ROOT, *(LIBNAME, "tests", "data")) HYPERPARAMETERPATH = "hyperparameter" SETTINGSPATH = "settings" VFUNCDATAPATH = os.path.join(os.path.join(ROOT, LIBNAME), "virtualparameterspace") SUPPORTED_DOMAINS = ["uniform", "normal", "loguniform", "categorical"] SUPPORTED_DTYPES = ["int", "float", "str"] #DEFAULTITERATIONS = 500 DEFAULTGRIDFREQUENCY = 10 LOGFILENAME = os.path.join(ROOT, '{}_log.log'.format(LIBNAME)) DEBUGLEVEL = logging.DEBUG logging.basicConfig(filename=LOGFILENAME, filemode='w', format='%(levelname)s: %(name)s - %(message)s') diff --git a/hyppopy/solvers/GridsearchSolver.py b/hyppopy/solvers/GridsearchSolver.py index 0daad85..93a12fd 100644 --- a/hyppopy/solvers/GridsearchSolver.py +++ b/hyppopy/solvers/GridsearchSolver.py @@ -1,197 +1,196 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import os import logging import warnings import numpy as np from pprint import pformat from scipy.stats import norm from itertools import product from hyppopy.globals import DEBUGLEVEL, DEFAULTGRIDFREQUENCY from hyppopy.solvers.HyppopySolver import HyppopySolver LOG = logging.getLogger(os.path.basename(__file__)) LOG.setLevel(DEBUGLEVEL) def get_uniform_axis_sample(a, b, N, dtype): """ returns a uniform sample x(n) in the range [a,b] sampled at N pojnts :param a: left value range bound :param b: right value range bound :param N: discretization of intervall [a,b] :param dtype: data type :return: [list] axis range """ assert a < b, "condition a < b violated!" assert isinstance(N, int), "condition N of type int violated!" if dtype is int: return list(np.linspace(a, b, N).astype(int)) elif dtype is float: return list(np.linspace(a, b, N)) else: raise AssertionError("dtype {} not supported for uniform sampling!".format(dtype)) def get_norm_cdf(N): """ returns a normed gaussian cdf (range [0,1]) with N sampling points :param N: sampling points :return: [ndarray] gaussian cdf function values """ assert isinstance(N, int), "condition N of type int violated!" even = True if N % 2 != 0: N -= 1 even = False N = int(N/2) sigma = 1/3 x = np.linspace(0, 1, N) y1 = norm.cdf(x, loc=0, scale=sigma)-0.5 if not even: y1 = np.append(y1, [0.5]) y2 = 1-(norm.cdf(x, loc=0, scale=sigma)-0.5) y2 = np.flip(y2, axis=0) y = np.concatenate((y1, y2), axis=0) return y def get_gaussian_axis_sample(a, b, N, dtype): """ returns a function value f(n) where f is a gaussian cdf in range [a, b] and N sampling points :param a: left value range bound :param b: right value range bound :param N: discretization of intervall [a,b] :param dtype: data type :return: [list] axis range """ assert a < b, "condition a < b violated!" assert isinstance(N, int), "condition N of type int violated!" data = [] for n in range(N): x = a + get_norm_cdf(N)[n]*(b-a) if dtype is int: data.append(int(x)) elif dtype is float: data.append(x) else: raise AssertionError("dtype {} not supported for uniform sampling!".format(dtype)) return data def get_logarithmic_axis_sample(a, b, N, dtype): """ returns a function value f(n) where f is logarithmic function e^x sampling the exponent range [log(a), log(b)] linear at N sampling points. The function values returned are in the range [a, b]. :param a: left value range bound :param b: right value range bound :param N: discretization of intervall [a,b] :param dtype: data type :return: [list] axis range """ assert a < b, "condition a < b violated!" assert a > 0, "condition a > 0 violated!" assert isinstance(N, int), "condition N of type int violated!" # convert input range into exponent range lexp = np.log(a) rexp = np.log(b) exp_range = np.linspace(lexp, rexp, N) data = [] for n in range(exp_range.shape[0]): x = np.exp(exp_range[n]) if dtype is int: data.append(int(x)) elif dtype is float: data.append(x) else: raise AssertionError("dtype {} not supported for uniform sampling!".format(dtype)) return data class GridsearchSolver(HyppopySolver): """ The GridsearchSolver class implements a gridsearch optimization. The gridsearch supports categorical, uniform, normal and loguniform sampling. To use the GridsearchSolver, besides a range, one must specifiy the number of samples in the domain, e.g. 'data': [0, 1, 100] """ def __init__(self, project=None): HyppopySolver.__init__(self, project) def define_interface(self): self.add_hyperparameter_signature(name="domain", dtype=str, options=["uniform", "normal", "loguniform", "categorical"]) self.add_hyperparameter_signature(name="data", dtype=list) self.add_hyperparameter_signature(name="frequency", dtype=int) self.add_hyperparameter_signature(name="type", dtype=type) def loss_function_call(self, params): loss = self.blackbox(**params) if loss is None: return np.nan return loss def execute_solver(self, searchspace): for x in product(*searchspace[1]): params = {} for name, value in zip(searchspace[0], x): params[name] = value try: self.loss_function(**params) except Exception as e: msg = "internal error in randomsearch execute_solver occured. {}".format(e) LOG.error(msg) raise BrokenPipeError(msg) self.best = self._trials.argmin def convert_searchspace(self, hyperparameter): """ the function converts the standard parameter input into a range list depending on the domain. These rangelists are later used with itertools product to create a paramater space sample of each combination. :param hyperparameter: [dict] hyperparameter space :return: [list] name and range for each parameter space axis """ LOG.debug("convert input parameter\n\n\t{}\n".format(pformat(hyperparameter))) searchspace = [[], []] for name, param in hyperparameter.items(): if param["domain"] != "categorical" and "frequency" not in param.keys(): param["frequency"] = DEFAULTGRIDFREQUENCY warnings.warn("No frequency field found, used default gridsearch frequency {}".format(DEFAULTGRIDFREQUENCY)) if param["domain"] == "categorical": searchspace[0].append(name) searchspace[1].append(param["data"]) elif param["domain"] == "uniform": searchspace[0].append(name) searchspace[1].append(get_uniform_axis_sample(param["data"][0], param["data"][1], param["frequency"], param["type"])) elif param["domain"] == "normal": searchspace[0].append(name) searchspace[1].append(get_gaussian_axis_sample(param["data"][0], param["data"][1], param["frequency"], param["type"])) elif param["domain"] == "loguniform": searchspace[0].append(name) searchspace[1].append(get_logarithmic_axis_sample(param["data"][0], param["data"][1], param["frequency"], param["type"])) return searchspace diff --git a/hyppopy/solvers/HyperoptSolver.py b/hyppopy/solvers/HyperoptSolver.py index 0b063c8..3ca6ab9 100644 --- a/hyppopy/solvers/HyperoptSolver.py +++ b/hyppopy/solvers/HyperoptSolver.py @@ -1,162 +1,161 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import os import copy import logging import numpy as np from pprint import pformat from hyperopt import fmin, tpe, hp, STATUS_OK, STATUS_FAIL, Trials from hyppopy.globals import DEBUGLEVEL from hyppopy.solvers.HyppopySolver import HyppopySolver from hyppopy.BlackboxFunction import BlackboxFunction LOG = logging.getLogger(os.path.basename(__file__)) LOG.setLevel(DEBUGLEVEL) class HyperoptSolver(HyppopySolver): def __init__(self, project=None): HyppopySolver.__init__(self, project) self._searchspace = None def define_interface(self): self.add_member("max_iterations", int) self.add_hyperparameter_signature(name="domain", dtype=str, options=["uniform", "normal", "loguniform", "categorical"]) self.add_hyperparameter_signature(name="data", dtype=list) self.add_hyperparameter_signature(name="type", dtype=type) def loss_function(self, params): for name, p in self._searchspace.items(): if p["domain"] != "categorical": if params[name] < p["data"][0]: params[name] = p["data"][0] if params[name] > p["data"][1]: params[name] = p["data"][1] status = STATUS_FAIL try: loss = self.blackbox(**params) if loss is not None: status = STATUS_OK else: loss = 1e9 except Exception as e: LOG.error("execution of self.blackbox(**params) failed due to:\n {}".format(e)) status = STATUS_FAIL loss = 1e9 cbd = copy.deepcopy(params) cbd['iterations'] = self._trials.trials[-1]['tid'] + 1 cbd['loss'] = loss cbd['status'] = status cbd['book_time'] = self._trials.trials[-1]['book_time'] cbd['refresh_time'] = self._trials.trials[-1]['refresh_time'] if isinstance(self.blackbox, BlackboxFunction) and self.blackbox.callback_func is not None: self.blackbox.callback_func(**cbd) if self._visdom_viewer is not None: self._visdom_viewer.update(cbd) return {'loss': loss, 'status': status} def execute_solver(self, searchspace): LOG.debug("execute_solver using solution space:\n\n\t{}\n".format(pformat(searchspace))) self.trials = Trials() try: self.best = fmin(fn=self.loss_function, space=searchspace, algo=tpe.suggest, max_evals=self.max_iterations, trials=self.trials) except Exception as e: msg = "internal error in hyperopt.fmin occured. {}".format(e) LOG.error(msg) raise BrokenPipeError(msg) def convert_searchspace(self, hyperparameter): self._searchspace = hyperparameter solution_space = {} for name, content in hyperparameter.items(): param_settings = {'name': name} for key, value in content.items(): if key == 'domain': param_settings['domain'] = value elif key == 'data': param_settings['data'] = value elif key == 'type': param_settings['dtype'] = value solution_space[name] = self.convert(param_settings) return solution_space def convert(self, param_settings): name = param_settings["name"] domain = param_settings["domain"] dtype = param_settings["dtype"] data = param_settings["data"] if domain == "uniform": if dtype is float: return hp.uniform(name, data[0], data[1]) elif dtype is int: data = list(np.arange(int(data[0]), int(data[1] + 1))) return hp.choice(name, data) else: msg = "cannot convert the type {} in domain {}".format(dtype, domain) LOG.error(msg) raise LookupError(msg) elif domain == "loguniform": if dtype is float: if data[0] == 0: data[0] += 1e-23 assert data[0] > 0, "precondition Violation, a < 0!" assert data[0] < data[1], "precondition Violation, a > b!" assert data[1] > 0, "precondition Violation, b < 0!" lexp = np.log(data[0]) rexp = np.log(data[1]) assert lexp is not np.nan, "precondition violation, left bound input error, results in nan!" assert rexp is not np.nan, "precondition violation, right bound input error, results in nan!" return hp.loguniform(name, lexp, rexp) else: msg = "cannot convert the type {} in domain {}".format(dtype, domain) LOG.error(msg) raise LookupError(msg) elif domain == "normal": if dtype is float: mu = (data[1] - data[0]) / 2.0 sigma = mu / 3 return hp.normal(name, data[0] + mu, sigma) else: msg = "cannot convert the type {} in domain {}".format(dtype, domain) LOG.error(msg) raise LookupError(msg) elif domain == "categorical": if dtype is str: return hp.choice(name, data) elif dtype is bool: data = [] for elem in data: if elem == "true" or elem == "True" or elem == 1 or elem == "1": data.append(True) elif elem == "false" or elem == "False" or elem == 0 or elem == "0": data.append(False) else: msg = "cannot convert the type {} in domain {}, unknown bool type value".format(dtype, domain) LOG.error(msg) raise LookupError(msg) return hp.choice(name, data) else: msg = "Precondition violation, domain named {} not available!".format(domain) LOG.error(msg) raise IOError(msg) diff --git a/hyppopy/solvers/HyppopySolver.py b/hyppopy/solvers/HyppopySolver.py index e6e5773..1325f0a 100644 --- a/hyppopy/solvers/HyppopySolver.py +++ b/hyppopy/solvers/HyppopySolver.py @@ -1,374 +1,373 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import abc import copy import types import datetime import numpy as np import pandas as pd from hyperopt import Trials from hyppopy.globals import * from hyppopy.VisdomViewer import VisdomViewer from hyppopy.HyppopyProject import HyppopyProject from hyppopy.BlackboxFunction import BlackboxFunction from hyppopy.VirtualFunction import VirtualFunction from hyppopy.globals import DEBUGLEVEL LOG = logging.getLogger(os.path.basename(__file__)) LOG.setLevel(DEBUGLEVEL) class HyppopySolver(object): """ The HyppopySolver class is the base class for all solver addons. It defines virtual functions a child class has to implement to deal with the front-end communication, orchestrating the optimization process and ensuring a proper process information storing. The key idea is that the HyppopySolver class defines an interface to configure and run an object instance of itself independently from the concrete solver lib used to optimize in the background. To achieve this goal an addon developer needs to implement the abstract methods 'convert_searchspace', 'execute_solver' and 'loss_function_call'. These methods abstract the peculiarities of the solver libs to offer, on the user side, a simple and consistent parameter space configuration and optimization procedure. The method 'convert_searchspace' transforms the hyppopy parameter space description into the solver lib specific description. The method loss_function_call is used to handle solver lib specifics of calling the actual blackbox function and execute_solver is executed when the run method is invoked und takes care of calling the solver lib solving routine. """ def __init__(self, project=None): self._idx = None # current iteration counter self._best = None # best parameter set self._trials = None # trials object, hyppopy uses the Trials object from hyperopt self._blackbox = None # blackbox function, eiter a function or a BlackboxFunction instance self._total_duration = None # keeps track of the solvers running time self._solver_overhead = None # stores the time overhead of the solver, means total time minus time in blackbox self._time_per_iteration = None # mean time per iterration self._accumulated_blackbox_time = None # summed time the solver was in the blackbox function self._visdom_viewer = None # visdom viewer instance self._child_members = {} # this dict keeps track of the settings the child solver defines self._hopt_signatures = {} # this dict keeps track of the hyperparameter signatures the child solver defines self.define_interface() # the child define interface function is called which defines settings and hyperparameter signatures if project is not None: self.project = project @abc.abstractmethod def convert_searchspace(self, hyperparameter): """ This function gets the unified hyppopy-like parameterspace description as input and, if necessary, should convert it into a solver lib specific format. The function is invoked when run is called and what it returns is passed as searchspace argument to the function execute_solver. :param hyperparameter: [dict] nested parameter description dict e.g. {'name': {'domain':'uniform', 'data':[0,1], 'type':'float'}, ...} :return: [object] converted hyperparameter space """ raise NotImplementedError('users must define convert_searchspace to use this class') @abc.abstractmethod def execute_solver(self, searchspace): """ This function is called immediatly after convert_searchspace and get the output of the latter as input. It's purpose is to call the solver libs main optimization function. :param searchspace: converted hyperparameter space """ raise NotImplementedError('users must define execute_solver to use this class') @abc.abstractmethod def loss_function_call(self, params): """ This function is called within the function loss_function and encapsulates the actual blackbox function call in each iteration. The function loss_function takes care of the iteration driving and reporting, but each solver lib might need some special treatment between the parameter set selection and the calling of the actual blackbox function, e.g. parameter converting. :param params: [dict] hyperparameter space sample e.g. {'p1': 0.123, 'p2': 3.87, ...} :return: [float] loss """ raise NotImplementedError('users must define loss_function_call to use this class') @abc.abstractmethod def define_interface(self): """ This function is called when HyppopySolver.__init__ function finished. Child classes need to define their individual parameter here by calling the add_member function for each class member variable need to be defined. Using add_hyperparameter_signature the structure of a hyperparameter the solver expects must be defined. Both, members and hyperparameter signatures are later get checked, before executing the solver, ensuring settings passed fullfill solver needs. """ raise NotImplementedError('users must define define_interface to use this class') def add_member(self, name, dtype, value=None, default=None): assert isinstance(name, str), "precondition violation, name needs to be of type str, got {}".format(type(name)) if value is not None: assert isinstance(value, dtype), "precondition violation, value does not match dtype condition!" if default is not None: assert isinstance(default, dtype), "precondition violation, default does not match dtype condition!" setattr(self, name, value) self._child_members[name] = {"type": dtype, "value": value, "default": default} def add_hyperparameter_signature(self, name, dtype, options=None): assert isinstance(name, str), "precondition violation, name needs to be of type str, got {}".format(type(name)) self._hopt_signatures[name] = {"type": dtype, "options": options} def loss_function(self, **params): """ This function is called each iteration with a selected parameter set. The parameter set selection is driven by the solver lib itself. The purpose of this function is to take care of the iteration reporting and the calling of the callback_func is available. As a developer you might want to overwrite this function completely (e.g. HyperoptSolver) but then you need to take care for iteration reporting for yourself. The alternative is to only implement loss_function_call (e.g. OptunitySolver). :param params: [dict] hyperparameter space sample e.g. {'p1': 0.123, 'p2': 3.87, ...} :return: [float] loss """ self._idx += 1 vals = {} idx = {} for key, value in params.items(): vals[key] = [value] idx[key] = [self._idx] trial = {'tid': self._idx, 'result': {'loss': None, 'status': 'ok'}, 'misc': { 'tid': self._idx, 'idxs': idx, 'vals': vals }, 'book_time': datetime.datetime.now(), 'refresh_time': None } try: loss = self.loss_function_call(params) trial['result']['loss'] = loss trial['result']['status'] = 'ok' if loss == np.nan: trial['result']['status'] = 'failed' except Exception as e: LOG.error("computing loss failed due to:\n {}".format(e)) loss = np.nan trial['result']['loss'] = np.nan trial['result']['status'] = 'failed' trial['refresh_time'] = datetime.datetime.now() self._trials.trials.append(trial) cbd = copy.deepcopy(params) cbd['iterations'] = self._idx cbd['loss'] = loss cbd['status'] = trial['result']['status'] cbd['book_time'] = trial['book_time'] cbd['refresh_time'] = trial['refresh_time'] if isinstance(self.blackbox, BlackboxFunction) and self.blackbox.callback_func is not None: self.blackbox.callback_func(**cbd) if self._visdom_viewer is not None: self._visdom_viewer.update(cbd) return loss def run(self, print_stats=True): """ This function starts the optimization process. :param print_stats: [bool] en- or disable console output """ self._idx = 0 self.trials = Trials() start_time = datetime.datetime.now() try: search_space = self.convert_searchspace(self.project.hyperparameter) except Exception as e: msg = "Failed to convert searchspace, error: {}".format(e) LOG.error(msg) raise AssertionError(msg) try: self.execute_solver(search_space) except Exception as e: msg = "Failed to execute solver, error: {}".format(e) LOG.error(msg) raise AssertionError(msg) end_time = datetime.datetime.now() dt = end_time - start_time days = divmod(dt.total_seconds(), 86400) hours = divmod(days[1], 3600) minutes = divmod(hours[1], 60) seconds = divmod(minutes[1], 1) milliseconds = divmod(seconds[1], 0.001) self._total_duration = [int(days[0]), int(hours[0]), int(minutes[0]), int(seconds[0]), int(milliseconds[0])] if print_stats: self.print_best() self.print_timestats() def get_results(self): """ This function returns a complete optimization history as pandas DataFrame and a dict with the optimal parameter set. :return: [DataFrame], [dict] history and optimal parameter set """ assert isinstance(self.trials, Trials), "precondition violation, wrong trials type! Maybe solver was not yet executed?" results = {'duration': [], 'losses': [], 'status': []} pset = self.trials.trials[0]['misc']['vals'] for p in pset.keys(): results[p] = [] for n, trial in enumerate(self.trials.trials): t1 = trial['book_time'] t2 = trial['refresh_time'] results['duration'].append((t2 - t1).microseconds / 1000.0) results['losses'].append(trial['result']['loss']) results['status'].append(trial['result']['status'] == 'ok') losses = np.array(results['losses']) results['losses'] = list(losses) pset = trial['misc']['vals'] for p in pset.items(): results[p[0]].append(p[1][0]) return pd.DataFrame.from_dict(results), self.best def print_best(self): print("\n") print("#" * 40) print("### Best Parameter Choice ###") print("#" * 40) for name, value in self.best.items(): print(" - {}\t:\t{}".format(name, value)) print("\n - number of iterations\t:\t{}".format(self.trials.trials[-1]['tid']+1)) print(" - total time\t:\t{}d:{}h:{}m:{}s:{}ms".format(self._total_duration[0], self._total_duration[1], self._total_duration[2], self._total_duration[3], self._total_duration[4])) print("#" * 40) def compute_time_statistics(self): dts = [] for trial in self._trials.trials: if 'book_time' in trial.keys() and 'refresh_time' in trial.keys(): dt = trial['refresh_time'] - trial['book_time'] dts.append(dt.total_seconds()) self._time_per_iteration = np.mean(dts) * 1e3 self._accumulated_blackbox_time = np.sum(dts) * 1e3 tmp = self.total_duration - self._accumulated_blackbox_time self._solver_overhead = int(np.round(100.0 / (self.total_duration+1e-12) * tmp)) def print_timestats(self): print("\n") print("#" * 40) print("### Timing Statistics ###") print("#" * 40) print(" - per iteration: {}ms".format(int(self.time_per_iteration*1e4)/10000)) print(" - total time: {}d:{}h:{}m:{}s:{}ms".format(self._total_duration[0], self._total_duration[1], self._total_duration[2], self._total_duration[3], self._total_duration[4])) print("#" * 40) print(" - solver overhead: {}%".format(self.solver_overhead)) def start_viewer(self, port=8097, server="http://localhost"): try: self._visdom_viewer = VisdomViewer(self._project, port, server) except Exception as e: import warnings warnings.warn("Failed starting VisdomViewer. Is the server running? If not start it via $visdom") LOG.error("Failed starting VisdomViewer: {}".format(e)) self._visdom_viewer = None def check_project(self): # check hyperparameter signatures for name, param in self.project.hyperparameter.items(): for sig, settings in self._hopt_signatures.items(): if sig not in param.keys(): msg = "Missing hyperparameter signature {}!".format(sig) LOG.error(msg) raise LookupError(msg) else: if not isinstance(param[sig], settings["type"]): msg = "Hyperparameter signature type mismatch, expected type {} got {}!".format(settings["type"], param[sig]) LOG.error(msg) raise TypeError(msg) if settings["options"] is not None: if param[sig] not in settings["options"]: msg = "Wrong signature value, {} not found in signature options!".format(param[sig]) LOG.error(msg) raise LookupError(msg) # check child members for name in self._child_members.keys(): if name not in self.project.__dict__.keys(): msg = "missing settings field {}!".format(name) LOG.error(msg) raise LookupError(msg) self.__dict__[name] = self.project.settings[name] @property def project(self): return self._project @project.setter def project(self, value): if isinstance(value, dict): self._project = HyppopyProject(value) elif isinstance(value, HyppopyProject): self._project = value else: msg = "Input error, project_manager of type: {} not allowed!".format(type(value)) LOG.error(msg) raise TypeError(msg) self.check_project() @property def blackbox(self): return self._blackbox @blackbox.setter def blackbox(self, value): if isinstance(value, types.FunctionType) or isinstance(value, BlackboxFunction) or isinstance(value, VirtualFunction): self._blackbox = value else: self._blackbox = None msg = "Input error, blackbox of type: {} not allowed!".format(type(value)) LOG.error(msg) raise TypeError(msg) @property def best(self): return self._best @best.setter def best(self, value): if not isinstance(value, dict): msg = "Input error, best of type: {} not allowed!".format(type(value)) LOG.error(msg) raise TypeError(msg) self._best = value @property def trials(self): return self._trials @trials.setter def trials(self, value): self._trials = value @property def total_duration(self): return (self._total_duration[0]*86400 + self._total_duration[1] * 3600 + self._total_duration[2] * 60 + self._total_duration[3]) * 1000 + self._total_duration[4] @property def solver_overhead(self): if self._solver_overhead is None: self.compute_time_statistics() return self._solver_overhead @property def time_per_iteration(self): if self._time_per_iteration is None: self.compute_time_statistics() return self._time_per_iteration @property def accumulated_blackbox_time(self): if self._accumulated_blackbox_time is None: self.compute_time_statistics() return self._accumulated_blackbox_time diff --git a/hyppopy/solvers/OptunaSolver.py b/hyppopy/solvers/OptunaSolver.py index 4514bc1..2bf8964 100644 --- a/hyppopy/solvers/OptunaSolver.py +++ b/hyppopy/solvers/OptunaSolver.py @@ -1,87 +1,86 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import os import optuna import logging import warnings import numpy as np from pprint import pformat from hyppopy.globals import DEBUGLEVEL from hyppopy.solvers.HyppopySolver import HyppopySolver LOG = logging.getLogger(os.path.basename(__file__)) LOG.setLevel(DEBUGLEVEL) class OptunaSolver(HyppopySolver): def __init__(self, project=None): HyppopySolver.__init__(self, project) self._searchspace = None def define_interface(self): self.add_member("max_iterations", int) self.add_hyperparameter_signature(name="domain", dtype=str, options=["uniform", "categorical"]) self.add_hyperparameter_signature(name="data", dtype=list) self.add_hyperparameter_signature(name="type", dtype=type) def reformat_parameter(self, params): out_params = {} for name, value in params.items(): if self._searchspace[name]["domain"] == "categorical": out_params[name] = self._searchspace[name]["data"][int(np.round(value))] else: if self._searchspace[name]["type"] is int: out_params[name] = int(np.round(value)) else: out_params[name] = value return out_params def trial_cache(self, trial): params = {} for name, param in self._searchspace.items(): if param["domain"] == "categorical": params[name] = trial.suggest_categorical(name, param["data"]) else: params[name] = trial.suggest_uniform(name, param["data"][0], param["data"][1]) return self.loss_function(**params) def loss_function_call(self, params): for key in params.keys(): if self.project.get_typeof(key) is int: params[key] = int(round(params[key])) return self.blackbox(**params) def execute_solver(self, searchspace): LOG.debug("execute_solver using solution space:\n\n\t{}\n".format(pformat(searchspace))) self._searchspace = searchspace try: study = optuna.create_study() study.optimize(self.trial_cache, n_trials=self.max_iterations) self.best = study.best_trial.params except Exception as e: LOG.error("internal error in bayes_opt maximize occured. {}".format(e)) raise BrokenPipeError("internal error in bayes_opt maximize occured. {}".format(e)) def convert_searchspace(self, hyperparameter): LOG.debug("convert input parameter\n\n\t{}\n".format(pformat(hyperparameter))) for name, param in hyperparameter.items(): if param["domain"] != "categorical" and param["domain"] != "uniform": msg = "Warning: Optuna cannot handle {} domain. Only uniform and categorical domains are supported!".format(param["domain"]) warnings.warn(msg) LOG.warning(msg) return hyperparameter diff --git a/hyppopy/solvers/OptunitySolver.py b/hyppopy/solvers/OptunitySolver.py index bf4519a..e6c642b 100644 --- a/hyppopy/solvers/OptunitySolver.py +++ b/hyppopy/solvers/OptunitySolver.py @@ -1,99 +1,98 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import os import logging import optunity import warnings from pprint import pformat from hyppopy.globals import DEBUGLEVEL LOG = logging.getLogger(os.path.basename(__file__)) LOG.setLevel(DEBUGLEVEL) from hyppopy.solvers.HyppopySolver import HyppopySolver class OptunitySolver(HyppopySolver): def __init__(self, project=None): HyppopySolver.__init__(self, project) self._solver_info = None self.opt_trials = None def define_interface(self): self.add_member("max_iterations", int) self.add_hyperparameter_signature(name="domain", dtype=str, options=["uniform", "categorical"]) self.add_hyperparameter_signature(name="data", dtype=list) self.add_hyperparameter_signature(name="type", dtype=type) def loss_function_call(self, params): for key in params.keys(): if self.project.get_typeof(key) is int: params[key] = int(round(params[key])) return self.blackbox(**params) def execute_solver(self, searchspace): LOG.debug("execute_solver using solution space:\n\n\t{}\n".format(pformat(searchspace))) try: self.best, _, _ = optunity.minimize_structured(f=self.loss_function, num_evals=self.max_iterations, search_space=searchspace) except Exception as e: LOG.error("internal error in optunity.minimize_structured occured. {}".format(e)) raise BrokenPipeError("internal error in optunity.minimize_structured occured. {}".format(e)) def split_categorical(self, pdict): categorical = {} uniform = {} for name, pset in pdict.items(): for key, value in pset.items(): if key == 'domain' and value == 'categorical': categorical[name] = pset elif key == 'domain': uniform[name] = pset return categorical, uniform def convert_searchspace(self, hyperparameter): LOG.debug("convert input parameter\n\n\t{}\n".format(pformat(hyperparameter))) solution_space = {} # split input in categorical and non-categorical data cat, uni = self.split_categorical(hyperparameter) # build up dictionary keeping all non-categorical data uniforms = {} for key, value in uni.items(): for key2, value2 in value.items(): if key2 == 'data': if len(value2) == 3: uniforms[key] = value2[0:2] elif len(value2) == 2: uniforms[key] = value2 else: raise AssertionError("precondition violation, optunity searchspace needs list with left and right range bounds!") if len(cat) == 0: return uniforms # build nested categorical structure inner_level = uniforms for key, value in cat.items(): tmp = {} tmp2 = {} for key2, value2 in value.items(): if key2 == 'data': for elem in value2: tmp[elem] = inner_level tmp2[key] = tmp inner_level = tmp2 solution_space = tmp2 return solution_space diff --git a/hyppopy/solvers/QuasiRandomsearchSolver.py b/hyppopy/solvers/QuasiRandomsearchSolver.py index 28e028f..ae44ef2 100644 --- a/hyppopy/solvers/QuasiRandomsearchSolver.py +++ b/hyppopy/solvers/QuasiRandomsearchSolver.py @@ -1,182 +1,181 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import os import logging import warnings import numpy as np from pprint import pformat from hyppopy.globals import DEBUGLEVEL from hyppopy.solvers.HyppopySolver import HyppopySolver LOG = logging.getLogger(os.path.basename(__file__)) LOG.setLevel(DEBUGLEVEL) def get_loguniform_ranges(a, b, N): aL = np.log(a) bL = np.log(b) exp_range = np.linspace(aL, bL, N+1) ranges = [] for i in range(N): ranges.append([np.exp(exp_range[i]), np.exp(exp_range[i+1])]) return ranges class HaltonSequenceGenerator(object): def __init__(self, N_samples, dimensions): self._N = N_samples self._dims = dimensions def next_prime(self): def is_prime(num): "Checks if num is a prime value" for i in range(2, int(num ** 0.5) + 1): if (num % i) == 0: return False return True prime = 3 while 1: if is_prime(prime): yield prime prime += 2 def vdc(self, n, base): vdc, denom = 0, 1 while n: denom *= base n, remainder = divmod(n, base) vdc += remainder / float(denom) return vdc def get_sequence(self): seq = [] primeGen = self.next_prime() next(primeGen) for d in range(self._dims): base = next(primeGen) seq.append([self.vdc(i, base) for i in range(self._N)]) return seq class QuasiRandomSampleGenerator(object): def __init__(self, N_samples=None): self._axis = None self._samples = [] self._numerical = [] self._categorical = [] self._N_samples = N_samples def set_axis(self, name, data, domain, dtype): if domain == "categorical": if dtype is int: data = [int(i) for i in data] elif dtype is str: data = [str(i) for i in data] elif dtype is float: data = [float(i) for i in data] self._categorical.append({"name": name, "data": data, "type": dtype}) else: self._numerical.append({"name": name, "data": data, "type": dtype, "domain": domain}) def generate_samples(self, N_samples=None): self._axis = [] if N_samples is None: assert isinstance(self._N_samples, int), "Precondition violation, no number of samples specified!" else: self._N_samples = N_samples axis_samples = {} if len(self._numerical) > 0: generator = HaltonSequenceGenerator(self._N_samples, len(self._numerical)) unit_space = generator.get_sequence() for n, axis in enumerate(self._numerical): width = abs(axis["data"][1] - axis["data"][0]) unit_space[n] = [x * width for x in unit_space[n]] unit_space[n] = [x + axis["data"][0] for x in unit_space[n]] if axis["type"] is int: unit_space[n] = [int(round(x)) for x in unit_space[n]] axis_samples[axis["name"]] = unit_space[n] else: warnings.warn("No numerical axis defined, this warning can be ignored if searchspace is categorical only, otherwise check if axis was set!") for n in range(self._N_samples): sample = {} for name, data in axis_samples.items(): sample[name] = data[n] for cat in self._categorical: choice = np.random.choice(len(cat["data"]), 1)[0] sample[cat["name"]] = cat["data"][choice] self._samples.append(sample) def next(self): if len(self._samples) == 0: self.generate_samples() if len(self._samples) == 0: return None next_index = np.random.choice(len(self._samples), 1)[0] sample = self._samples.pop(next_index) return sample class QuasiRandomsearchSolver(HyppopySolver): """ The QuasiRandomsearchSolver class implements a quasi randomsearch optimization. The quasi randomsearch supports categorical, uniform, normal and loguniform sampling. The solver defines a grid which size and appearance depends on the max_iterations parameter and the domain. The at each grid box a random value is drawn. This ensures both, random parameter samples with the cosntraint that the space is evenly sampled and cluster building prevention.""" def __init__(self, project=None): HyppopySolver.__init__(self, project) self._sampler = None def define_interface(self): self.add_member("max_iterations", int) self.add_hyperparameter_signature(name="domain", dtype=str, options=["uniform", "categorical"]) self.add_hyperparameter_signature(name="data", dtype=list) self.add_hyperparameter_signature(name="type", dtype=type) def loss_function_call(self, params): loss = self.blackbox(**params) if loss is None: return np.nan return loss def execute_solver(self, searchspace): N = self.max_iterations self._sampler = QuasiRandomSampleGenerator(N) for name, axis in searchspace.items(): self._sampler.set_axis(name, axis["data"], axis["domain"], axis["type"]) try: for n in range(N): params = self._sampler.next() if params is None: break self.loss_function(**params) except Exception as e: msg = "internal error in randomsearch execute_solver occured. {}".format(e) LOG.error(msg) raise BrokenPipeError(msg) self.best = self._trials.argmin def convert_searchspace(self, hyperparameter): """ this function simply pipes the input parameter through, the sample drawing functions are responsible for interpreting the parameter. :param hyperparameter: [dict] hyperparameter space :return: [dict] hyperparameter space """ LOG.debug("convert input parameter\n\n\t{}\n".format(pformat(hyperparameter))) return hyperparameter diff --git a/hyppopy/solvers/RandomsearchSolver.py b/hyppopy/solvers/RandomsearchSolver.py index d5aa50d..0036f8b 100644 --- a/hyppopy/solvers/RandomsearchSolver.py +++ b/hyppopy/solvers/RandomsearchSolver.py @@ -1,161 +1,160 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import os import copy import random import logging import numpy as np from pprint import pformat from hyppopy.globals import DEBUGLEVEL from hyppopy.solvers.HyppopySolver import HyppopySolver LOG = logging.getLogger(os.path.basename(__file__)) LOG.setLevel(DEBUGLEVEL) def draw_uniform_sample(param): """ function draws a random sample from a uniform range :param param: [dict] input hyperparameter discription :return: random sample value of type data['type'] """ assert param['type'] is not str, "cannot sample a string list!" assert param['data'][0] < param['data'][1], "precondition violation: data[0] > data[1]!" s = random.random() s *= np.abs(param['data'][1] - param['data'][0]) s += param['data'][0] if param['type'] is int: s = int(np.round(s)) if s < param['data'][0]: s = int(param['data'][0]) if s > param['data'][1]: s = int(param['data'][1]) return s def draw_normal_sample(param): """ function draws a random sample from a normal distributed range :param param: [dict] input hyperparameter discription :return: random sample value of type data['type'] """ assert param['type'] is not str, "cannot sample a string list!" assert param['data'][0] < param['data'][1], "precondition violation: data[0] > data[1]!" mu = (param['data'][1] - param['data'][0]) / 2 sigma = mu / 3 s = np.random.normal(loc=param['data'][0] + mu, scale=sigma) if s > param['data'][1]: s = param['data'][1] if s < param['data'][0]: s = param['data'][0] s = float(s) if param["type"] is int: s = int(np.round(s)) return s def draw_loguniform_sample(param): """ function draws a random sample from a logarithmic distributed range :param param: [dict] input hyperparameter discription :return: random sample value of type data['type'] """ assert param['type'] is not str, "cannot sample a string list!" assert param['data'][0] < param['data'][1], "precondition violation: data[0] > data[1]!" p = copy.deepcopy(param) p['data'][0] = np.log(param['data'][0]) p['data'][1] = np.log(param['data'][1]) assert p['data'][0] is not np.nan, "Precondition violation, left bound input error, results in nan!" assert p['data'][1] is not np.nan, "Precondition violation, right bound input error, results in nan!" x = draw_uniform_sample(p) s = np.exp(x) if s > param['data'][1]: s = param['data'][1] if s < param['data'][0]: s = param['data'][0] return s def draw_categorical_sample(param): """ function draws a random sample from a categorical list :param param: [dict] input hyperparameter discription :return: random sample value of type data['type'] """ return random.sample(param['data'], 1)[0] def draw_sample(param): """ function draws a sample from the input hyperparameter descriptor depending on it's domain :param param: [dict] input hyperparameter discription :return: random sample value of type data['type'] """ assert isinstance(param, dict), "input error, hyperparam descriptors of type {} not allowed!".format(type(param)) if param['domain'] == "uniform": return draw_uniform_sample(param) elif param['domain'] == "normal": return draw_normal_sample(param) elif param['domain'] == "loguniform": return draw_loguniform_sample(param) elif param['domain'] == "categorical": return draw_categorical_sample(param) else: raise LookupError("Unknown domain {}".format(param['domain'])) class RandomsearchSolver(HyppopySolver): """ The RandomsearchSolver class implements a randomsearch optimization. The randomsearch supports categorical, uniform, normal and loguniform sampling. The solver draws an independent sample from the parameter space each iteration.""" def __init__(self, project=None): HyppopySolver.__init__(self, project) def define_interface(self): self.add_member("max_iterations", int) self.add_hyperparameter_signature(name="domain", dtype=str, options=["uniform", "normal", "loguniform", "categorical"]) self.add_hyperparameter_signature(name="data", dtype=list) self.add_hyperparameter_signature(name="type", dtype=type) def loss_function_call(self, params): loss = self.blackbox(**params) if loss is None: return np.nan return loss def execute_solver(self, searchspace): N = self.max_iterations try: for n in range(N): params = {} for name, p in searchspace.items(): params[name] = draw_sample(p) self.loss_function(**params) except Exception as e: msg = "internal error in randomsearch execute_solver occured. {}".format(e) LOG.error(msg) raise BrokenPipeError(msg) self.best = self._trials.argmin def convert_searchspace(self, hyperparameter): """ this function simply pipes the input parameter through, the sample drawing functions are responsible for interpreting the parameter. :param hyperparameter: [dict] hyperparameter space :return: [dict] hyperparameter space """ LOG.debug("convert input parameter\n\n\t{}\n".format(pformat(hyperparameter))) return hyperparameter diff --git a/hyppopy/solvers/__init__.py b/hyppopy/solvers/__init__.py index e69de29..72ec40a 100644 --- a/hyppopy/solvers/__init__.py +++ b/hyppopy/solvers/__init__.py @@ -0,0 +1,11 @@ +# Hyppopy - A Hyper-Parameter Optimization Toolbox +# +# Copyright (c) German Cancer Research Center, +# Division of Medical Image Computing. +# All rights reserved. +# +# This software is distributed WITHOUT ANY WARRANTY; without +# even the implied warranty of MERCHANTABILITY or FITNESS FOR +# A PARTICULAR PURPOSE. +# +# See LICENSE \ No newline at end of file diff --git a/hyppopy/tests/__init__.py b/hyppopy/tests/__init__.py index 8f5ccae..875003c 100644 --- a/hyppopy/tests/__init__.py +++ b/hyppopy/tests/__init__.py @@ -1,46 +1,58 @@ +# Hyppopy - A Hyper-Parameter Optimization Toolbox +# +# Copyright (c) German Cancer Research Center, +# Division of Medical Image Computing. +# All rights reserved. +# +# This software is distributed WITHOUT ANY WARRANTY; without +# even the implied warranty of MERCHANTABILITY or FITNESS FOR +# A PARTICULAR PURPOSE. +# +# See LICENSE + import os from hyppopy.globals import ROOT def create_readmesnippeds(): fname = os.path.join(ROOT, "README.md") f = open(fname, "r") codes = [] snipped = None for line in f.readlines(): if snipped is not None: snipped.append("\t\t{}".format(line)) if line.startswith("```"): if line.startswith("```python"): snipped = [] else: if snipped is not None: snipped.pop(-1) codes.append(snipped) snipped = None for n, snipped in enumerate(codes): f = open(os.path.join(ROOT, *("hyppopy", "tests", "test_snipped_{}.py".format(str(n).zfill(3)))), "w") test_code = "# DKFZ\n" test_code += "#\n" test_code += "#\n" test_code += "# Copyright (c) German Cancer Research Center,\n" test_code += "# Division of Medical Image Computing.\n" test_code += "# All rights reserved.\n" test_code += "#\n" test_code += "# This software is distributed WITHOUT ANY WARRANTY; without\n" test_code += "# even the implied warranty of MERCHANTABILITY or FITNESS FOR\n" test_code += "# A PARTICULAR PURPOSE.\n" test_code += "#\n" test_code += "# See LICENSE\n\n" test_code += "import os\n" test_code += "import unittest\n\n" test_code += "class ReadmeSnipped_{}TestSuite(unittest.TestCase):\n\n".format(str(n).zfill(3)) test_code += "\tdef test_scripts(self):\n\n" snipped.insert(0, test_code) f.writelines(snipped) f.close() create_readmesnippeds() diff --git a/hyppopy/tests/test_gridsearchsolver.py b/hyppopy/tests/test_gridsearchsolver.py index 86b309c..80146b2 100644 --- a/hyppopy/tests/test_gridsearchsolver.py +++ b/hyppopy/tests/test_gridsearchsolver.py @@ -1,285 +1,284 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import unittest from hyppopy.solvers.GridsearchSolver import * from hyppopy.VirtualFunction import VirtualFunction from hyppopy.HyppopyProject import HyppopyProject class GridsearchTestSuite(unittest.TestCase): def setUp(self): pass def test_get_uniform_axis_sample(self): drange = [0, 10] N = 11 data = get_uniform_axis_sample(drange[0], drange[1], N, float) for i in range(11): self.assertEqual(float(i), data[i]) drange = [-10, 10] N = 21 data = get_uniform_axis_sample(drange[0], drange[1], N, int) self.assertEqual(data[0], -10) self.assertEqual(data[20], 10) self.assertEqual(data[10], 0) def test_get_norm_cdf(self): res = [0, 0.27337265, 0.4331928, 0.48777553, 0.4986501, 0.5013499, 0.51222447, 0.5668072, 0.72662735, 1] f = get_norm_cdf(10) for n, v in enumerate(res): self.assertAlmostEqual(v, f[n]) res = [0.0, 0.27337264762313174, 0.4331927987311419, 0.48777552734495533, 0.4986501019683699, 0.5, 0.5013498980316301, 0.5122244726550447, 0.5668072012688581, 0.7266273523768683, 1.0] f = get_norm_cdf(11) for n, v in enumerate(res): self.assertAlmostEqual(v, f[n]) def test_get_gaussian_axis_sampling(self): res = [-5.0, -2.2662735237686826, -0.6680720126885813, -0.12224472655044671, -0.013498980316301257, 0.013498980316301257, 0.12224472655044671, 0.6680720126885813, 2.2662735237686826, 5.0] bounds = (-5, 5) N = 10 data = get_gaussian_axis_sample(bounds[0], bounds[1], N, float) for n in range(N): self.assertAlmostEqual(res[n], data[n]) res = [-5.0, -2.2662735237686826, -0.6680720126885813, -0.12224472655044671, -0.013498980316301257, 0.0, 0.013498980316301257, 0.12224472655044671, 0.6680720126885813, 2.2662735237686826, 5.0] bounds = (-5, 5) N = 11 data = get_gaussian_axis_sample(bounds[0], bounds[1], N, float) for n in range(N): self.assertAlmostEqual(res[n], data[n]) def test_get_logarithmic_axis_sample(self): res = [0.0010000000000000002, 0.0035938136638046297, 0.012915496650148841, 0.046415888336127795, 0.1668100537200059, 0.5994842503189414, 2.154434690031884, 7.7426368268112675, 27.825594022071247, 100.00000000000004] bounds = (0.001, 1e2) N = 10 data = get_logarithmic_axis_sample(bounds[0], bounds[1], N, float) for n in range(N): self.assertAlmostEqual(res[n], data[n]) res = [0.0010000000000000002, 0.003162277660168382, 0.010000000000000004, 0.03162277660168381, 0.10000000000000006, 0.31622776601683833, 1.0000000000000009, 3.1622776601683813, 10.00000000000001, 31.622776601683846, 100.00000000000004] bounds = (0.001, 1e2) N = 11 data = get_logarithmic_axis_sample(bounds[0], bounds[1], N, float) for n in range(N): self.assertAlmostEqual(res[n], data[n]) def test_solver(self): config = { "hyperparameter": { "value 1": { "domain": "uniform", "data": [0, 20], "type": int, "frequency": 11 }, "value 2": { "domain": "normal", "data": [0, 20.0], "type": float, "frequency": 11 }, "value 3": { "domain": "loguniform", "data": [1, 10000], "type": float, "frequency": 11 }, "categorical": { "domain": "categorical", "data": ["a", "b"], "type": str, "frequency": 1 } }} res_labels = ['value 1', 'value 2', 'value 3', 'categorical'] res_values = [[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20], [0.0, 5.467452952462635, 8.663855974622837, 9.755510546899107, 9.973002039367397, 10.0, 10.026997960632603, 10.244489453100893, 11.336144025377163, 14.532547047537365, 20.0], [1.0, 2.51188643150958, 6.309573444801933, 15.848931924611136, 39.810717055349734, 100.00000000000004, 251.18864315095806, 630.9573444801938, 1584.8931924611143, 3981.071705534977, 10000.00000000001], ['a', 'b']] solver = GridsearchSolver(config) searchspace = solver.convert_searchspace(config["hyperparameter"]) for n in range(len(res_labels)): self.assertEqual(res_labels[n], searchspace[0][n]) for i in range(3): self.assertAlmostEqual(res_values[i], searchspace[1][i]) self.assertEqual(res_values[3], searchspace[1][3]) def test_solver_uniform(self): config = { "hyperparameter": { "axis_00": { "domain": "uniform", "data": [0, 800], "type": float, "frequency": 11 }, "axis_01": { "domain": "uniform", "data": [-1, 1], "type": float, "frequency": 11 }, "axis_02": { "domain": "uniform", "data": [0, 10], "type": float, "frequency": 11 } }} project = HyppopyProject(config) solver = GridsearchSolver(project) vfunc = VirtualFunction() vfunc.load_default() solver.blackbox = vfunc solver.run(print_stats=False) df, best = solver.get_results() self.assertAlmostEqual(best['axis_00'], 240, places=1) self.assertAlmostEqual(best['axis_01'], 0.2, places=1) self.assertAlmostEqual(best['axis_02'], 5.0, places=1) for status in df['status']: self.assertTrue(status) for loss in df['losses']: self.assertTrue(isinstance(loss, float)) def test_solver_normal(self): config = { "hyperparameter": { "axis_00": { "domain": "normal", "data": [100, 300], "type": float, "frequency": 11 }, "axis_01": { "domain": "normal", "data": [0, 0.8], "type": float, "frequency": 11 }, "axis_02": { "domain": "normal", "data": [4, 6], "type": float, "frequency": 11 } }} project = HyppopyProject(config) solver = GridsearchSolver(project) vfunc = VirtualFunction() vfunc.load_default() solver.blackbox = vfunc solver.run(print_stats=False) df, best = solver.get_results() self.assertAlmostEqual(best['axis_00'], 197.555, places=1) self.assertAlmostEqual(best['axis_01'], 0.21869, places=1) self.assertAlmostEqual(best['axis_02'], 5.13361, places=1) for status in df['status']: self.assertTrue(status) for loss in df['losses']: self.assertTrue(isinstance(loss, float)) def test_solver_loguniform(self): config = { "hyperparameter": { "axis_00": { "domain": "loguniform", "data": [0.00001, 300], "type": float, "frequency": 21 }, "axis_01": { "domain": "loguniform", "data": [0.00001, 0.8], "type": float, "frequency": 21 }, "axis_02": { "domain": "loguniform", "data": [4, 6], "type": float, "frequency": 21 } }} project = HyppopyProject(config) solver = GridsearchSolver(project) vfunc = VirtualFunction() vfunc.load_default() solver.blackbox = vfunc solver.run(print_stats=False) df, best = solver.get_results() self.assertAlmostEqual(best['axis_00'], 299.999, places=1) self.assertAlmostEqual(best['axis_01'], 0.25869, places=1) self.assertAlmostEqual(best['axis_02'], 5.10169, places=1) for status in df['status']: self.assertTrue(status) for loss in df['losses']: self.assertTrue(isinstance(loss, float)) if __name__ == '__main__': unittest.main() diff --git a/hyppopy/tests/test_hyperoptsolver.py b/hyppopy/tests/test_hyperoptsolver.py index 4a968eb..872300b 100644 --- a/hyppopy/tests/test_hyperoptsolver.py +++ b/hyppopy/tests/test_hyperoptsolver.py @@ -1,105 +1,103 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import unittest -import matplotlib.pylab as plt from hyppopy.solvers.HyperoptSolver import * from hyppopy.VirtualFunction import VirtualFunction from hyppopy.HyppopyProject import HyppopyProject class HyperoptSolverTestSuite(unittest.TestCase): def setUp(self): pass def test_solver_complete(self): config = { "hyperparameter": { "axis_00": { "domain": "uniform", "data": [300, 700], "type": float }, "axis_01": { "domain": "uniform", "data": [0, 0.8], "type": float }, "axis_02": { "domain": "uniform", "data": [3.5, 6.5], "type": float } }, "max_iterations": 500 } project = HyppopyProject(config) solver = HyperoptSolver(project) vfunc = VirtualFunction() vfunc.load_default() solver.blackbox = vfunc solver.run(print_stats=False) df, best = solver.get_results() self.assertTrue(575 <= best['axis_00'] <= 585) self.assertTrue(0.1 <= best['axis_01'] <= 0.8) self.assertTrue(4.7 <= best['axis_02'] <= 5.3) for status in df['status']: self.assertTrue(status) for loss in df['losses']: self.assertTrue(isinstance(loss, float)) def test_solver_normal(self): config = { "hyperparameter": { "axis_00": { "domain": "normal", "data": [500, 650], "type": float }, "axis_01": { "domain": "normal", "data": [0.1, 0.8], "type": float }, "axis_02": { "domain": "normal", "data": [4.5, 5.5], "type": float } }, "max_iterations": 500, } project = HyppopyProject(config) solver = HyperoptSolver(project) vfunc = VirtualFunction() vfunc.load_default() solver.blackbox = vfunc solver.run(print_stats=False) df, best = solver.get_results() self.assertTrue(575 <= best['axis_00'] <= 585) self.assertTrue(0.1 <= best['axis_01'] <= 0.8) self.assertTrue(4.7 <= best['axis_02'] <= 5.3) for status in df['status']: self.assertTrue(status) for loss in df['losses']: self.assertTrue(isinstance(loss, float)) if __name__ == '__main__': unittest.main() diff --git a/hyppopy/tests/test_hyppopyproject.py b/hyppopy/tests/test_hyppopyproject.py index 39ad65d..04477e4 100644 --- a/hyppopy/tests/test_hyppopyproject.py +++ b/hyppopy/tests/test_hyppopyproject.py @@ -1,83 +1,82 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import unittest from hyppopy.HyppopyProject import HyppopyProject def foo(a, b): return a + b class HyppopyProjectTestSuite(unittest.TestCase): def setUp(self): pass def test_project_creation(self): config = { "hyperparameter": { "C": { "domain": "uniform", "data": [0.0001, 20], "type": float }, "kernel": { "domain": "categorical", "data": ["linear", "sigmoid", "poly", "rbf"], "type": str } }, "max_iterations": 300, "param1": 1, "param2": 2, "function": foo } project = HyppopyProject() project.set_config(config) self.assertEqual(project.hyperparameter["C"]["domain"], "uniform") self.assertEqual(project.hyperparameter["C"]["data"], [0.0001, 20]) self.assertTrue(project.hyperparameter["C"]["type"] is float) self.assertEqual(project.hyperparameter["kernel"]["domain"], "categorical") self.assertEqual(project.hyperparameter["kernel"]["data"], ["linear", "sigmoid", "poly", "rbf"]) self.assertTrue(project.hyperparameter["kernel"]["type"] is str) self.assertEqual(project.max_iterations, 300) self.assertEqual(project.param1, 1) self.assertEqual(project.param2, 2) self.assertEqual(project.function(2, 3), 5) self.assertTrue(project.get_typeof("C") is float) self.assertTrue(project.get_typeof("kernel") is str) project = HyppopyProject() project.add_hyperparameter(name="C", domain="uniform", data=[0.0001, 20], type=float) project.add_hyperparameter(name="kernel", domain="categorical", data=["linear", "sigmoid", "poly", "rbf"], type=str) self.assertEqual(project.hyperparameter["C"]["domain"], "uniform") self.assertEqual(project.hyperparameter["C"]["data"], [0.0001, 20]) self.assertTrue(project.hyperparameter["C"]["type"] is float) self.assertEqual(project.hyperparameter["kernel"]["domain"], "categorical") self.assertEqual(project.hyperparameter["kernel"]["data"], ["linear", "sigmoid", "poly", "rbf"]) self.assertTrue(project.hyperparameter["kernel"]["type"] is str) project.set_settings(max_iterations=500) self.assertEqual(project.max_iterations, 500) project.add_setting("my_param", 42) self.assertEqual(project.my_param, 42) project.add_setting("max_iterations", 200) self.assertEqual(project.max_iterations, 200) diff --git a/hyppopy/tests/test_optunasolver.py b/hyppopy/tests/test_optunasolver.py index 9c185cf..26a71d3 100644 --- a/hyppopy/tests/test_optunasolver.py +++ b/hyppopy/tests/test_optunasolver.py @@ -1,67 +1,65 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import unittest -import matplotlib.pylab as plt from hyppopy.solvers.OptunaSolver import * from hyppopy.VirtualFunction import VirtualFunction from hyppopy.HyppopyProject import HyppopyProject class OptunaSolverTestSuite(unittest.TestCase): def setUp(self): pass def test_solver_complete(self): config = { "hyperparameter": { "axis_00": { "domain": "uniform", "data": [300, 800], "type": float }, "axis_01": { "domain": "uniform", "data": [-1, 1], "type": float }, "axis_02": { "domain": "uniform", "data": [0, 10], "type": float } }, "max_iterations": 100 } project = HyppopyProject(config) solver = OptunaSolver(project) vfunc = VirtualFunction() vfunc.load_default() solver.blackbox = vfunc solver.run(print_stats=False) df, best = solver.get_results() self.assertTrue(300 <= best['axis_00'] <= 800) self.assertTrue(-1 <= best['axis_01'] <= 1) self.assertTrue(0 <= best['axis_02'] <= 10) for status in df['status']: self.assertTrue(status) for loss in df['losses']: self.assertTrue(isinstance(loss, float)) if __name__ == '__main__': unittest.main() diff --git a/hyppopy/tests/test_optunitysolver.py b/hyppopy/tests/test_optunitysolver.py index 683cd9b..7ba39d1 100644 --- a/hyppopy/tests/test_optunitysolver.py +++ b/hyppopy/tests/test_optunitysolver.py @@ -1,67 +1,65 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import unittest -import matplotlib.pylab as plt from hyppopy.solvers.OptunitySolver import * from hyppopy.VirtualFunction import VirtualFunction from hyppopy.HyppopyProject import HyppopyProject class OptunitySolverTestSuite(unittest.TestCase): def setUp(self): pass def test_solver_complete(self): config = { "hyperparameter": { "axis_00": { "domain": "uniform", "data": [300, 800], "type": float }, "axis_01": { "domain": "uniform", "data": [-1, 1], "type": float }, "axis_02": { "domain": "uniform", "data": [0, 10], "type": float } }, "max_iterations": 100 } project = HyppopyProject(config) solver = OptunitySolver(project) vfunc = VirtualFunction() vfunc.load_default() solver.blackbox = vfunc solver.run(print_stats=False) df, best = solver.get_results() self.assertTrue(300 <= best['axis_00'] <= 800) self.assertTrue(-1 <= best['axis_01'] <= 1) self.assertTrue(0 <= best['axis_02'] <= 10) for status in df['status']: self.assertTrue(status) for loss in df['losses']: self.assertTrue(isinstance(loss, float)) if __name__ == '__main__': unittest.main() diff --git a/hyppopy/tests/test_quasirandomsearchsolver.py b/hyppopy/tests/test_quasirandomsearchsolver.py index e571a92..7491bc7 100644 --- a/hyppopy/tests/test_quasirandomsearchsolver.py +++ b/hyppopy/tests/test_quasirandomsearchsolver.py @@ -1,67 +1,65 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import unittest -import matplotlib.pylab as plt from hyppopy.solvers.QuasiRandomsearchSolver import * from hyppopy.VirtualFunction import VirtualFunction from hyppopy.HyppopyProject import HyppopyProject class QuasiRandomsearchTestSuite(unittest.TestCase): def setUp(self): pass def test_solver_uniform(self): config = { "hyperparameter": { "axis_00": { "domain": "uniform", "data": [0, 800], "type": float }, "axis_01": { "domain": "uniform", "data": [-1, 1], "type": float }, "axis_02": { "domain": "uniform", "data": [0, 10], "type": float } }, "max_iterations": 300 } project = HyppopyProject(config) solver = QuasiRandomsearchSolver(project) vfunc = VirtualFunction() vfunc.load_default() solver.blackbox = vfunc solver.run(print_stats=False) df, best = solver.get_results() self.assertTrue(0 <= best['axis_00'] <= 800) self.assertTrue(-1 <= best['axis_01'] <= 1) self.assertTrue(0 <= best['axis_02'] <= 10) for status in df['status']: self.assertTrue(status) for loss in df['losses']: self.assertTrue(isinstance(loss, float)) if __name__ == '__main__': unittest.main() diff --git a/hyppopy/tests/test_randomsearchsolver.py b/hyppopy/tests/test_randomsearchsolver.py index 10a7117..f2842a3 100644 --- a/hyppopy/tests/test_randomsearchsolver.py +++ b/hyppopy/tests/test_randomsearchsolver.py @@ -1,165 +1,164 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import unittest import matplotlib.pylab as plt from hyppopy.solvers.RandomsearchSolver import * from hyppopy.VirtualFunction import VirtualFunction from hyppopy.HyppopyProject import HyppopyProject class RandomsearchTestSuite(unittest.TestCase): def setUp(self): pass def test_draw_uniform_sample(self): param = {"data": [0, 1, 10], "type": float} values = [] for i in range(10000): values.append(draw_uniform_sample(param)) self.assertTrue(0 <= values[-1] <= 1) self.assertTrue(isinstance(values[-1], float)) hist = plt.hist(values, bins=10, normed=True) std = np.std(hist[0]) mean = np.mean(hist[0]) self.assertTrue(std < 0.05) self.assertTrue(0.9 < mean < 1.1) param = {"data": [0, 10, 11], "type": int} values = [] for i in range(10000): values.append(draw_uniform_sample(param)) self.assertTrue(0 <= values[-1] <= 10) self.assertTrue(isinstance(values[-1], int)) hist = plt.hist(values, bins=11, normed=True) std = np.std(hist[0]) mean = np.mean(hist[0]) self.assertTrue(std < 0.05) self.assertTrue(0.09 < mean < 0.11) def test_draw_normal_sample(self): param = {"data": [0, 10, 11], "type": int} values = [] for i in range(10000): values.append(draw_normal_sample(param)) self.assertTrue(0 <= values[-1] <= 10) self.assertTrue(isinstance(values[-1], int)) hist = plt.hist(values, bins=11, normed=True) for i in range(1, 5): self.assertTrue(hist[0][i-1]-hist[0][i] < 0) for i in range(5, 10): self.assertTrue(hist[0][i] - hist[0][i+1] > 0) def test_draw_loguniform_sample(self): param = {"data": [1, 1000, 11], "type": float} values = [] for i in range(10000): values.append(draw_loguniform_sample(param)) self.assertTrue(1 <= values[-1] <= 1000) self.assertTrue(isinstance(values[-1], float)) hist = plt.hist(values, bins=11, normed=True) for i in range(4): self.assertTrue(hist[0][i] > hist[0][i+1]) self.assertTrue((hist[0][i] - hist[0][i+1]) > 0) def test_draw_categorical_sample(self): param = {"data": [1, 2, 3], "type": int} values = [] for i in range(10000): values.append(draw_categorical_sample(param)) self.assertTrue(values[-1] == 1 or values[-1] == 2 or values[-1] == 3) self.assertTrue(isinstance(values[-1], int)) hist = plt.hist(values, bins=3, normed=True) for i in range(3): self.assertTrue(0.45 < hist[0][i] < 0.55) def test_solver_uniform(self): config = { "hyperparameter": { "axis_00": { "domain": "uniform", "data": [0, 800], "type": float }, "axis_01": { "domain": "uniform", "data": [-1, 1], "type": float }, "axis_02": { "domain": "uniform", "data": [0, 10], "type": float } }, "max_iterations": 300 } project = HyppopyProject(config) solver = RandomsearchSolver(project) vfunc = VirtualFunction() vfunc.load_default() solver.blackbox = vfunc solver.run(print_stats=False) df, best = solver.get_results() self.assertTrue(0 <= best['axis_00'] <= 800) self.assertTrue(-1 <= best['axis_01'] <= 1) self.assertTrue(0 <= best['axis_02'] <= 10) for status in df['status']: self.assertTrue(status) for loss in df['losses']: self.assertTrue(isinstance(loss, float)) def test_solver_normal(self): config = { "hyperparameter": { "axis_00": { "domain": "normal", "data": [500, 650], "type": float }, "axis_01": { "domain": "normal", "data": [0, 1], "type": float }, "axis_02": { "domain": "normal", "data": [4, 5], "type": float } }, "max_iterations": 500, } solver = RandomsearchSolver(config) vfunc = VirtualFunction() vfunc.load_default() solver.blackbox = vfunc solver.run(print_stats=False) df, best = solver.get_results() self.assertTrue(500 <= best['axis_00'] <= 650) self.assertTrue(0 <= best['axis_01'] <= 1) self.assertTrue(4 <= best['axis_02'] <= 5) for status in df['status']: self.assertTrue(status) for loss in df['losses']: self.assertTrue(isinstance(loss, float)) if __name__ == '__main__': unittest.main() diff --git a/hyppopy/tests/test_virtualfunction.py b/hyppopy/tests/test_virtualfunction.py index 9481111..53ead6e 100644 --- a/hyppopy/tests/test_virtualfunction.py +++ b/hyppopy/tests/test_virtualfunction.py @@ -1,94 +1,93 @@ -# DKFZ -# +# Hyppopy - A Hyper-Parameter Optimization Toolbox # # Copyright (c) German Cancer Research Center, # Division of Medical Image Computing. # All rights reserved. # # This software is distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. # # See LICENSE import os import unittest import numpy as np from hyppopy.VirtualFunction import VirtualFunction from hyppopy.globals import TESTDATA_DIR class VirtualFunctionTestSuite(unittest.TestCase): def setUp(self): pass def test_imagereading(self): vfunc = VirtualFunction() vfunc.load_images(os.path.join(TESTDATA_DIR, 'functionsimulator')) self.assertTrue(isinstance(vfunc.data, np.ndarray)) self.assertEqual(vfunc.data.shape[0], 5) self.assertEqual(vfunc.data.shape[1], 512) gt = [0.83984375*5, 0.44140625*20-10, 0.25390625*20, 0.81640625*8-10, 0.67578125*2+2] for i in range(5): self.assertAlmostEqual(vfunc.data[i][0], gt[i]) gt = [[0, 1], [-10, 10], [0, 20], [-30, 5], [5, 10]] for i in range(5): self.assertEqual(vfunc.axis[i][0], gt[i][0]) self.assertEqual(vfunc.axis[i][1], gt[i][1]) def test_data_adding(self): gt = [[-10, 10], [-30, 5]] vfunc = VirtualFunction() dim0 = np.arange(0, 1.1, 0.1) dim1 = np.arange(1.0, -0.1, -0.1) vfunc.add_dimension(dim0, gt[0]) self.assertEqual(len(vfunc.data.shape), 2) self.assertEqual(vfunc.data.shape[0], 1) self.assertEqual(vfunc.data.shape[1], 11) vfunc.add_dimension(dim1, gt[1]) self.assertEqual(vfunc.data.shape[0], 2) self.assertEqual(vfunc.data.shape[1], 11) for n in range(11): self.assertAlmostEqual(dim0[n], vfunc.data[0, n]) self.assertAlmostEqual(dim1[n], vfunc.data[1, n]) for i in range(2): self.assertEqual(vfunc.axis[i][0], gt[i][0]) self.assertEqual(vfunc.axis[i][1], gt[i][1]) def test_minima(self): vfunc = VirtualFunction() vfunc.load_images(os.path.join(TESTDATA_DIR, 'functionsimulator')) minima = vfunc.minima() gt = [[[0.7265625], 0.48828125], [[-4.0234375], -7.890625], [[2.265625], 0.859375], [ [-17.421875, -17.353515625, -17.28515625, -17.216796875, -17.1484375, -17.080078125, -17.01171875, -16.943359375, -16.875, -16.806640625, -16.73828125, -16.669921875, -16.6015625, -16.533203125, -16.46484375, -16.396484375, -16.328125, -16.259765625, -16.19140625, -16.123046875, -16.0546875, -15.986328125, -15.91796875, -15.849609375, -15.78125, -15.712890625, -15.64453125, -15.576171875, -15.5078125, -15.439453125, -15.37109375, -15.302734375, -15.234375, -15.166015625, -15.09765625, -15.029296875, -14.9609375, -14.892578125, -14.82421875, -14.755859375, -14.6875, -14.619140625, -14.55078125, -14.482421875, -14.4140625, -14.345703125, -14.27734375, -14.208984375, -14.140625, -14.072265625, -14.00390625, -13.935546875, -13.8671875, -13.798828125, -13.73046875, -13.662109375, -13.59375, -13.525390625, -13.45703125, -13.388671875, -13.3203125, -13.251953125, -13.18359375, -13.115234375, -13.046875, -12.978515625, -12.91015625, -12.841796875, -12.7734375, -12.705078125, -12.63671875, -12.568359375, -12.5, -12.431640625, -12.36328125, -12.294921875, -12.2265625, -12.158203125, -12.08984375, -12.021484375, -11.953125, -11.884765625, -11.81640625, -11.748046875, -11.6796875, -11.611328125, -11.54296875, -11.474609375, -11.40625, -11.337890625, -11.26953125, -11.201171875, -11.1328125, -11.064453125, -10.99609375, -10.927734375, -10.859375, -10.791015625, -10.72265625, -10.654296875, -10.5859375, -10.517578125, -10.44921875, -10.380859375, -10.3125, -10.244140625, -10.17578125, -10.107421875, -10.0390625, -9.970703125, -9.90234375, -9.833984375, -9.765625, -9.697265625, -9.62890625, -9.560546875, -9.4921875, -9.423828125, -9.35546875, -9.287109375, -9.21875, -9.150390625, -9.08203125, -9.013671875, -8.9453125, -8.876953125, -8.80859375, -8.740234375, -8.671875, -8.603515625, -8.53515625, -8.466796875, -8.3984375, -8.330078125, -8.26171875, -8.193359375, -8.125, -8.056640625, -7.98828125, -7.919921875, -7.8515625, -7.783203125, -7.71484375, -7.646484375, -7.578125, -7.509765625, -7.44140625, -7.373046875, -7.3046875, -7.236328125, -7.16796875, -7.099609375, -7.03125], -9.125], [[5.44921875, 5.458984375, 5.46875, 5.478515625, 5.48828125, 5.498046875, 5.5078125, 5.517578125, 5.52734375], 2.09375]] self.assertAlmostEqual(minima, gt) if __name__ == '__main__': unittest.main()