diff --git a/code/masks/boost/rttbBoostMaskRedesign.cpp b/code/masks/boost/rttbBoostMaskRedesign.cpp index bd1bf60..c75a2a4 100644 --- a/code/masks/boost/rttbBoostMaskRedesign.cpp +++ b/code/masks/boost/rttbBoostMaskRedesign.cpp @@ -1,579 +1,580 @@ #include #include #include #include #include #include #include #include #include #include #include "rttbBoostMaskRedesign.h" #include "rttbNullPointerException.h" #include "rttbInvalidParameterException.h" #include "rttbBoostMaskGenerateMaskVoxelListThread.h" #include "rttbBoostMaskVoxelizationThread.h" namespace rttb { namespace masks { namespace boostRedesign { BoostMask::BoostMask(BoostMask::GeometricInfoPointer aDoseGeoInfo, BoostMask::StructPointer aStructure, bool strict, unsigned int numberOfThreads) : _geometricInfo(aDoseGeoInfo), _structure(aStructure), _strict(strict), _numberOfThreads(numberOfThreads), _voxelInStructure(::boost::make_shared()) { _isUpToDate = false; if (!_geometricInfo) { throw rttb::core::NullPointerException("Error: Geometric info is NULL!"); } else if (!_structure) { throw rttb::core::NullPointerException("Error: Structure is NULL!"); } if (_numberOfThreads == 0) { _numberOfThreads = boost::thread::hardware_concurrency(); } if (_numberOfThreads <= 0) { throw rttb::core::InvalidParameterException("Error: the given number of threads must > 0, or detection of the number of hardwore thread is not possible."); } std::cout << "number of threads: " << _numberOfThreads << std::endl; } BoostMask::MaskVoxelListPointer BoostMask::getRelevantVoxelVector() { if (!_isUpToDate) { calcMask(); } return _voxelInStructure; } void BoostMask::calcMask() { preprocessing(); voxelization(); generateMaskVoxelList(); _isUpToDate = true; } void BoostMask::preprocessing() { rttb::PolygonSequenceType polygonSequence = _structure->getStructureVector(); //Convert world coordinate polygons to the polygons with geometry coordinate rttb::PolygonSequenceType geometryCoordinatePolygonVector; rttb::PolygonSequenceType::iterator it; rttb::DoubleVoxelGridIndex3D globalMaxGridIndex(std::numeric_limits::min(), std::numeric_limits::min(), std::numeric_limits::min()); rttb::DoubleVoxelGridIndex3D globalMinGridIndex(_geometricInfo->getNumColumns(), _geometricInfo->getNumRows(), 0); for (it = polygonSequence.begin(); it != polygonSequence.end(); ++it) { PolygonType rttbPolygon = *it; PolygonType geometryCoordinatePolygon; //1. convert polygon to geometry coordinate polygons //2. calculate global min/max //3. check if polygon is planar if (!preprocessingPolygon(rttbPolygon, geometryCoordinatePolygon, globalMinGridIndex, globalMaxGridIndex, errorConstant)) { throw rttb::core::Exception("TiltedMaskPlaneException"); } geometryCoordinatePolygonVector.push_back(geometryCoordinatePolygon); } rttb::VoxelGridIndex3D minIndex = VoxelGridIndex3D(GridIndexType(globalMinGridIndex(0) + 0.5), GridIndexType(globalMinGridIndex(1) + 0.5), GridIndexType(globalMinGridIndex(2) + 0.5)); rttb::VoxelGridIndex3D maxIndex = VoxelGridIndex3D(GridIndexType(globalMaxGridIndex(0) + 0.5), GridIndexType(globalMaxGridIndex(1) + 0.5), GridIndexType(globalMaxGridIndex(2) + 0.5)); _globalBoundingBox.push_back(minIndex); _globalBoundingBox.push_back(maxIndex); //convert rttb polygon sequence to a map of z index and a vector of boost ring 2d (without holes) _ringMap = convertRTTBPolygonSequenceToBoostRingMap(geometryCoordinatePolygonVector); } void BoostMask::voxelization() { BoostPolygonMap::iterator it; if (_globalBoundingBox.size() < 2) { throw rttb::core::InvalidParameterException("Bounding box calculation failed! "); } unsigned int ringMapSize = _ringMap.size(); BoostRingMap::iterator itMap; unsigned int mapSizeInAThread = _ringMap.size() / _numberOfThreads; unsigned int count = 0; unsigned int countThread = 0; BoostPolygonMap polygonMap; std::vector polygonMapVector; //check donut and convert to a map of z index and a vector of boost polygon 2d (with or without holes) for (itMap = _ringMap.begin(); itMap != _ringMap.end(); ++itMap) { //the vector of all boost 2d polygons with the same z grid index(donut polygon is accepted). BoostPolygonVector polygonVector = checkDonutAndConvert((*itMap).second); if (count == mapSizeInAThread && countThread < (_numberOfThreads - 1)) { polygonMapVector.push_back(polygonMap); polygonMap.clear(); count = 0; countThread++; } polygonMap.insert(std::pair((*itMap).first, polygonVector)); count++; } polygonMapVector.push_back(polygonMap); //insert the last one //generate voxelization map, multi-threading ::boost::thread_group threads; BoostMaskVoxelizationThread::VoxelizationQueuePointer resultQueue = ::boost::make_shared<::boost::lockfree::queue> (ringMapSize); BoostMaskVoxelizationThread::VoxelizationIndexQueuePointer resultIndexQueue = ::boost::make_shared<::boost::lockfree::queue> (ringMapSize); for (int i = 0; i < polygonMapVector.size(); ++i) { BoostMaskVoxelizationThread t(polygonMapVector.at(i), _globalBoundingBox, resultIndexQueue, resultQueue); threads.create_thread(t); } threads.join_all(); BoostArray2D* array; double index; //generate voxelization map using resultQueue and resultIndexQueue while (resultIndexQueue->pop(index) && resultQueue->pop(array)) { _voxelizationMap.insert(std::pair(index, *array)); } } void BoostMask::generateMaskVoxelList() { if (_globalBoundingBox.size() < 2) { throw rttb::core::InvalidParameterException("Bounding box calculation failed! "); } //check homogeneus of the voxelization plane (the contours plane) if (!calcVoxelizationThickness(_voxelizationThickness)) { throw rttb::core::InvalidParameterException("Error: The contour plane should be homogeneus!"); } ::boost::shared_ptr<::boost::lockfree::queue> resultQueue = ::boost::make_shared<::boost::lockfree::queue> (_geometricInfo->getNumberOfVoxels()); ::boost::thread_group threads; unsigned int sliceNumberInAThread = _geometricInfo->getNumSlices() / _numberOfThreads; //generate mask voxel list, multi-threading for (unsigned int i = 0; i < _numberOfThreads; ++i) { unsigned int beginSlice = i * sliceNumberInAThread; unsigned int endSlice; if (i < _numberOfThreads - 1) { endSlice = (i + 1) * sliceNumberInAThread; } else { endSlice = _geometricInfo->getNumSlices(); } BoostMaskGenerateMaskVoxelListThread t(_globalBoundingBox, _geometricInfo, _voxelizationMap, _voxelizationThickness, beginSlice, endSlice, resultQueue); threads.create_thread(t); } threads.join_all(); core::MaskVoxel* voxel; //generate _voxelInStructure using resultQueue while (resultQueue->pop(voxel)) { _voxelInStructure->push_back(*voxel);//push back the mask voxel in structure } } bool BoostMask::preprocessingPolygon(const rttb::PolygonType& aRTTBPolygon, rttb::PolygonType& geometryCoordinatePolygon, rttb::DoubleVoxelGridIndex3D& minimum, rttb::DoubleVoxelGridIndex3D& maximum, double aErrorConstant) const { double minZ = _geometricInfo->getNumSlices(); double maxZ = 0.0; for (unsigned int i = 0; i < aRTTBPolygon.size(); i++) { rttb::WorldCoordinate3D worldCoordinatePoint = aRTTBPolygon.at(i); //convert to geometry coordinate polygon rttb::DoubleVoxelGridIndex3D geometryCoordinatePoint; _geometricInfo->worldCoordinateToGeometryCoordinate(worldCoordinatePoint, geometryCoordinatePoint); geometryCoordinatePolygon.push_back(geometryCoordinatePoint); //calculate the current global min/max //min and max for x if (geometryCoordinatePoint(0) < minimum(0)) { minimum(0) = geometryCoordinatePoint(0); } if (geometryCoordinatePoint(0) > maximum(0)) { maximum(0) = geometryCoordinatePoint(0); } //min and max for y if (geometryCoordinatePoint(1) < minimum(1)) { minimum(1) = geometryCoordinatePoint(1); } if (geometryCoordinatePoint(1) > maximum(1)) { maximum(1) = geometryCoordinatePoint(1); } //min and max for z if (geometryCoordinatePoint(2) < minimum(2)) { minimum(2) = geometryCoordinatePoint(2); } if (geometryCoordinatePoint(2) > maximum(2)) { maximum(2) = geometryCoordinatePoint(2); } //check planar if (geometryCoordinatePoint(2) < minZ) { minZ = geometryCoordinatePoint(2); } if (geometryCoordinatePoint(2) > maxZ) { maxZ = geometryCoordinatePoint(2); } } return (abs(maxZ - minZ) <= aErrorConstant); } BoostMask::BoostRing2D BoostMask::convertRTTBPolygonToBoostRing(const rttb::PolygonType& aRTTBPolygon) const { BoostMask::BoostRing2D polygon2D; BoostPoint2D firstPoint; for (unsigned int i = 0; i < aRTTBPolygon.size(); i++) { rttb::WorldCoordinate3D rttbPoint = aRTTBPolygon.at(i); BoostPoint2D boostPoint(rttbPoint[0], rttbPoint[1]); if (i == 0) { firstPoint = boostPoint; } ::boost::geometry::append(polygon2D, boostPoint); } ::boost::geometry::append(polygon2D, firstPoint); return polygon2D; } BoostMask::BoostRingMap BoostMask::convertRTTBPolygonSequenceToBoostRingMap( const rttb::PolygonSequenceType& aRTTBPolygonVector) { rttb::PolygonSequenceType::const_iterator it; BoostMask::BoostRingMap aRingMap; for (it = aRTTBPolygonVector.begin(); it != aRTTBPolygonVector.end(); ++it) { rttb::PolygonType rttbPolygon = *it; double zIndex = rttbPolygon.at(0)[2];//get the first z index of the polygon bool isFirstZ = true; if (!aRingMap.empty()) { BoostMask::BoostRingMap::iterator findIt = findNearestKey(aRingMap, zIndex, errorConstant); //if the z index is found (same slice), add the polygon to vector if (findIt != aRingMap.end()) { //BoostRingVector ringVector = ; (*findIt).second.push_back(convertRTTBPolygonToBoostRing(rttbPolygon)); isFirstZ = false; } } //if it is the first z index in the map, insert vector with the polygon if (isFirstZ) { BoostRingVector ringVector; ringVector.push_back(convertRTTBPolygonToBoostRing(rttbPolygon)); aRingMap.insert(std::pair(zIndex, ringVector)); } } return aRingMap; } BoostMask::BoostRingMap::iterator BoostMask::findNearestKey(BoostMask::BoostRingMap& aBoostRingMap, double aIndex, double aErrorConstant) { BoostMask::BoostRingMap::iterator find = aBoostRingMap.find(aIndex); //if find a key equivalent to aIndex, found if (find != aBoostRingMap.end()) { return find; } else { BoostMask::BoostRingMap::iterator lowerBound = aBoostRingMap.lower_bound(aIndex); //if all keys go before aIndex, check the last key if (lowerBound == aBoostRingMap.end()) { lowerBound = --aBoostRingMap.end(); } //if the lower bound very close to aIndex, found if (abs((*lowerBound).first - aIndex) <= aErrorConstant) { return lowerBound; } else { //if the lower bound is the beginning, not found if (lowerBound == aBoostRingMap.begin()) { return aBoostRingMap.end(); } else { BoostMask::BoostRingMap::iterator lowerBound1 = --lowerBound;//the key before the lower bound //if the key before the lower bound very close to a Index, found if (abs((*lowerBound1).first - aIndex) <= aErrorConstant) { return lowerBound1; } //else, not found else { return aBoostRingMap.end(); } } } } } BoostMask::BoostPolygonVector BoostMask::checkDonutAndConvert(const BoostMask::BoostRingVector& aRingVector) const { //check donut BoostMask::BoostRingVector::const_iterator it1; BoostMask::BoostRingVector::const_iterator it2; BoostMask::BoostPolygonVector boostPolygonVector; std::vector donutIndexVector;//store the outer and inner ring index BoostMask::BoostPolygonVector donutVector;//store new generated donut polygon //Get donut index and donut polygon unsigned int index1 = 0; for (it1 = aRingVector.begin(); it1 != aRingVector.end(); it1++, index1++) { bool it1IsDonut = false; //check if the ring is already determined as a donut for (unsigned int i = 0; i < donutIndexVector.size(); i++) { if (donutIndexVector.at(i) == index1) { it1IsDonut = true; break; } } //if not jet, check now if (!it1IsDonut) { bool it2IsDonut = false; unsigned int index2 = 0; for (it2 = aRingVector.begin(); it2 != aRingVector.end(); it2++, index2++) { if (it2 != it1) { BoostMask::BoostPolygon2D polygon2D; if (::boost::geometry::within(*it1, *it2)) { ::boost::geometry::append(polygon2D, *it2);//append an outer ring to the polygon ::boost::geometry::interior_rings(polygon2D).resize(1);//create an interior ring ::boost::geometry::append(polygon2D, *it1, 0);//append a ring to the interior ring it2IsDonut = true; } //if donut else if (::boost::geometry::within(*it2, *it1)) { ::boost::geometry::append(polygon2D, *it1);//append an outer ring to the polygon ::boost::geometry::interior_rings(polygon2D).resize(1);//create an interior ring ::boost::geometry::append(polygon2D, *it2, 0);//append a ring to the interior ring it2IsDonut = true; } if (it2IsDonut) { donutIndexVector.push_back(index1); donutIndexVector.push_back(index2); donutVector.push_back(polygon2D);//store donut polygon break;//Only store the first donut! } } } } } //Store no donut polygon to boostPolygonVector index1 = 0; for (it1 = aRingVector.begin(); it1 != aRingVector.end(); it1++, index1++) { bool it1IsDonut = false; //check if the ring is the outer or inner of a donut for (unsigned int i = 0; i < donutIndexVector.size(); i++) { if (donutIndexVector.at(i) == index1) { it1IsDonut = true; break; } } if (!it1IsDonut) { BoostMask::BoostPolygon2D polygon2D; ::boost::geometry::append(polygon2D, *it1); boostPolygonVector.push_back(polygon2D);//insert the ring, which is not a part of donut } } //Append donut polygon to boostPolygonVector BoostMask::BoostPolygonVector::iterator itDonut; for (itDonut = donutVector.begin(); itDonut != donutVector.end(); itDonut++) { boostPolygonVector.push_back(*itDonut);//append donuts } return boostPolygonVector; } bool BoostMask::calcVoxelizationThickness(double& aThickness) const { BoostArrayMap::const_iterator it = _voxelizationMap.begin(); BoostArrayMap::const_iterator it2 = ++_voxelizationMap.begin(); if (_voxelizationMap.size() <= 1) { aThickness = 1; return true; } double thickness = 0; for (; it != _voxelizationMap.end(), it2 != _voxelizationMap.end(); ++it, ++it2) { if (thickness == 0) { thickness = (*it2).first - (*it).first; } else { - //if no homogeneous, return false - if (thickness != ((*it2).first - (*it).first)) + double curThickness = (*it2).first - (*it).first; + //if no homogeneous (leave out double imprecisions), return false + if (abs(thickness-curThickness)>errorConstant) { return false; } } } if (thickness != 0) { aThickness = thickness; } else { aThickness = 1; } return true; } } } }