diff --git a/code/masks/rttbBoostMask.cpp b/code/masks/rttbBoostMask.cpp index af20a7d..cbdf59d 100644 --- a/code/masks/rttbBoostMask.cpp +++ b/code/masks/rttbBoostMask.cpp @@ -1,565 +1,558 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision$ (last changed revision) -// @date $Date$ (last change date) -// @author $Author$ (last changed by) -*/ #include <limits> #include <boost/geometry/geometries/register/point.hpp> #include <boost/geometry/geometries/register/ring.hpp> #include <boost/make_shared.hpp> #include <boost/thread/thread.hpp> #include "rttbBoostMask.h" #include "rttbNullPointerException.h" #include "rttbInvalidParameterException.h" #include "rttbBoostMaskGenerateMaskVoxelListThread.h" #include "rttbBoostMaskVoxelizationThread.h" - namespace rttb { namespace masks { namespace boost { BoostMask::BoostMask(core::GeometricInfo::Pointer aDoseGeoInfo, core::Structure::Pointer aStructure, bool strict, unsigned int numberOfThreads) : _geometricInfo(aDoseGeoInfo), _structure(aStructure), _strict(strict), _numberOfThreads(numberOfThreads), _voxelizationThickness(0.0), _voxelInStructure(::boost::make_shared<MaskVoxelList>()) { _isUpToDate = false; if (_geometricInfo == nullptr) { throw rttb::core::NullPointerException("Error: Geometric info is nullptr!"); } else if (_structure == nullptr) { throw rttb::core::NullPointerException("Error: Structure is nullptr!"); } if (_numberOfThreads == 0) { _numberOfThreads = ::boost::thread::hardware_concurrency(); if (_numberOfThreads == 0) { throw rttb::core::InvalidParameterException("Error: detection of the number of hardware threads is not possible. Please specify number of threads for voxelization explicitly as parameter in BoostMask."); } } } BoostMask::MaskVoxelListPointer BoostMask::getRelevantVoxelVector() { if (!_isUpToDate) { calcMask(); } return _voxelInStructure; } void BoostMask::calcMask() { preprocessing(); voxelization(); generateMaskVoxelList(); _isUpToDate = true; } void BoostMask::preprocessing() { rttb::PolygonSequenceType polygonSequence = _structure->getStructureVector(); //Convert world coordinate polygons to the polygons with geometry coordinate rttb::PolygonSequenceType geometryCoordinatePolygonVector; rttb::PolygonSequenceType::iterator it; rttb::DoubleVoxelGridIndex3D globalMaxGridIndex(std::numeric_limits<double>::min(), std::numeric_limits<double>::min(), std::numeric_limits<double>::min()); rttb::DoubleVoxelGridIndex3D globalMinGridIndex(_geometricInfo->getNumColumns(), _geometricInfo->getNumRows(), 0); for (it = polygonSequence.begin(); it != polygonSequence.end(); ++it) { PolygonType rttbPolygon = *it; PolygonType geometryCoordinatePolygon; //1. convert polygon to geometry coordinate polygons //2. calculate global min/max //3. check if polygon is planar if (!preprocessingPolygon(rttbPolygon, geometryCoordinatePolygon, globalMinGridIndex, globalMaxGridIndex, errorConstant)) { throw rttb::core::Exception("TiltedMaskPlaneException"); } geometryCoordinatePolygonVector.push_back(geometryCoordinatePolygon); } rttb::VoxelGridIndex3D minIndex = VoxelGridIndex3D(GridIndexType(globalMinGridIndex(0) ), GridIndexType(globalMinGridIndex(1) ), GridIndexType(globalMinGridIndex(2) )); rttb::VoxelGridIndex3D maxIndex = VoxelGridIndex3D(GridIndexType(globalMaxGridIndex(0) ), GridIndexType(globalMaxGridIndex(1) ), GridIndexType(globalMaxGridIndex(2) )); _globalBoundingBox.push_back(minIndex); _globalBoundingBox.push_back(maxIndex); //convert rttb polygon sequence to a map of z index and a vector of boost ring 2d (without holes) _ringMap = convertRTTBPolygonSequenceToBoostRingMap(geometryCoordinatePolygonVector); } void BoostMask::voxelization() { if (_globalBoundingBox.size() < 2) { throw rttb::core::InvalidParameterException("Bounding box calculation failed! "); } BoostRingMap::iterator itMap; size_t mapSizeInAThread = _ringMap.size() / _numberOfThreads; unsigned int count = 0; unsigned int countThread = 0; BoostPolygonMap polygonMap; std::vector<BoostPolygonMap> polygonMapVector; //check donut and convert to a map of z index and a vector of boost polygon 2d (with or without holes) for (itMap = _ringMap.begin(); itMap != _ringMap.end(); ++itMap) { //the vector of all boost 2d polygons with the same z grid index(donut polygon is accepted). BoostPolygonVector polygonVector = checkDonutAndConvert((*itMap).second); if (count == mapSizeInAThread && countThread < (_numberOfThreads - 1)) { polygonMapVector.push_back(polygonMap); polygonMap.clear(); count = 0; countThread++; } polygonMap.insert(std::pair<double, BoostPolygonVector>((*itMap).first, polygonVector)); count++; } _voxelizationMap = ::boost::make_shared<std::map<double, BoostArray2DPointer> >(); polygonMapVector.push_back(polygonMap); //insert the last one //generate voxelization map, multi-threading ::boost::thread_group threads; auto aMutex = ::boost::make_shared<::boost::shared_mutex>(); for (const auto & i : polygonMapVector) { BoostMaskVoxelizationThread t(i, _globalBoundingBox, _voxelizationMap, aMutex, _strict); threads.create_thread(t); } threads.join_all(); } void BoostMask::generateMaskVoxelList() { if (_globalBoundingBox.size() < 2) { throw rttb::core::InvalidParameterException("Bounding box calculation failed! "); } //check homogeneous of the voxelization plane (the contours plane) if (!calcVoxelizationThickness(_voxelizationThickness)) { throw rttb::core::InvalidParameterException("Error: The contour plane should be homogeneous!"); } ::boost::thread_group threads; auto aMutex = ::boost::make_shared<::boost::shared_mutex>(); unsigned int sliceNumberInAThread = _geometricInfo->getNumSlices() / _numberOfThreads; //generate mask voxel list, multi-threading for (unsigned int i = 0; i < _numberOfThreads; ++i) { unsigned int beginSlice = i * sliceNumberInAThread; unsigned int endSlice; if (i < _numberOfThreads - 1) { endSlice = (i + 1) * sliceNumberInAThread; } else { endSlice = _geometricInfo->getNumSlices(); } BoostMaskGenerateMaskVoxelListThread t(_globalBoundingBox, _geometricInfo, _voxelizationMap, _voxelizationThickness, beginSlice, endSlice, _voxelInStructure, aMutex); threads.create_thread(t); } threads.join_all(); } bool BoostMask::preprocessingPolygon(const rttb::PolygonType& aRTTBPolygon, rttb::PolygonType& geometryCoordinatePolygon, rttb::DoubleVoxelGridIndex3D& minimum, rttb::DoubleVoxelGridIndex3D& maximum, double aErrorConstant) const { double minZ = _geometricInfo->getNumSlices(); double maxZ = 0.0; for (auto worldCoordinatePoint : aRTTBPolygon) { //convert to geometry coordinate polygon rttb::DoubleVoxelGridIndex3D geometryCoordinatePoint; _geometricInfo->worldCoordinateToGeometryCoordinate(worldCoordinatePoint, geometryCoordinatePoint); geometryCoordinatePolygon.push_back(geometryCoordinatePoint); //calculate the current global min/max //min and max for x if (geometryCoordinatePoint(0) < minimum(0)) { minimum(0) = geometryCoordinatePoint(0); } if (geometryCoordinatePoint(0) > maximum(0)) { maximum(0) = geometryCoordinatePoint(0); } //min and max for y if (geometryCoordinatePoint(1) < minimum(1)) { minimum(1) = geometryCoordinatePoint(1); } if (geometryCoordinatePoint(1) > maximum(1)) { maximum(1) = geometryCoordinatePoint(1); } //min and max for z if (geometryCoordinatePoint(2) < minimum(2)) { minimum(2) = geometryCoordinatePoint(2); } if (geometryCoordinatePoint(2) > maximum(2)) { maximum(2) = geometryCoordinatePoint(2); } //check planar if (geometryCoordinatePoint(2) < minZ) { minZ = geometryCoordinatePoint(2); } if (geometryCoordinatePoint(2) > maxZ) { maxZ = geometryCoordinatePoint(2); } } return (std::abs(maxZ - minZ) <= aErrorConstant); } BoostMask::BoostRing2D BoostMask::convertRTTBPolygonToBoostRing(const rttb::PolygonType& aRTTBPolygon) const { BoostMask::BoostRing2D polygon2D; BoostPoint2D firstPoint; for (unsigned int i = 0; i < aRTTBPolygon.size(); i++) { rttb::WorldCoordinate3D rttbPoint = aRTTBPolygon.at(i); BoostPoint2D boostPoint(rttbPoint[0], rttbPoint[1]); if (i == 0) { firstPoint = boostPoint; } ::boost::geometry::append(polygon2D, boostPoint); } ::boost::geometry::append(polygon2D, firstPoint); return polygon2D; } BoostMask::BoostRingMap BoostMask::convertRTTBPolygonSequenceToBoostRingMap( const rttb::PolygonSequenceType& aRTTBPolygonVector) const { rttb::PolygonSequenceType::const_iterator it; BoostMask::BoostRingMap aRingMap; for (it = aRTTBPolygonVector.begin(); it != aRTTBPolygonVector.end(); ++it) { rttb::PolygonType rttbPolygon = *it; double zIndex = rttbPolygon.at(0)[2];//get the first z index of the polygon bool isFirstZ = true; if (!aRingMap.empty()) { auto findIt = findNearestKey(aRingMap, zIndex, errorConstant); //if the z index is found (same slice), add the polygon to vector if (findIt != aRingMap.end()) { //BoostRingVector ringVector = ; (*findIt).second.push_back(convertRTTBPolygonToBoostRing(rttbPolygon)); isFirstZ = false; } } //if it is the first z index in the map, insert vector with the polygon if (isFirstZ) { BoostRingVector ringVector; ringVector.push_back(convertRTTBPolygonToBoostRing(rttbPolygon)); aRingMap.insert(std::pair<double, BoostRingVector>(zIndex, ringVector)); } } return aRingMap; } BoostMask::BoostRingMap::iterator BoostMask::findNearestKey(BoostMask::BoostRingMap& aBoostRingMap, double aIndex, double aErrorConstant) const { auto find = aBoostRingMap.find(aIndex); //if find a key equivalent to aIndex, found if (find != aBoostRingMap.end()) { return find; } else { auto lowerBound = aBoostRingMap.lower_bound(aIndex); //if all keys go before aIndex, check the last key if (lowerBound == aBoostRingMap.end()) { lowerBound = --aBoostRingMap.end(); } //if the lower bound very close to aIndex, found if (std::abs((*lowerBound).first - aIndex) <= aErrorConstant) { return lowerBound; } else { //if the lower bound is the beginning, not found if (lowerBound == aBoostRingMap.begin()) { return aBoostRingMap.end(); } else { auto lowerBound1 = --lowerBound;//the key before the lower bound //if the key before the lower bound very close to a Index, found if (std::abs((*lowerBound1).first - aIndex) <= aErrorConstant) { return lowerBound1; } //else, not found else { return aBoostRingMap.end(); } } } } } BoostMask::BoostPolygonVector BoostMask::checkDonutAndConvert(const BoostMask::BoostRingVector& aRingVector) const { //check donut BoostMask::BoostRingVector::const_iterator it1; BoostMask::BoostRingVector::const_iterator it2; BoostMask::BoostPolygonVector boostPolygonVector; std::vector<unsigned int> donutIndexVector;//store the outer and inner ring index BoostMask::BoostPolygonVector donutVector;//store new generated donut polygon //Get donut index and donut polygon unsigned int index1 = 0; for (it1 = aRingVector.begin(); it1 != aRingVector.end(); ++it1, index1++) { bool it1IsDonut = false; //check if the ring is already determined as a donut for (unsigned int i : donutIndexVector) { if (i == index1) { it1IsDonut = true; break; } } //if not jet, check now if (!it1IsDonut) { bool it2IsDonut = false; unsigned int index2 = 0; for (it2 = aRingVector.begin(); it2 != aRingVector.end(); ++it2, index2++) { if (it2 != it1) { BoostMask::BoostPolygon2D polygon2D; if (::boost::geometry::within(*it1, *it2)) { ::boost::geometry::append(polygon2D, *it2);//append an outer ring to the polygon ::boost::geometry::interior_rings(polygon2D).resize(1);//create an interior ring ::boost::geometry::append(polygon2D, *it1, 0);//append a ring to the interior ring it2IsDonut = true; } //if donut else if (::boost::geometry::within(*it2, *it1)) { ::boost::geometry::append(polygon2D, *it1);//append an outer ring to the polygon ::boost::geometry::interior_rings(polygon2D).resize(1);//create an interior ring ::boost::geometry::append(polygon2D, *it2, 0);//append a ring to the interior ring it2IsDonut = true; } if (it2IsDonut) { donutIndexVector.push_back(index1); donutIndexVector.push_back(index2); donutVector.push_back(polygon2D);//store donut polygon break;//Only store the first donut! } } } } } //Store no donut polygon to boostPolygonVector index1 = 0; for (it1 = aRingVector.begin(); it1 != aRingVector.end(); ++it1, index1++) { bool it1IsDonut = false; //check if the ring is the outer or inner of a donut for (unsigned int i : donutIndexVector) { if (i == index1) { it1IsDonut = true; break; } } if (!it1IsDonut) { BoostMask::BoostPolygon2D polygon2D; ::boost::geometry::append(polygon2D, *it1); boostPolygonVector.push_back(polygon2D);//insert the ring, which is not a part of donut } } //Append donut polygon to boostPolygonVector BoostMask::BoostPolygonVector::iterator itDonut; for (itDonut = donutVector.begin(); itDonut != donutVector.end(); ++itDonut) { boostPolygonVector.push_back(*itDonut);//append donuts } return boostPolygonVector; } bool BoostMask::calcVoxelizationThickness(double& aThickness) const { if (_voxelizationMap->size() <= 1) { aThickness = 1; return true; } double thickness = 0; auto it = _voxelizationMap->cbegin(); auto it2 = ++_voxelizationMap->cbegin(); for (; it != _voxelizationMap->cend() && it2 != _voxelizationMap->cend(); ++it, ++it2) { if (thickness == 0) { thickness = it2->first - it->first; } else { double curThickness = it2->first - it->first; //if not homogeneous (leave out double imprecisions), return false if (std::abs(thickness-curThickness)>errorConstant) { //return false; std::cout << "Two polygons are far from each other?" << std::endl; } } } if (thickness != 0) { aThickness = thickness; } else { aThickness = 1; } return true; } } } } diff --git a/code/masks/rttbBoostMask.h b/code/masks/rttbBoostMask.h index cf994bb..1db206a 100644 --- a/code/masks/rttbBoostMask.h +++ b/code/masks/rttbBoostMask.h @@ -1,202 +1,195 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision$ (last changed revision) -// @date $Date$ (last change date) -// @author $Author$ (last changed by) -*/ - #ifndef __BOOST_MASK_R_H #define __BOOST_MASK_R_H #include "rttbBaseType.h" #include "rttbStructure.h" #include "rttbGeometricInfo.h" #include "rttbMaskAccessorInterface.h" #include <boost/geometry.hpp> #include <boost/geometry/geometries/point_xy.hpp> #include <boost/shared_ptr.hpp> #include <boost/multi_array.hpp> namespace rttb { namespace masks { namespace boost { /*! @class BoostMask * @brief Implementation of voxelization using boost::geometry. * @attention If "strict" is set to true, an exception will be thrown when the given structure has self intersection. * (A structure without self intersection means all contours of the structure have no self intersection, and * the polygons on the same slice have no intersection between each other, unless the case of a donut. A donut is accepted.) * If "strict" is set to false, debug information will be displayed when the given structure has self intersection. Self intersections will be ignored * and the mask will be calculated, however, it may cause errors in the mask results. */ class BoostMask { public: using MaskVoxelList = core::MaskAccessorInterface::MaskVoxelList; using MaskVoxelListPointer = core::MaskAccessorInterface::MaskVoxelListPointer; /*! @brief Constructor * @exception rttb::core::NullPointerException thrown if aDoseGeoInfo or aStructure is nullptr * @param aDoseGeoInfo the GeometricInfo * @param aStructure the structure set * @param strict indicates whether to allow self intersection in the structure. If it is set to true, an exception will be thrown when the given structure has self intersection. * @param numberOfThreads number of threads used for voxelization. default value 0 means automatic detection, using the number of Hardware thread/cores * @exception InvalidParameterException thrown if strict is true and the structure has self intersections */ BoostMask(core::GeometricInfo::Pointer aDoseGeoInfo, core::Structure::Pointer aStructure, bool strict = true, unsigned int numberOfThreads = 0); /*! @brief Generate mask and return the voxels in the mask * @exception rttb::core::InvalidParameterException thrown if the structure has self intersections */ MaskVoxelListPointer getRelevantVoxelVector(); private: using BoostPoint2D = ::boost::geometry::model::d2::point_xy<double>; using BoostPolygon2D = ::boost::geometry::model::polygon< ::boost::geometry::model::d2::point_xy<double> >; using BoostRing2D = ::boost::geometry::model::ring< ::boost::geometry::model::d2::point_xy<double> >; using BoostRingVector = std::vector<BoostRing2D>;//polygon without holes using BoostPolygonVector = std::vector<BoostPolygon2D>;//polygon with or without holes using VoxelIndexVector = std::vector<rttb::VoxelGridIndex3D>; typedef std::map<double, BoostPolygonVector> BoostPolygonMap;//map of the z index with the vector of boost 2d polygon typedef std::map<double, BoostRingVector> BoostRingMap;//map of the z index with the vector of boost 2d ring typedef ::boost::multi_array<double, 2> BoostArray2D; using BoostArray2DPointer = ::boost::shared_ptr<BoostArray2D>; typedef ::boost::shared_ptr<std::map<double, BoostArray2DPointer> > BoostArrayMapPointer; core::GeometricInfo::Pointer _geometricInfo; core::Structure::Pointer _structure; bool _strict; /*! @brief The number of threads */ unsigned int _numberOfThreads; //@brief The thickness of the voxelization plane (the contour plane), in double dose grid index //@details for example, the first contour has the double grid index 0.1, the second 0.3, the third 0.5, then the thickness is 0.2 double _voxelizationThickness; //@brief vector of the MaskVoxel inside the structure MaskVoxelListPointer _voxelInStructure; /*! @brief The map of z index and a vector of boost ring 2d (without holes) * @details Key: the double z grid index * Value: the vector of boost ring 2d (without holes) */ BoostRingMap _ringMap; /*! @brief The min and max index of the global bounding box. * @details The first index has the minimum for x/y/z of the global bounding box. * The second index has the maximum for x/y/z of the global bounding index. */ VoxelIndexVector _globalBoundingBox; /*! @brief The voxelization map * @details key: the converted double z grid index of a contour plane * value: the 2d mask, array[i][j] = the mask value of the position (i,j) in the global bounding box, * i: 0 - (_globalBoundingBoxSize0-1), j: 0 - (_globalBoundingBoxSize1-1) */ BoostArrayMapPointer _voxelizationMap; /*! @brief If the mask is up to date */ bool _isUpToDate; /*! @brief Voxelization and generate mask */ void calcMask(); /*! @brief The preprocessing step, wich consists of the following logic and Sub setps: * @details For all contours in a struct: * 1) Transfer the contour polygons into boost::geometry structures * 1a) Convert the contur points from world coordinates into geometry coordinates. * 1b) get min and max for x/y/z of a contour * 2) Tilt check: if difference of z_min and z_max is larger then a tolerance value -> there is a tilt. Throw rttb::TiltedMaskPlaneException. * 3) Get struct-bounding-box: get x_min_struct, y_min_struct, x_max_struct, y_max_struct to define the bounding box that containes all contours of a struct in x-y-dimensions. */ void preprocessing(); /*! @brief The voxelization step, which computes the voxelization planes (in x/y) for all contours of an struct. * @details For each contour (that is in the z-Range of the reference geometry) of the struct: * 1) Allocate result array (voxelization plane) based on the bounding box (see Preprocessing Step 3) * 2) Generate voxelization plane for the contour (based on the x-y-raster of the reference geometry). * 3) Add result Array (key is the z-Value of the contour) */ void voxelization(); /*! @brief mask voxel Generation step which transfers the voxelization planes into the (z-)geometry of the reference geometry. * @details It consists of following Sub steps : * For all "slices" in the reference geometry : * 1) generate weight vector for all voxelization planes for a given z - value of a slice * Iterate over the bounding box of a struct.For each voxel : * 2) Compute weighted sum of all voxelization planes(use weight vector, step 1) * 2a) If sum > 0 : Add mask voxel for the current x / y(inner Loop) and z value(outer Loop). * 3) return mask voxel list. */ void generateMaskVoxelList(); /*! @brief Convert the rttb polygon with world coordinate to the rttb polygon with double geometry coordinate, calculate the current min/max * and check if the polygon is planar * @param minimum the current global minimum * @param maximum the current global maximum * @return Return true if the polygon is planar, which means that the minimal and maximal z-coordinate of the polygon is not larger than a error constant */ bool preprocessingPolygon(const rttb::PolygonType& aRTTBPolygon, rttb::PolygonType& geometryCoordinatePolygon, rttb::DoubleVoxelGridIndex3D& minimum, rttb::DoubleVoxelGridIndex3D& maximum, double aErrorConstant) const; /*! @brief Convert a rttb 3d polygon to a 2d boost ring*/ BoostRing2D convertRTTBPolygonToBoostRing(const rttb::PolygonType& aRTTBPolygon) const; /*! @brief Convert a rttb 3d polygon to a map of z index with a vector of boost 2d ring, because of tilt check use the first z index of the polygon as the map key*/ BoostRingMap convertRTTBPolygonSequenceToBoostRingMap(const rttb::PolygonSequenceType& aRTTBPolygonVector) const; /*! @brief Find the key with error constant to aIndex * @pre aBoostRingMap should not be empty * @return Return aBoostRingMap.end() if the key is not found */ BoostMask::BoostRingMap::iterator findNearestKey(BoostMask::BoostRingMap& aBoostRingMap, double aIndex, double aErrorConstant) const; /*! @brief If 2 rings in the vector build a donut, convert the 2 rings to a donut polygon, other rings unchanged*/ BoostPolygonVector checkDonutAndConvert(const BoostRingVector& aRingVector) const; /*! @brief Calculate the voxelization thickness. Return false, if the voxelization plane is not homogeneous */ bool calcVoxelizationThickness(double& aThickness) const; }; } } } #endif diff --git a/code/masks/rttbBoostMaskAccessor.cpp b/code/masks/rttbBoostMaskAccessor.cpp index 0985637..231f1a7 100644 --- a/code/masks/rttbBoostMaskAccessor.cpp +++ b/code/masks/rttbBoostMaskAccessor.cpp @@ -1,161 +1,155 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision$ (last changed revision) -// @date $Date$ (last change date) -// @author $Author$ (last changed by) -*/ #include "rttbBoostMaskAccessor.h" #include "rttbBoostMask.h" #include <boost/make_shared.hpp> #include <boost/uuid/uuid.hpp> #include <boost/uuid/uuid_generators.hpp> #include <boost/uuid/uuid_io.hpp> namespace rttb { namespace masks { namespace boost { BoostMaskAccessor::BoostMaskAccessor(StructTypePointer aStructurePointer, const core::GeometricInfo& aGeometricInfo, bool strict) : _spStructure(aStructurePointer), _geoInfo(aGeometricInfo), _strict(strict) { _spRelevantVoxelVector = MaskVoxelListPointer(); //generate new structure set uid ::boost::uuids::uuid id; ::boost::uuids::random_generator generator; id = generator(); std::stringstream ss; ss << id; _maskUID = "BoostMask_" + ss.str(); } BoostMaskAccessor::~BoostMaskAccessor() = default; void BoostMaskAccessor::updateMask() { MaskVoxelList newRelevantVoxelVector; if (_spRelevantVoxelVector) { return; // already calculated } BoostMask mask(::boost::make_shared<core::GeometricInfo>(_geoInfo), _spStructure, _strict); _spRelevantVoxelVector = mask.getRelevantVoxelVector(); } BoostMaskAccessor::MaskVoxelListPointer BoostMaskAccessor::getRelevantVoxelVector() { // if not already generated start voxelization here updateMask(); return _spRelevantVoxelVector; } BoostMaskAccessor::MaskVoxelListPointer BoostMaskAccessor::getRelevantVoxelVector( float lowerThreshold) { auto filteredVoxelVectorPointer = ::boost::make_shared<MaskVoxelList>(); updateMask(); // filter relevant voxels auto it = _spRelevantVoxelVector->begin(); while (it != _spRelevantVoxelVector->end()) { if ((*it).getRelevantVolumeFraction() > lowerThreshold) { filteredVoxelVectorPointer->push_back(*it); } ++it; } // if mask calculation was not successful this is empty! return filteredVoxelVectorPointer; } bool BoostMaskAccessor::getMaskAt(VoxelGridID aID, core::MaskVoxel& voxel) const { //initialize return voxel voxel.setRelevantVolumeFraction(0); //check if ID is valid if (!_geoInfo.validID(aID)) { return false; } //determine how a given voxel on the dose grid is masked if (_spRelevantVoxelVector) { auto it = _spRelevantVoxelVector->begin(); while (it != _spRelevantVoxelVector->end()) { if ((*it).getVoxelGridID() == aID) { voxel = (*it); return true; } ++it; } } // returns false if mask was not calculated without triggering calculation (otherwise not const!) else { return false; } return false; } bool BoostMaskAccessor::getMaskAt(const VoxelGridIndex3D& aIndex, core::MaskVoxel& voxel) const { //convert VoxelGridIndex3D to VoxelGridID VoxelGridID aVoxelGridID; if (_geoInfo.convert(aIndex, aVoxelGridID)) { return getMaskAt(aVoxelGridID, voxel); } else { return false; } } const core::GeometricInfo& BoostMaskAccessor::getGeometricInfo() const { return _geoInfo; }; } } } \ No newline at end of file diff --git a/code/masks/rttbBoostMaskAccessor.h b/code/masks/rttbBoostMaskAccessor.h index 83bf37c..5a02dd4 100644 --- a/code/masks/rttbBoostMaskAccessor.h +++ b/code/masks/rttbBoostMaskAccessor.h @@ -1,121 +1,116 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision$ (last changed revision) -// @date $Date$ (last change date) -// @author $Author$ (last changed by) -*/ + #ifndef __BOOST_MASK_R_ACCESSOR__H #define __BOOST_MASK_R_ACCESSOR__H #include "rttbBaseType.h" #include "rttbGeometricInfo.h" #include "rttbMaskAccessorInterface.h" #include "rttbStructure.h" #include "RTTBBoostMaskExports.h" namespace rttb { namespace masks { namespace boost { /*! @class BoostMaskAccessor * @brief Using the voxelization based on boost::geometry and generate the mask accessor. * @attention If "strict" is set to true, an exception will be thrown when the given structure has self intersection. * (A structure without self intersection means all contours of the structure have no self intersection, and * the polygons on the same slice have no intersection between each other, unless the case of a donut. A donut is accepted.) * If "strict" is set to false, debug information will be displayed when the given structure has self intersection. Self intersections will be ignored * and the mask will be calculated, however, it may cause errors in the mask results. */ class RTTBBoostMask_EXPORT BoostMaskAccessor : public core::MaskAccessorInterface { public: using MaskVoxelList = core::MaskAccessorInterface::MaskVoxelList; using MaskVoxelListPointer = core::MaskAccessorInterface::MaskVoxelListPointer; using StructTypePointer = core::Structure::Pointer; private: StructTypePointer _spStructure; core::GeometricInfo _geoInfo; bool _strict; /*! vector containing list of mask voxels*/ MaskVoxelListPointer _spRelevantVoxelVector; IDType _maskUID; public: /*! @brief Constructor with a structure pointer and a geometric info pointer * @param aStructurePointer smart pointer of the structure * @param aGeometricInfo smart pointer of the geometricInfo of the dose * @param strict indicates whether to allow self intersection in the structure. If it is set to true, an exception will be thrown when the given structure has self intersection. * @exception InvalidParameterException thrown if strict is true and the structure has self intersections */ BoostMaskAccessor(StructTypePointer aStructurePointer, const core::GeometricInfo& aGeometricInfo, bool strict = true); /*! @brief destructor*/ ~BoostMaskAccessor() override; /*! @brief voxelization of the given structures using boost algorithms*/ void updateMask() override; /*! @brief get vector containing all relevant voxels that are inside the given structure*/ MaskVoxelListPointer getRelevantVoxelVector() override; /*! @brief get vector containing all relevant voxels that have a relevant volume above the given threshold and are inside the given structure*/ MaskVoxelListPointer getRelevantVoxelVector(float lowerThreshold) override; /*!@brief determine how a given voxel on the dose grid is masked * @param aID ID of the voxel in grid. * @param voxel Reference to the voxel. * @post after a valid call voxel containes the information of the specified grid voxel. If aID is not valid, voxel values are undefined. * The relevant volume fraction will be set to zero. * @return Indicates of the voxel exists and therefore if parameter voxel containes valid values.*/ bool getMaskAt(const VoxelGridID aID, core::MaskVoxel& voxel) const override; /*!@brief determine how a given voxel on the dose grid is masked * @param aIndex 3d index of the voxel in grid. * @param voxel Reference to the voxel. * @return Indicates of the voxel exists and therefore if parameter voxel containes valid values.*/ bool getMaskAt(const VoxelGridIndex3D& aIndex, core::MaskVoxel& voxel) const override; /*! @brief give access to GeometricInfo*/ const core::GeometricInfo& getGeometricInfo() const override; /* @ brief is true if dose is on a homogeneous grid * @remark Inhomogeneous grids are not supported at the moment, but if they will be supported in the future the interface does not need to change.*/ bool isGridHomogeneous() const override { return true; }; IDType getMaskUID() const override { return _maskUID; }; }; } } } #endif diff --git a/code/masks/rttbBoostMaskGenerateMaskVoxelListThread.cpp b/code/masks/rttbBoostMaskGenerateMaskVoxelListThread.cpp index 02c39ce..479c086 100644 --- a/code/masks/rttbBoostMaskGenerateMaskVoxelListThread.cpp +++ b/code/masks/rttbBoostMaskGenerateMaskVoxelListThread.cpp @@ -1,156 +1,149 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision: 1127 $ (last changed revision) -// @date $Date: 2015-10-01 13:33:33 +0200 (Do, 01 Okt 2015) $ (last change date) -// @author $Author: hentsch $ (last changed by) -*/ #include "rttbBoostMaskGenerateMaskVoxelListThread.h" #include "rttbInvalidParameterException.h" #include <boost/thread.hpp> - namespace rttb { namespace masks { namespace boost { BoostMaskGenerateMaskVoxelListThread::BoostMaskGenerateMaskVoxelListThread( const VoxelIndexVector& aGlobalBoundingBox, core::GeometricInfo::Pointer aGeometricInfo, BoostArrayMapPointer aVoxelizationMap, double aVoxelizationThickness, unsigned int aBeginSlice, unsigned int aEndSlice, MaskVoxelListPointer aMaskVoxelList, ::boost::shared_ptr<::boost::shared_mutex> aMutex) : _globalBoundingBox(aGlobalBoundingBox), _geometricInfo(aGeometricInfo), _voxelizationMap(aVoxelizationMap), _voxelizationThickness(aVoxelizationThickness), _beginSlice(aBeginSlice), _endSlice(aEndSlice), _resultMaskVoxelList(aMaskVoxelList), _mutex(aMutex) {} void BoostMaskGenerateMaskVoxelListThread::operator()() { rttb::VoxelGridIndex3D minIndex = _globalBoundingBox.at(0); rttb::VoxelGridIndex3D maxIndex = _globalBoundingBox.at(1); unsigned int globalBoundingBoxSize0 = maxIndex[0] - minIndex[0] + 1; unsigned int globalBoundingBoxSize1 = maxIndex[1] - minIndex[1] + 1; std::vector<core::MaskVoxel> maskVoxelsInThread; for (unsigned int indexZ = _beginSlice; indexZ < _endSlice; ++indexZ) { //calculate weight vector std::map<double, double> weightVectorForZ; calcWeightVector(indexZ, weightVectorForZ); //For each x,y, calc sum of all voxelization plane, use weight vector for (unsigned int x = 0; x < globalBoundingBoxSize0; ++x) { for (unsigned int y = 0; y < globalBoundingBoxSize1; ++y) { rttb::VoxelGridIndex3D currentIndex; currentIndex[0] = x + minIndex[0]; currentIndex[1] = y + minIndex[1]; currentIndex[2] = indexZ; rttb::VoxelGridID gridID; _geometricInfo->convert(currentIndex, gridID); double volumeFraction = 0; auto it = weightVectorForZ.cbegin(); auto itMap = _voxelizationMap->cbegin(); for (; it != weightVectorForZ.cend() && itMap != _voxelizationMap->cend(); ++it, ++itMap) { double weight = it->second; if (weight > 0){ BoostArray2DPointer voxelizationArray = itMap->second; //calc sum of all voxelization plane, use weight volumeFraction += (*voxelizationArray)[x][y] * weight; } } if (volumeFraction > 1 && (volumeFraction - 1) <= errorConstant) { volumeFraction = 1; } else if (volumeFraction < 0 || (volumeFraction - 1) > errorConstant) { throw rttb::core::InvalidParameterException("Mask calculation failed! The volume fraction should >= 0 and <= 1!"); } //insert mask voxel if volumeFraction > 0 if (volumeFraction > 0) { core::MaskVoxel maskVoxelPtr = core::MaskVoxel(gridID, volumeFraction); maskVoxelsInThread.push_back(maskVoxelPtr); } } } } ::boost::unique_lock<::boost::shared_mutex> lock(*_mutex); _resultMaskVoxelList->insert(_resultMaskVoxelList->end(), maskVoxelsInThread.begin(), maskVoxelsInThread.end()); } void BoostMaskGenerateMaskVoxelListThread::calcWeightVector(const rttb::VoxelGridID& aIndexZ, std::map<double, double>& weightVector) const { double indexZMin = aIndexZ - 0.5; double indexZMax = aIndexZ + 0.5; for (auto & it : *_voxelizationMap) { double voxelizationPlaneIndexMin = it.first - 0.5 * _voxelizationThickness; double voxelizationPlaneIndexMax = it.first + 0.5 * _voxelizationThickness; double weight = 0; if ((voxelizationPlaneIndexMin < indexZMin) && (voxelizationPlaneIndexMax > indexZMin)) { if (voxelizationPlaneIndexMax < indexZMax) { weight = voxelizationPlaneIndexMax - indexZMin; } else { weight = 1; } } else if ((voxelizationPlaneIndexMin >= indexZMin) && (voxelizationPlaneIndexMin < indexZMax)) { if (voxelizationPlaneIndexMax < indexZMax) { weight = _voxelizationThickness; } else { weight = indexZMax - voxelizationPlaneIndexMin; } } weightVector.insert(std::pair<double, double>(it.first, weight)); } } } } } diff --git a/code/masks/rttbBoostMaskGenerateMaskVoxelListThread.h b/code/masks/rttbBoostMaskGenerateMaskVoxelListThread.h index 76dc429..822a6cf 100644 --- a/code/masks/rttbBoostMaskGenerateMaskVoxelListThread.h +++ b/code/masks/rttbBoostMaskGenerateMaskVoxelListThread.h @@ -1,89 +1,82 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision: 1127 $ (last changed revision) -// @date $Date: 2015-10-01 13:33:33 +0200 (Do, 01 Okt 2015) $ (last change date) -// @author $Author: hentsch $ (last changed by) -*/ - #ifndef __BOOST_MASK_GENERATE_MASK_VOXEL_LIST_H #define __BOOST_MASK_GENERATE_MASK_VOXEL_LIST_H #include "rttbBaseType.h" #include "rttbGeometricInfo.h" #include "rttbMaskAccessorInterface.h" #include <boost/multi_array.hpp> #include <boost/shared_ptr.hpp> #include <boost/thread/shared_mutex.hpp> namespace rttb { namespace masks { namespace boost { /*! @class BoostMaskGenerateMaskVoxelListThread * */ class BoostMaskGenerateMaskVoxelListThread { public: typedef ::boost::multi_array<double, 2> BoostArray2D; using BoostArray2DPointer = ::boost::shared_ptr<BoostArray2D>; typedef ::boost::shared_ptr<std::map<double, BoostArray2DPointer> > BoostArrayMapPointer; using VoxelIndexVector = std::vector<rttb::VoxelGridIndex3D>; using MaskVoxelListPointer = core::MaskAccessorInterface::MaskVoxelListPointer; BoostMaskGenerateMaskVoxelListThread(const VoxelIndexVector& aGlobalBoundingBox, core::GeometricInfo::Pointer aGeometricInfo, BoostArrayMapPointer aVoxelizationMap, double aVoxelizationThickness, unsigned int aBeginSlice, unsigned int aEndSlice, MaskVoxelListPointer aMaskVoxelList, ::boost::shared_ptr<::boost::shared_mutex> aMutex); void operator()(); private: VoxelIndexVector _globalBoundingBox; core::GeometricInfo::Pointer _geometricInfo; BoostArrayMapPointer _voxelizationMap; //(for example, the first contour has the double grid index 0.1, the second 0.3, the third 0.5, then the thickness is 0.2) double _voxelizationThickness; unsigned int _beginSlice; /*! @brief _endSlice is the first index not to be processed (like a end iterator) */ unsigned int _endSlice; MaskVoxelListPointer _resultMaskVoxelList; ::boost::shared_ptr<::boost::shared_mutex> _mutex; /*! @brief For each dose grid index z, calculate the weight vector for each structure contour */ void calcWeightVector(const rttb::VoxelGridID& aIndexZ, std::map<double, double>& weightVector) const; }; } } } #endif \ No newline at end of file diff --git a/code/masks/rttbBoostMaskVoxelizationThread.cpp b/code/masks/rttbBoostMaskVoxelizationThread.cpp index d184883..693898b 100644 --- a/code/masks/rttbBoostMaskVoxelizationThread.cpp +++ b/code/masks/rttbBoostMaskVoxelizationThread.cpp @@ -1,174 +1,168 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision: 1127 $ (last changed revision) -// @date $Date: 2015-10-01 13:33:33 +0200 (Do, 01 Okt 2015) $ (last change date) -// @author $Author: hentsch $ (last changed by) -*/ #include "rttbBoostMaskVoxelizationThread.h" #include "rttbInvalidParameterException.h" #include <boost/geometry.hpp> #include <boost/thread.hpp> #include <boost/make_shared.hpp> namespace rttb { namespace masks { namespace boost { BoostMaskVoxelizationThread::BoostMaskVoxelizationThread(const BoostPolygonMap& APolygonMap, const VoxelIndexVector& aGlobalBoundingBox, BoostArrayMapPointer anArrayMap, ::boost::shared_ptr<::boost::shared_mutex> aMutex, bool strict) : _geometryCoordinateBoostPolygonMap(APolygonMap), _globalBoundingBox(aGlobalBoundingBox), _resultVoxelization(anArrayMap), _mutex(aMutex), _strict(strict) { } void BoostMaskVoxelizationThread::operator()() { rttb::VoxelGridIndex3D minIndex = _globalBoundingBox.at(0); rttb::VoxelGridIndex3D maxIndex = _globalBoundingBox.at(1); const unsigned int globalBoundingBoxSize0 = maxIndex[0] - minIndex[0] + 1; const unsigned int globalBoundingBoxSize1 = maxIndex[1] - minIndex[1] + 1; std::map<double, ::boost::shared_ptr<BoostArray2D> > voxelizationMapInThread; for (auto & it : _geometryCoordinateBoostPolygonMap) { BoostArray2D maskArray(::boost::extents[globalBoundingBoxSize0][globalBoundingBoxSize1]); BoostPolygonVector boostPolygonVec = it.second; for (unsigned int x = 0; x < globalBoundingBoxSize0; ++x) { for (unsigned int y = 0; y < globalBoundingBoxSize1; ++y) { rttb::VoxelGridIndex3D currentIndex; currentIndex[0] = x + minIndex[0]; currentIndex[1] = y + minIndex[1]; currentIndex[2] = 0; //Get intersection polygons of the dose voxel and the structure BoostPolygonDeque polygons = getIntersections(currentIndex, boostPolygonVec); //Calc areas of all intersection polygons double volumeFraction = calcArea(polygons); volumeFraction = correctForErrorAndStrictness(volumeFraction, _strict); if (volumeFraction < 0 || volumeFraction > 1 ) { throw rttb::core::InvalidParameterException("Mask calculation failed! The volume fraction should >= 0 and <= 1!"); } maskArray[x][y] = volumeFraction; } } voxelizationMapInThread.insert(std::pair<double, BoostArray2DPointer>(it.first, ::boost::make_shared<BoostArray2D>(maskArray))); } //insert gathered values into voxelization map ::boost::unique_lock<::boost::shared_mutex> lock(*_mutex); _resultVoxelization->insert(voxelizationMapInThread.begin(), voxelizationMapInThread.end()); } /*Get intersection polygons of the contour and a voxel polygon*/ BoostMaskVoxelizationThread::BoostPolygonDeque BoostMaskVoxelizationThread::getIntersections( const rttb::VoxelGridIndex3D& aVoxelIndex3D, const BoostPolygonVector& intersectionSlicePolygons) { BoostMaskVoxelizationThread::BoostPolygonDeque polygonDeque; BoostRing2D voxelPolygon = get2DContour(aVoxelIndex3D); ::boost::geometry::correct(voxelPolygon); BoostPolygonVector::const_iterator it; for (it = intersectionSlicePolygons.begin(); it != intersectionSlicePolygons.end(); ++it) { BoostPolygon2D contour = *it; ::boost::geometry::correct(contour); BoostPolygonDeque intersection; ::boost::geometry::intersection(voxelPolygon, contour, intersection); polygonDeque.insert(polygonDeque.end(), intersection.begin(), intersection.end()); } return polygonDeque; } BoostMaskVoxelizationThread::BoostRing2D BoostMaskVoxelizationThread::get2DContour( const rttb::VoxelGridIndex3D& aVoxelGrid3D) { BoostRing2D polygon; BoostPoint2D point1(aVoxelGrid3D[0] - 0.5, aVoxelGrid3D[1] - 0.5); ::boost::geometry::append(polygon, point1); BoostPoint2D point2(aVoxelGrid3D[0] + 0.5, aVoxelGrid3D[1] - 0.5); ::boost::geometry::append(polygon, point2); BoostPoint2D point3(aVoxelGrid3D[0] + 0.5, aVoxelGrid3D[1] + 0.5); ::boost::geometry::append(polygon, point3); BoostPoint2D point4(aVoxelGrid3D[0] - 0.5, aVoxelGrid3D[1] + 0.5); ::boost::geometry::append(polygon, point4); ::boost::geometry::append(polygon, point1); return polygon; } /*Calculate the intersection area*/ double BoostMaskVoxelizationThread::calcArea(const BoostPolygonDeque& aPolygonDeque) { double area = 0; BoostPolygonDeque::const_iterator it; for (it = aPolygonDeque.begin(); it != aPolygonDeque.end(); ++it) { area += ::boost::geometry::area(*it); } return area; } double BoostMaskVoxelizationThread::correctForErrorAndStrictness(double volumeFraction, bool strict) const { if (strict){ if (volumeFraction > 1 && (volumeFraction - 1) <= errorConstant) { volumeFraction = 1; } } else { if (volumeFraction > 1){ volumeFraction = 1; } else if (volumeFraction < 0){ volumeFraction = 0; } } return volumeFraction; } } } } diff --git a/code/masks/rttbBoostMaskVoxelizationThread.h b/code/masks/rttbBoostMaskVoxelizationThread.h index 3ffd14c..b31079f 100644 --- a/code/masks/rttbBoostMaskVoxelizationThread.h +++ b/code/masks/rttbBoostMaskVoxelizationThread.h @@ -1,109 +1,102 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision: 1127 $ (last changed revision) -// @date $Date: 2015-10-01 13:33:33 +0200 (Do, 01 Okt 2015) $ (last change date) -// @author $Author: hentsch $ (last changed by) -*/ - #ifndef __BOOST_MASK_VOXELIZATION_THREAD_H #define __BOOST_MASK_VOXELIZATION_THREAD_H #include <deque> #include "rttbBaseType.h" #include <boost/multi_array.hpp> #include <boost/shared_ptr.hpp> #include <boost/thread/shared_mutex.hpp> #include <boost/geometry/geometries/point_xy.hpp> #include <boost/geometry/geometries/polygon.hpp> namespace rttb { namespace masks { namespace boost { /*! @class BoostMaskGenerateMaskVoxelListThread * */ class BoostMaskVoxelizationThread { public: using BoostPolygon2D = ::boost::geometry::model::polygon< ::boost::geometry::model::d2::point_xy<double> >; using BoostPolygonVector = std::vector<BoostPolygon2D>;//polygon with or without holes typedef std::map<double, BoostPolygonVector> BoostPolygonMap;//map of the z index with the vector of boost 2d polygon using VoxelIndexVector = std::vector<rttb::VoxelGridIndex3D>; typedef ::boost::multi_array<double, 2> BoostArray2D; using BoostArray2DPointer = ::boost::shared_ptr<BoostArray2D>; typedef ::boost::shared_ptr<std::map<double, BoostArray2DPointer > > BoostArrayMapPointer; /*! @brief Constructor * @param aMutex a mutex for thread-safe handling of the _resultVoxelization * @param strict true means that volumeFractions of <0 and >1 are NOT corrected. Otherwise, they are automatically corrected to 0 or 1, respectively. */ BoostMaskVoxelizationThread(const BoostPolygonMap& APolygonMap, const VoxelIndexVector& aGlobalBoundingBox, BoostArrayMapPointer anArrayMap, ::boost::shared_ptr<::boost::shared_mutex> aMutex, bool strict); void operator()(); private: using BoostPolygonDeque = std::deque<BoostPolygon2D>; using BoostRing2D = ::boost::geometry::model::ring< ::boost::geometry::model::d2::point_xy<double> >; using BoostPoint2D = ::boost::geometry::model::d2::point_xy<double>; BoostPolygonMap _geometryCoordinateBoostPolygonMap; VoxelIndexVector _globalBoundingBox; BoostArrayMapPointer _resultVoxelization; ::boost::shared_ptr<::boost::shared_mutex> _mutex; bool _strict; /*! @brief Get intersection polygons of the contour and a voxel polygon * @param aVoxelIndex3D The 3d grid index of the voxel * @param intersectionSlicePolygons The polygons of the slice intersecting the voxel * @return Return all intersection polygons of the structure and the voxel */ static BoostPolygonDeque getIntersections(const rttb::VoxelGridIndex3D& aVoxelIndex3D, const BoostPolygonVector& intersectionSlicePolygons); /*! @brief Get the voxel 2d contour polygon in geometry coordinate*/ static BoostRing2D get2DContour(const rttb::VoxelGridIndex3D& aVoxelGrid3D); /*! @brief Calculate the area of all polygons * @param aPolygonDeque The deque of polygons * @return Return the area of all polygons */ static double calcArea(const BoostPolygonDeque& aPolygonDeque); /*! @brief Corrects the volumeFraction * @details the volume fraction is corrected in case of strict=true. Otherwise, it's only corrected for double imprecision * @return The corrected volumeFraction */ double correctForErrorAndStrictness(double volumeFraction, bool strict) const; }; } } } #endif \ No newline at end of file diff --git a/code/masks/rttbGenericMutableMaskAccessor.cpp b/code/masks/rttbGenericMutableMaskAccessor.cpp index 3e0fd97..16f2eac 100644 --- a/code/masks/rttbGenericMutableMaskAccessor.cpp +++ b/code/masks/rttbGenericMutableMaskAccessor.cpp @@ -1,179 +1,173 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision$ (last changed revision) -// @date $Date$ (last change date) -// @author $Author$ (last changed by) -*/ #include "rttbGenericMutableMaskAccessor.h" #include "rttbMaskVoxel.h" #include "rttbNullPointerException.h" #include <boost/make_shared.hpp> #include <boost/uuid/uuid.hpp> #include <boost/uuid/uuid_generators.hpp> #include <boost/uuid/uuid_io.hpp> namespace rttb { namespace masks { GenericMutableMaskAccessor::GenericMutableMaskAccessor(const core::GeometricInfo& aGeometricInfo) : _geoInfo(aGeometricInfo), _spRelevantVoxelVector(MaskVoxelListPointer()) { //generate new structure set uid boost::uuids::uuid id; boost::uuids::random_generator generator; id = generator(); std::stringstream ss; ss << id; _maskUID = "GenericMutableMask_" + ss.str(); } GenericMutableMaskAccessor::~GenericMutableMaskAccessor() = default; void GenericMutableMaskAccessor::updateMask() {} GenericMutableMaskAccessor::MaskVoxelListPointer GenericMutableMaskAccessor::getRelevantVoxelVector() { return _spRelevantVoxelVector; } GenericMutableMaskAccessor::MaskVoxelListPointer GenericMutableMaskAccessor::getRelevantVoxelVector( float lowerThreshold) { auto filteredVoxelVectorPointer = boost::make_shared<MaskVoxelList>(); // filter relevant voxels auto it = _spRelevantVoxelVector->begin(); while (it != _spRelevantVoxelVector->end()) { if ((*it).getRelevantVolumeFraction() > lowerThreshold) { filteredVoxelVectorPointer->push_back(*it); } ++it; } // if mask calculation was not successful this is empty! return filteredVoxelVectorPointer; } bool GenericMutableMaskAccessor::getMaskAt(VoxelGridID aID, core::MaskVoxel& voxel) const { //initialize return voxel voxel.setRelevantVolumeFraction(0); //check if ID is valid if (!_geoInfo.validID(aID)) { return false; } //determine how a given voxel on the dose grid is masked if (_spRelevantVoxelVector) { auto it = _spRelevantVoxelVector->begin(); while (it != _spRelevantVoxelVector->end()) { if ((*it).getVoxelGridID() == aID) { voxel = (*it); return true; } ++it; } //aID is not in mask voxel.setRelevantVolumeFraction(0); } return false; } bool GenericMutableMaskAccessor::getMaskAt(const VoxelGridIndex3D& aIndex, core::MaskVoxel& voxel) const { //convert VoxelGridIndex3D to VoxelGridID VoxelGridID aVoxelGridID; if (_geoInfo.convert(aIndex, aVoxelGridID)) { return getMaskAt(aVoxelGridID, voxel); } else { return false; } } void GenericMutableMaskAccessor::setMaskAt(VoxelGridID aID, const core::MaskVoxel& voxel) { //check if ID is valid if (!_geoInfo.validID(aID)) { return; } //determine how a given voxel on the dose grid is masked if (_spRelevantVoxelVector) { auto it = _spRelevantVoxelVector->begin(); while (it != _spRelevantVoxelVector->end()) { if ((*it).getVoxelGridID() == aID) { (*it) = voxel; return; } ++it; } //not sID is not found in existing voxels _spRelevantVoxelVector->push_back(voxel); } } void GenericMutableMaskAccessor::setMaskAt(const VoxelGridIndex3D& aIndex, const core::MaskVoxel& voxel) { //convert VoxelGridIndex3D to VoxelGridID VoxelGridID aVoxelGridID; if (_geoInfo.convert(aIndex, aVoxelGridID)) { setMaskAt(aVoxelGridID, voxel); } } void GenericMutableMaskAccessor::setRelevantVoxelVector(MaskVoxelListPointer aVoxelListPointer) { _spRelevantVoxelVector = MaskVoxelListPointer(aVoxelListPointer); } } } \ No newline at end of file diff --git a/code/masks/rttbGenericMutableMaskAccessor.h b/code/masks/rttbGenericMutableMaskAccessor.h index ed5e2cf..f85cb7d 100644 --- a/code/masks/rttbGenericMutableMaskAccessor.h +++ b/code/masks/rttbGenericMutableMaskAccessor.h @@ -1,107 +1,102 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision$ (last changed revision) -// @date $Date$ (last change date) -// @author $Author$ (last changed by) -*/ + #ifndef __GENERIC_MUTABLE_MASK_ACCESSOR_H #define __GENERIC_MUTABLE_MASK_ACCESSOR_H #include "rttbMutableMaskAccessorInterface.h" #include "rttbBaseType.h" #include "rttbGeometricInfo.h" namespace rttb { namespace masks { /*! @class GenericMutableMaskAccessor @brief Default implementation of MutableMaskAccessorInterface. @see MutableMaskAccessorInterface */ class GenericMutableMaskAccessor: public core::MutableMaskAccessorInterface { public: using MaskVoxelList = core::MutableMaskAccessorInterface::MaskVoxelList; using MaskVoxelListPointer = core::MutableMaskAccessorInterface::MaskVoxelListPointer; private: core::GeometricInfo _geoInfo; /*! vector containing list of mask voxels*/ MaskVoxelListPointer _spRelevantVoxelVector; IDType _maskUID; GenericMutableMaskAccessor(const GenericMutableMaskAccessor&) = delete; //not implemented on purpose -> non-copyable GenericMutableMaskAccessor& operator=(const GenericMutableMaskAccessor&) = delete;//not implemented on purpose -> non-copyable public: ~GenericMutableMaskAccessor() override; GenericMutableMaskAccessor(const core::GeometricInfo& aGeometricInfo); /*! @brief initialize mask structure if _spRelevantVoxelVector was not previously initialized*/ void updateMask() override; /*! @brief get vector containing all relevant voxels that are inside the given structure*/ MaskVoxelListPointer getRelevantVoxelVector() override; /*! @brief get vector containing all relevant voxels that have a relevant volume above the given threshold and are inside the given structure*/ MaskVoxelListPointer getRelevantVoxelVector(float lowerThreshold) override; /*!@brief determine how a given voxel on the dose grid is masked * @param aID ID of the voxel in grid. * @param voxel Reference to the voxel. * @post after a valid call voxel contains the information of the specified grid voxel. If aID is not valid, voxel values are undefined. * The relevant volume fraction will be set to zero. * @return Indicates if the voxel exists and therefore if parameter voxel contains valid values.*/ bool getMaskAt(const VoxelGridID aID, core::MaskVoxel& voxel) const override; bool getMaskAt(const VoxelGridIndex3D& aIndex, core::MaskVoxel& voxel) const override; /* @ brief is true if dose is on a homogeneous grid */ // Inhomogeneous grids are not supported at the moment, but if they will // be supported in the future the interface does not need to change. bool isGridHomogeneous() const override { return true; }; /*! @brief give access to GeometricInfo*/ inline const core::GeometricInfo& getGeometricInfo() const override { return _geoInfo; }; IDType getMaskUID() const override { return _maskUID; }; void setMaskAt(VoxelGridID aID, const core::MaskVoxel& voxel) override; void setMaskAt(const VoxelGridIndex3D& gridIndex, const core::MaskVoxel& voxel) override; void setRelevantVoxelVector(MaskVoxelListPointer aVoxelListPointer) override; }; } } #endif \ No newline at end of file diff --git a/testing/core/CreateTestStructure.cpp b/testing/core/CreateTestStructure.cpp index 6c81a22..d310ac4 100644 --- a/testing/core/CreateTestStructure.cpp +++ b/testing/core/CreateTestStructure.cpp @@ -1,688 +1,681 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision$ (last changed revision) -// @date $Date$ (last change date) -// @author $Author$ (last changed by) -*/ // this file defines the rttbCoreTests for the test driver // and all it expects is that you have a function called RegisterTests - #include <math.h> #include "CreateTestStructure.h" #include "rttbNullPointerException.h" #include "rttbInvalidParameterException.h" #include "rttbInvalidDoseException.h" namespace rttb { namespace testing { CreateTestStructure::~CreateTestStructure() {} CreateTestStructure::CreateTestStructure(const core::GeometricInfo& aGeoInfo) { _geoInfo = aGeoInfo; } PolygonType CreateTestStructure::createPolygonLeftUpper(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber) { PolygonType polygon; for (size_t i = 0; i < aVoxelVector.size(); i++) { VoxelGridIndex3D voxelIndex; voxelIndex(0) = (aVoxelVector.at(i)).x(); voxelIndex(1) = (aVoxelVector.at(i)).y(); voxelIndex(2) = sliceNumber; WorldCoordinate3D p1; _geoInfo.indexToWorldCoordinate(voxelIndex, p1); polygon.push_back(p1); std::cout << "(" << p1.x() << "," << p1.y() << "," << p1.z() << ")" << "; "; } std::cout << std::endl; return polygon; } PolygonType CreateTestStructure::createPolygonCenter(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber) { PolygonType polygon; for (size_t i = 0; i < aVoxelVector.size(); i++) { VoxelGridIndex3D voxelIndex; voxelIndex(0) = (aVoxelVector.at(i)).x(); voxelIndex(1) = (aVoxelVector.at(i)).y(); voxelIndex(2) = sliceNumber; WorldCoordinate3D p1; _geoInfo.indexToWorldCoordinate(voxelIndex, p1); WorldCoordinate3D p; p(0) = p1.x() ; p(1) = p1.y() ; //This can be done directly for x/y coordinates, but not for z. Thus, we do it in this function. p(2) = p1.z() - _geoInfo.getSpacing().z() / 2; polygon.push_back(p); } return polygon; } PolygonType CreateTestStructure::createPolygonCenterOnPlaneCenter(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber) { PolygonType polygon; for (size_t i = 0; i < aVoxelVector.size(); i++) { VoxelGridIndex3D voxelIndex; DoubleVoxelGridIndex3D indexDouble = DoubleVoxelGridIndex3D((aVoxelVector.at(i)).x(), (aVoxelVector.at(i)).y(), sliceNumber); WorldCoordinate3D p1; _geoInfo.geometryCoordinateToWorldCoordinate(indexDouble, p1); polygon.push_back(p1); } return polygon; } PolygonType CreateTestStructure::createPolygonBetweenUpperLeftAndCenter( std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber) { PolygonType polygon; for (size_t i = 0; i < aVoxelVector.size(); i++) { VoxelGridIndex3D voxelIndex; voxelIndex(0) = (aVoxelVector.at(i)).x(); voxelIndex(1) = (aVoxelVector.at(i)).y(); voxelIndex(2) = sliceNumber; WorldCoordinate3D p1; _geoInfo.indexToWorldCoordinate(voxelIndex, p1); SpacingVectorType3D delta = _geoInfo.getSpacing(); WorldCoordinate3D p; p(0) = p1.x() + delta.x() / 4; p(1) = p1.y() + delta.y() / 4; p(2) = p1.z(); polygon.push_back(p); std::cout << "(" << p.x() << "," << p.y() << "," << p.z() << ")" << "; "; } std::cout << std::endl; return polygon; } PolygonType CreateTestStructure::createPolygonBetweenLowerRightAndCenter( std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber) { PolygonType polygon; for (size_t i = 0; i < aVoxelVector.size(); i++) { VoxelGridIndex3D voxelIndex; voxelIndex(0) = (aVoxelVector.at(i)).x(); voxelIndex(1) = (aVoxelVector.at(i)).y(); voxelIndex(2) = sliceNumber; WorldCoordinate3D p1; _geoInfo.indexToWorldCoordinate(voxelIndex, p1); SpacingVectorType3D delta = _geoInfo.getSpacing(); WorldCoordinate3D p; p(0) = p1.x() + delta.x() * 0.75; p(1) = p1.y() + delta.y() * 0.75; p(2) = p1.z(); polygon.push_back(p); std::cout << "(" << p.x() << "," << p.y() << "," << p.z() << ")" << "; "; } std::cout << std::endl; return polygon; } PolygonType CreateTestStructure::createPolygonLeftEdgeMiddle(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber) { PolygonType polygon; for (size_t i = 0; i < aVoxelVector.size(); i++) { VoxelGridIndex3D voxelIndex; voxelIndex(0) = (aVoxelVector.at(i)).x(); voxelIndex(1) = (aVoxelVector.at(i)).y(); voxelIndex(2) = sliceNumber; WorldCoordinate3D p1; _geoInfo.indexToWorldCoordinate(voxelIndex, p1); SpacingVectorType3D delta = _geoInfo.getSpacing(); WorldCoordinate3D p; p(0) = p1.x(); p(1) = p1.y() + delta.y() * 0.5; p(2) = p1.z(); polygon.push_back(p); std::cout << "(" << p.x() << "," << p.y() << "," << p.z() << ")" << "; "; } std::cout << std::endl; return polygon; } PolygonType CreateTestStructure::createPolygonUpperCenter(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber) { PolygonType polygon; for (size_t i = 0; i < aVoxelVector.size(); i++) { VoxelGridIndex3D voxelIndex; voxelIndex(0) = (aVoxelVector.at(i)).x(); voxelIndex(1) = (aVoxelVector.at(i)).y(); voxelIndex(2) = sliceNumber; WorldCoordinate3D p1; _geoInfo.indexToWorldCoordinate(voxelIndex, p1); SpacingVectorType3D delta = _geoInfo.getSpacing(); WorldCoordinate3D p; p(0) = p1.x() + delta.x() * 0.5; p(1) = p1.y(); p(2) = p1.z(); polygon.push_back(p); std::cout << "(" << p.x() << "," << p.y() << "," << p.z() << ")" << "; "; } std::cout << std::endl; return polygon; } PolygonType CreateTestStructure::createPolygonIntermediatePoints(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber) { PolygonType polygon; for (size_t i = 0; i < aVoxelVector.size(); i++) { VoxelGridIndex3D voxelIndex; VoxelGridIndex3D voxelIndex2; voxelIndex(0) = (aVoxelVector.at(i)).x(); voxelIndex(1) = (aVoxelVector.at(i)).y(); voxelIndex(2) = sliceNumber; if (i < (aVoxelVector.size() - 1)) { voxelIndex2(0) = (aVoxelVector.at(i + 1)).x(); voxelIndex2(1) = (aVoxelVector.at(i + 1)).y(); voxelIndex2(2) = sliceNumber; } else { voxelIndex2(0) = (aVoxelVector.at(0)).x(); voxelIndex2(1) = (aVoxelVector.at(0)).y(); voxelIndex2(2) = sliceNumber; } WorldCoordinate3D p1; _geoInfo.indexToWorldCoordinate(voxelIndex, p1); SpacingVectorType3D delta = _geoInfo.getSpacing(); WorldCoordinate3D p2; _geoInfo.indexToWorldCoordinate(voxelIndex2, p2); SpacingVectorType3D delta2 = _geoInfo.getSpacing(); WorldCoordinate3D wp1; wp1(0) = p1.x() + delta.x() * 0.75; wp1(1) = p1.y() + delta.y() * 0.75; wp1(2) = p1.z(); WorldCoordinate3D wp2; wp2(0) = p2.x() + delta.x() * 0.75; wp2(1) = p2.y() + delta.y() * 0.75; wp2(2) = p2.z(); polygon.push_back(wp1); double diffX = (wp2.x() - wp1.x()) / 1000.0; double diffY = (wp2.y() - wp1.y()) / 1000.0; WorldCoordinate3D wp_intermediate; wp_intermediate(0) = 0; wp_intermediate(1) = 0; for (int j = 0; j < 1000; j++) { wp_intermediate(0) = wp1.x() + j * diffX; wp_intermediate(1) = wp1.y() + j * diffY; polygon.push_back(wp_intermediate); } } std::cout << std::endl; return polygon; } PolygonType CreateTestStructure::createPolygonCircle(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber) { PolygonType polygon; if (aVoxelVector.size() > 0) { unsigned int i = 0; VoxelGridIndex3D voxelIndex; voxelIndex(0) = (aVoxelVector.at(i)).x(); voxelIndex(1) = (aVoxelVector.at(i)).y(); voxelIndex(2) = sliceNumber; WorldCoordinate3D p1; _geoInfo.indexToWorldCoordinate(voxelIndex, p1); SpacingVectorType3D delta = _geoInfo.getSpacing(); WorldCoordinate3D wp1; wp1(0) = p1.x(); wp1(1) = p1.y(); wp1(2) = p1.z(); WorldCoordinate3D wp_intermediate; wp_intermediate(0) = 0; wp_intermediate(1) = 0; wp_intermediate(2) = p1.z(); double radius = 2 * delta.x(); double frac_radius = (radius * 0.001); double correct_y = (delta.x() / delta.y()); for (unsigned int j = 0; j <= 1000; j++) { double y_offset = sqrt((radius * radius) - ((frac_radius * j) * (frac_radius * j))); wp_intermediate(0) = wp1.x() + frac_radius * j; wp_intermediate(1) = wp1.y() - (y_offset * correct_y); polygon.push_back(wp_intermediate); } for (unsigned int j = 1000; j <= 1000; j--) { double y_offset = sqrt((radius * radius) - ((frac_radius * j) * (frac_radius * j))); wp_intermediate(0) = wp1.x() + frac_radius * j; wp_intermediate(1) = wp1.y() + (y_offset * correct_y); polygon.push_back(wp_intermediate); } for (unsigned int j = 0; j <= 1000; j++) { double y_offset = sqrt((radius * radius) - ((frac_radius * j) * (frac_radius * j))); wp_intermediate(0) = wp1.x() - frac_radius * j; wp_intermediate(1) = wp1.y() + y_offset * correct_y; polygon.push_back(wp_intermediate); } for (unsigned int j = 1000; j <= 1000; j--) { double y_offset = sqrt((radius * radius) - ((frac_radius * j) * (frac_radius * j))); wp_intermediate(0) = wp1.x() + frac_radius * j; wp_intermediate(1) = wp1.y() + (y_offset * correct_y); polygon.push_back(wp_intermediate); } } std::cout << std::endl; return polygon; } PolygonType CreateTestStructure::createStructureSeveralSectionsInsideOneVoxelA( std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber) { PolygonType polygon; if (aVoxelVector.size() > 0) { int i = 0; VoxelGridIndex3D voxelIndex; voxelIndex(0) = (aVoxelVector.at(i)).x(); voxelIndex(1) = (aVoxelVector.at(i)).y(); voxelIndex(2) = sliceNumber; WorldCoordinate3D p1; _geoInfo.indexToWorldCoordinate(voxelIndex, p1); SpacingVectorType3D delta = _geoInfo.getSpacing(); WorldCoordinate3D wp1; wp1(0) = p1.x(); wp1(1) = p1.y(); wp1(2) = p1.z(); WorldCoordinate3D wp_intermediate; wp_intermediate(0) = 0; wp_intermediate(1) = 0; wp_intermediate(2) = p1.z(); wp_intermediate(0) = wp1.x() + (delta.x() * 0.25); wp_intermediate(1) = wp1.y() + (delta.y() * 0.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.25); wp_intermediate(1) = wp1.y() + (delta.y() * 2.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y() + (delta.y() * 2.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y() + (delta.y() * 0.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.75); wp_intermediate(1) = wp1.y() + (delta.y() * 0.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.75); wp_intermediate(1) = wp1.y() + (delta.y() * 2.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 1.0); wp_intermediate(1) = wp1.y() + (delta.y() * 2.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 1.0); wp_intermediate(1) = wp1.y() + (delta.y() * 0.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 1.25); wp_intermediate(1) = wp1.y() + (delta.y() * 0.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 1.25); wp_intermediate(1) = wp1.y() + (delta.y() * 2.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 1.5); wp_intermediate(1) = wp1.y() + (delta.y() * 2.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 1.5); wp_intermediate(1) = wp1.y() + (delta.y() * 0.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 1.75); wp_intermediate(1) = wp1.y() + (delta.y() * 0.75); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 1.75); wp_intermediate(1) = wp1.y() + (delta.y() * 3.0); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x(); wp_intermediate(1) = wp1.y() + (delta.y() * 3.0); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x(); wp_intermediate(1) = wp1.y() + (delta.y() * 3.0); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x(); wp_intermediate(1) = wp1.y() + (delta.y() * 0.75); polygon.push_back(wp_intermediate); } std::cout << std::endl; return polygon; } PolygonType CreateTestStructure::createStructureSelfTouchingA(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber) { PolygonType polygon; if (aVoxelVector.size() > 0) { int i = 0; VoxelGridIndex3D voxelIndex; voxelIndex(0) = (aVoxelVector.at(i)).x(); voxelIndex(1) = (aVoxelVector.at(i)).y(); voxelIndex(2) = sliceNumber; WorldCoordinate3D p1; _geoInfo.indexToWorldCoordinate(voxelIndex, p1); SpacingVectorType3D delta = _geoInfo.getSpacing(); WorldCoordinate3D wp1; wp1(0) = p1.x(); wp1(1) = p1.y(); wp1(2) = p1.z(); WorldCoordinate3D wp_intermediate; wp_intermediate(0) = 0; wp_intermediate(1) = 0; wp_intermediate(2) = p1.z(); wp_intermediate(0) = wp1.x(); wp_intermediate(1) = wp1.y() + (delta.y() * 0.5); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y(); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y() + (delta.y() * 0.5); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 1.0); wp_intermediate(1) = wp1.y() + (delta.y() * 0.5); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 1.0); wp_intermediate(1) = wp1.y() + (delta.y() * 1.0); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y() + (delta.y() * 1.0); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y() + (delta.y() * 0.5); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y() + (delta.y() * 1.0); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x(); wp_intermediate(1) = wp1.y() + (delta.y() * 0.5); polygon.push_back(wp_intermediate); } std::cout << std::endl; return polygon; } PolygonType CreateTestStructure::createStructureSelfTouchingB(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber) { PolygonType polygon; if (aVoxelVector.size() > 0) { int i = 0; VoxelGridIndex3D voxelIndex; voxelIndex(0) = (aVoxelVector.at(i)).x(); voxelIndex(1) = (aVoxelVector.at(i)).y(); voxelIndex(2) = sliceNumber; WorldCoordinate3D p1; _geoInfo.indexToWorldCoordinate(voxelIndex, p1); SpacingVectorType3D delta = _geoInfo.getSpacing(); WorldCoordinate3D wp1; wp1(0) = p1.x(); wp1(1) = p1.y(); wp1(2) = p1.z(); WorldCoordinate3D wp_intermediate; wp_intermediate(0) = 0; wp_intermediate(1) = 0; wp_intermediate(2) = p1.z(); wp_intermediate(0) = wp1.x(); wp_intermediate(1) = wp1.y() + (delta.y() * 0.5); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y(); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y() + (delta.y() * 0.5); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 1.0); wp_intermediate(1) = wp1.y() + (delta.y() * 0.5); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 1.0); wp_intermediate(1) = wp1.y() + (delta.y() * 1.0); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y() + (delta.y() * 1.0); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y() + (delta.y() * 0.5); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x(); wp_intermediate(1) = wp1.y() + (delta.y() * 0.5); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y() + (delta.y() * 0.5); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x() + (delta.x() * 0.5); wp_intermediate(1) = wp1.y() + (delta.y() * 1.0); polygon.push_back(wp_intermediate); wp_intermediate(0) = wp1.x(); wp_intermediate(1) = wp1.y() + (delta.y() * 0.5); polygon.push_back(wp_intermediate); } std::cout << std::endl; return polygon; } }//testing }//rttb diff --git a/testing/core/CreateTestStructure.h b/testing/core/CreateTestStructure.h index 627c5cf..cb0631f 100644 --- a/testing/core/CreateTestStructure.h +++ b/testing/core/CreateTestStructure.h @@ -1,81 +1,75 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision$ (last changed revision) -// @date $Date$ (last change date) -// @author $Author$ (last changed by) -*/ #include "rttbStructure.h" #include "rttbBaseType.h" #include "rttbGeometricInfo.h" namespace rttb { namespace testing { /*!@class CreateTestStructure @brief Create dummy structures for testing. */ class CreateTestStructure { private: core::GeometricInfo _geoInfo; CreateTestStructure() {}; public: ~CreateTestStructure(); CreateTestStructure(const core::GeometricInfo& aGeoInfo); PolygonType createPolygonLeftUpper(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber); /*The z coordinate of the polygon is the upper side of the voxel on the slice*/ PolygonType createPolygonCenter(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber); /*The z coordinate of the polygon is the center of the voxel on the slice*/ PolygonType createPolygonCenterOnPlaneCenter(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber); PolygonType createPolygonBetweenUpperLeftAndCenter(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber); PolygonType createPolygonBetweenLowerRightAndCenter(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber); PolygonType createPolygonIntermediatePoints(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber); PolygonType createPolygonUpperCenter(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber); PolygonType createPolygonLeftEdgeMiddle(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber); PolygonType createPolygonCircle(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber); PolygonType createStructureSeveralSectionsInsideOneVoxelA(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber); PolygonType createStructureSelfTouchingA(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber); PolygonType createStructureSelfTouchingB(std::vector<VoxelGridIndex2D> aVoxelVector, GridIndexType sliceNumber); }; }//testing }//rttb diff --git a/testing/core/DummyStructure.cpp b/testing/core/DummyStructure.cpp index 4a496a9..3345ff0 100644 --- a/testing/core/DummyStructure.cpp +++ b/testing/core/DummyStructure.cpp @@ -1,748 +1,742 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision$ (last changed revision) -// @date $Date$ (last change date) -// @author $Author$ (last changed by) -*/ #include <math.h> #include "DummyStructure.h" #include "rttbNullPointerException.h" #include "rttbInvalidParameterException.h" #include "rttbInvalidDoseException.h" namespace rttb { namespace testing { DummyStructure::~DummyStructure() {} DummyStructure::DummyStructure(const core::GeometricInfo& aGeoInfo) { _geoInfo = aGeoInfo; } core::Structure DummyStructure::CreateRectangularStructureCentered(GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 1); VoxelGridIndex2D another_i2(5, 1); VoxelGridIndex2D another_i3(5, 5); VoxelGridIndex2D another_i4(2, 5); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonType another_polygon1 = another_cts.createPolygonCenter(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure_rectangular_centered = core::Structure(another_polySeq); return test_structure_rectangular_centered; } core::Structure DummyStructure::CreateRectangularStructureCenteredContourPlaneThicknessNotEqualDosePlaneThickness(GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 1); VoxelGridIndex2D another_i2(5, 1); VoxelGridIndex2D another_i3(5, 5); VoxelGridIndex2D another_i4(2, 5); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonType another_polygon1 = another_cts.createPolygonCenter(another_voxelVector, zPlane); PolygonType another_polygon2 = another_cts.createPolygonCenterOnPlaneCenter(another_voxelVector, zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); another_polySeq.push_back(another_polygon2); core::Structure test_structure_rectangular_centered = core::Structure(another_polySeq); return test_structure_rectangular_centered; } core::Structure DummyStructure::CreateRectangularStructureCentered(GridIndexType fromZPlane, GridIndexType toZPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 1); VoxelGridIndex2D another_i2(5, 1); VoxelGridIndex2D another_i3(5, 5); VoxelGridIndex2D another_i4(2, 5); PolygonSequenceType another_polySeq; for (unsigned int i = fromZPlane; i <= toZPlane; ++i){ another_voxelVector.clear(); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonType another_polygon1 = another_cts.createPolygonCenter(another_voxelVector, i); another_polySeq.push_back(another_polygon1); } core::Structure test_structure_rectangular_centered = core::Structure(another_polySeq); return test_structure_rectangular_centered; } core::Structure DummyStructure::CreateRectangularStructureCentered(GridIndexType fromZPlane, GridIndexType toZPlane, GridIndexType fromZPlane2, GridIndexType toZPlane2) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 1); VoxelGridIndex2D another_i2(5, 1); VoxelGridIndex2D another_i3(5, 5); VoxelGridIndex2D another_i4(2, 5); PolygonSequenceType another_polySeq; for (unsigned int i = fromZPlane; i <= toZPlane; ++i){ another_voxelVector.clear(); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonType another_polygon1 = another_cts.createPolygonCenter(another_voxelVector, i); another_polySeq.push_back(another_polygon1); } for (unsigned int i = fromZPlane2; i <= toZPlane2; ++i){ another_voxelVector.clear(); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonType another_polygon1 = another_cts.createPolygonCenter(another_voxelVector, i); another_polySeq.push_back(another_polygon1); } core::Structure test_structure_rectangular_centered = core::Structure(another_polySeq); return test_structure_rectangular_centered; } core::Structure DummyStructure::CreateRectangularStructureCenteredRotatedIntermediatePlacement( GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(5, 1); VoxelGridIndex2D another_i2(8, 4); VoxelGridIndex2D another_i3(5, 7); VoxelGridIndex2D another_i4(2, 4); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonType another_polygon1 = another_cts.createPolygonBetweenUpperLeftAndCenter( another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateRectangularStructureCenteredRotatedIntermediatePlacementLowerRight() { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(5, 1); VoxelGridIndex2D another_i2(8, 4); VoxelGridIndex2D another_i3(5, 7); VoxelGridIndex2D another_i4(2, 4); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonSequenceType another_polySeq; core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateRectangularStructureCenteredRotatedIntermediatePlacementLowerRightCounterClock( GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 4); VoxelGridIndex2D another_i2(5, 7); VoxelGridIndex2D another_i3(8, 4); VoxelGridIndex2D another_i4(5, 1); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonType another_polygon1 = another_cts.createPolygonBetweenLowerRightAndCenter( another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateRectangularStructureCenteredRotatedIntermediatePlacementLowerRightCounterClockIntermediatePoints( GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 4); VoxelGridIndex2D another_i2(5, 7); VoxelGridIndex2D another_i3(8, 4); VoxelGridIndex2D another_i4(5, 1); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonType another_polygon1 = another_cts.createPolygonIntermediatePoints(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureSeveralSeperateSectionsInsideOneVoxel( GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 2); another_voxelVector.push_back(another_i1); PolygonType another_polygon1 = another_cts.createStructureSeveralSectionsInsideOneVoxelA( another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureSelfTouchingA(GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 2); another_voxelVector.push_back(another_i1); PolygonType another_polygon1 = another_cts.createStructureSelfTouchingA(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureIntersectingTwoPolygonsInDifferentSlices( GridIndexType zPlane1, GridIndexType zPlane2) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); CreateTestStructure one_more_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 4); VoxelGridIndex2D another_i2(8, 4); VoxelGridIndex2D another_i3(8, 6); VoxelGridIndex2D another_i4(2, 6); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonType another_polygon1 = another_cts.createPolygonCenter(another_voxelVector , zPlane1); std::vector<VoxelGridIndex2D> one_more_voxelVector; VoxelGridIndex2D one_more_i1(3, 5); VoxelGridIndex2D one_more_i2(9, 5); VoxelGridIndex2D one_more_i3(9, 7); VoxelGridIndex2D one_more_i4(3, 7); one_more_voxelVector.push_back(one_more_i1); one_more_voxelVector.push_back(one_more_i2); one_more_voxelVector.push_back(one_more_i3); one_more_voxelVector.push_back(one_more_i4); PolygonType another_polygon2 = one_more_cts.createPolygonCenter(one_more_voxelVector , zPlane2); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); another_polySeq.push_back(another_polygon2); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureIntersectingTwoPolygons(GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); CreateTestStructure one_more_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 4); VoxelGridIndex2D another_i2(8, 4); VoxelGridIndex2D another_i3(8, 6); VoxelGridIndex2D another_i4(2, 6); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonType another_polygon1 = another_cts.createPolygonCenter(another_voxelVector , zPlane); std::vector<VoxelGridIndex2D> one_more_voxelVector; VoxelGridIndex2D one_more_i1(3, 5); VoxelGridIndex2D one_more_i2(9, 5); VoxelGridIndex2D one_more_i3(9, 7); VoxelGridIndex2D one_more_i4(3, 7); one_more_voxelVector.push_back(one_more_i1); one_more_voxelVector.push_back(one_more_i2); one_more_voxelVector.push_back(one_more_i3); one_more_voxelVector.push_back(one_more_i4); PolygonType another_polygon2 = one_more_cts.createPolygonCenter(one_more_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); another_polySeq.push_back(another_polygon2); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureIntersecting(GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 4); VoxelGridIndex2D another_i2(8, 4); VoxelGridIndex2D another_i3(2, 6); VoxelGridIndex2D another_i4(8, 6); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonType another_polygon1 = another_cts.createPolygonCenter(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureInsideInsideTouches(GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(3, 4); VoxelGridIndex2D another_i2(2, 8); VoxelGridIndex2D another_i3(4, 8); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); PolygonType another_polygon1 = another_cts.createPolygonUpperCenter(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureInsideInsideTouchesRotatedPointDoubeled( GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 4); VoxelGridIndex2D another_i4(2, 4); VoxelGridIndex2D another_i2(4, 4); VoxelGridIndex2D another_i3(3, 8); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i4); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); PolygonType another_polygon1 = another_cts.createPolygonUpperCenter(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureInsideInsideTouchesCounterClockRotatedOnePointFivePi( GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(3, 5); VoxelGridIndex2D another_i2(3, 5); VoxelGridIndex2D another_i3(7, 6); VoxelGridIndex2D another_i4(7, 6); VoxelGridIndex2D another_i5(7, 4); VoxelGridIndex2D another_i6(7, 4); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); another_voxelVector.push_back(another_i5); another_voxelVector.push_back(another_i6); PolygonType another_polygon1 = another_cts.createPolygonLeftEdgeMiddle(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureInsideInsideTouchesCounterClockRotatedQuaterPi( GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(7, 5); VoxelGridIndex2D another_i2(7, 5); VoxelGridIndex2D another_i3(3, 6); VoxelGridIndex2D another_i4(3, 6); VoxelGridIndex2D another_i5(3, 4); VoxelGridIndex2D another_i6(3, 4); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); another_voxelVector.push_back(another_i5); another_voxelVector.push_back(another_i6); PolygonType another_polygon1 = another_cts.createPolygonLeftEdgeMiddle(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureInsideInsideTouchesRotatedQuaterPi( GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(3, 4); VoxelGridIndex2D another_i2(3, 4); VoxelGridIndex2D another_i3(3, 6); VoxelGridIndex2D another_i4(3, 6); VoxelGridIndex2D another_i5(7, 5); VoxelGridIndex2D another_i6(7, 5); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); another_voxelVector.push_back(another_i5); another_voxelVector.push_back(another_i6); PolygonType another_polygon1 = another_cts.createPolygonLeftEdgeMiddle(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureCircle(GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(4, 4); another_voxelVector.push_back(another_i1); PolygonType another_polygon1 = another_cts.createPolygonCircle(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureInsideInsideTouchesUpperRight( GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(3, 4); VoxelGridIndex2D another_i3(4, 5); VoxelGridIndex2D another_i5(5, 3); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i5); PolygonType another_polygon1 = another_cts.createPolygonLeftUpper(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureInsideInsideTouchesLowerRight( GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(2, 2); VoxelGridIndex2D another_i2(2, 2); VoxelGridIndex2D another_i3(3, 1); VoxelGridIndex2D another_i4(3, 1); VoxelGridIndex2D another_i5(4, 3); VoxelGridIndex2D another_i6(4, 3); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); another_voxelVector.push_back(another_i5); another_voxelVector.push_back(another_i6); PolygonType another_polygon1 = another_cts.createPolygonLeftUpper(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureInsideInsideTouchesLowerLeft( GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(3, 3); VoxelGridIndex2D another_i2(3, 3); VoxelGridIndex2D another_i3(4, 4); VoxelGridIndex2D another_i4(4, 4); VoxelGridIndex2D another_i5(2, 5); VoxelGridIndex2D another_i6(2, 5); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); another_voxelVector.push_back(another_i5); another_voxelVector.push_back(another_i6); PolygonType another_polygon1 = another_cts.createPolygonLeftUpper(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } core::Structure DummyStructure::CreateTestStructureInsideInsideTouchesUpperLeft( GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(5, 5); VoxelGridIndex2D another_i2(5, 5); VoxelGridIndex2D another_i3(4, 6); VoxelGridIndex2D another_i4(4, 6); VoxelGridIndex2D another_i5(3, 4); VoxelGridIndex2D another_i6(3, 4); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); another_voxelVector.push_back(another_i5); another_voxelVector.push_back(another_i6); PolygonType another_polygon1 = another_cts.createPolygonLeftUpper(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } void DummyStructure::ShowTestStructure(core::Structure aStructure) { WorldCoordinate3D aPoint(0); PolygonSequenceType strVector = aStructure.getStructureVector(); for (size_t struct_index = 0 ; struct_index < strVector.size() ; struct_index++) { for (size_t point_index = 0 ; point_index < strVector.at(struct_index).size() ; point_index++) { aPoint = strVector.at(struct_index).at(point_index); std::cout << " aPoint.x " << aPoint.x() << std::endl; std::cout << " aPoint.y " << aPoint.y() << std::endl; std::cout << " aPoint.z " << aPoint.z() << std::endl; } } } core::Structure DummyStructure::CreateRectangularStructureUpperLeftRotated(GridIndexType zPlane) { CreateTestStructure another_cts = CreateTestStructure(_geoInfo); std::vector<VoxelGridIndex2D> another_voxelVector; VoxelGridIndex2D another_i1(5, 1); VoxelGridIndex2D another_i2(8, 4); VoxelGridIndex2D another_i3(5, 7); VoxelGridIndex2D another_i4(2, 4); another_voxelVector.push_back(another_i1); another_voxelVector.push_back(another_i2); another_voxelVector.push_back(another_i3); another_voxelVector.push_back(another_i4); PolygonType another_polygon1 = another_cts.createPolygonLeftUpper(another_voxelVector , zPlane); PolygonSequenceType another_polySeq; another_polySeq.push_back(another_polygon1); core::Structure test_structure = core::Structure(another_polySeq); return test_structure; } }//testing }//rttb diff --git a/testing/core/DummyStructure.h b/testing/core/DummyStructure.h index dea6e31..052283f 100644 --- a/testing/core/DummyStructure.h +++ b/testing/core/DummyStructure.h @@ -1,112 +1,105 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision$ (last changed revision) -// @date $Date$ (last change date) -// @author $Author$ (last changed by) -*/ // this file defines the rttbCoreTests for the test driver // and all it expects is that you have a function called RegisterTests - #include "rttbStructure.h" #include "CreateTestStructure.h" #include "rttbBaseType.h" #include "rttbGeometricInfo.h" namespace rttb { namespace testing { /*! @class DummyStructure @brief generate simple geometric testing structures. The maximal x coordinate used is 9 and the maximal y coordinate is 8. Make sure the geometricInfo corresponds to a sufficiently large data grid. @see CreateTestStructures */ class DummyStructure { private: core::GeometricInfo _geoInfo; public: ~DummyStructure(); DummyStructure(const core::GeometricInfo& aGeoInfo); const core::GeometricInfo& getGeometricInfo() { return _geoInfo; }; core::Structure CreateRectangularStructureCentered(GridIndexType zPlane); /* Generate rectangular structure for the z slice and another slice between z and z+1. So the structure has a smaller z spacing than the dose */ core::Structure CreateRectangularStructureCenteredContourPlaneThicknessNotEqualDosePlaneThickness(GridIndexType zPlane); /* Generate rectangular structure for the z slices from fromZPlane(included) to toZPlane(included) */ core::Structure CreateRectangularStructureCentered(GridIndexType fromZPlane, GridIndexType toZPlane); /* Generate rectangular structure for the z slices from fromZPlane(included) to toZPlane(included) and from fromZPlane2(included) to toZPlane2(included) */ core::Structure CreateRectangularStructureCentered(GridIndexType fromZPlane, GridIndexType toZPlane, GridIndexType fromZPlane2, GridIndexType toZPlane2); core::Structure CreateTestStructureCircle(GridIndexType zPlane); core::Structure CreateRectangularStructureUpperLeftRotated(GridIndexType zPlane); core::Structure CreateTestStructureSeveralSeperateSectionsInsideOneVoxel(GridIndexType zPlane); core::Structure CreateRectangularStructureCenteredRotatedIntermediatePlacement( GridIndexType zPlane); core::Structure CreateRectangularStructureCenteredRotatedIntermediatePlacementLowerRight(); core::Structure CreateRectangularStructureCenteredRotatedIntermediatePlacementLowerRightCounterClock( GridIndexType zPlane); core::Structure CreateRectangularStructureCenteredRotatedIntermediatePlacementLowerRightCounterClockIntermediatePoints( GridIndexType zPlane); core::Structure CreateTestStructureSelfTouchingA(GridIndexType zPlane); core::Structure CreateTestStructureIntersecting(GridIndexType zPlane); core::Structure CreateTestStructureIntersectingTwoPolygons(GridIndexType zPlane); core::Structure CreateTestStructureIntersectingTwoPolygonsInDifferentSlices(GridIndexType zPlane1, GridIndexType zPlane2); core::Structure CreateTestStructureInsideInsideTouches(GridIndexType zPlane); core::Structure CreateTestStructureInsideInsideTouchesRotatedQuaterPi(GridIndexType zPlane); core::Structure CreateTestStructureInsideInsideTouchesCounterClockRotatedQuaterPi( GridIndexType zPlane); core::Structure CreateTestStructureInsideInsideTouchesCounterClockRotatedOnePointFivePi( GridIndexType zPlane); core::Structure CreateTestStructureInsideInsideTouchesRotatedPointDoubeled(GridIndexType zPlane); core::Structure CreateTestStructureInsideInsideTouchesUpperLeft(GridIndexType zPlane); core::Structure CreateTestStructureInsideInsideTouchesLowerLeft(GridIndexType zPlane); core::Structure CreateTestStructureInsideInsideTouchesLowerRight(GridIndexType zPlane); core::Structure CreateTestStructureInsideInsideTouchesUpperRight(GridIndexType zPlane); void ShowTestStructure(core::Structure aStructure); }; }//testing }//rttb diff --git a/testing/masks/boost/BoostMaskTest.cpp b/testing/masks/boost/BoostMaskTest.cpp index 9582a2d..d72d06e 100644 --- a/testing/masks/boost/BoostMaskTest.cpp +++ b/testing/masks/boost/BoostMaskTest.cpp @@ -1,255 +1,248 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision: 1127 $ (last changed revision) -// @date $Date: 2015-10-01 13:33:33 +0200 (Do, 01 Okt 2015) $ (last change date) -// @author $Author: hentsch $ (last changed by) -*/ #include <boost/make_shared.hpp> #include <boost/shared_ptr.hpp> #include "litCheckMacros.h" #include "rttbBaseType.h" #include "../../core/DummyStructure.h" #include "../../core/DummyDoseAccessor.h" #include "rttbDicomDoseAccessor.h" #include "rttbDicomFileDoseAccessorGenerator.h" #include "rttbDicomFileStructureSetGenerator.h" #include "rttbDicomFileStructureSetGenerator.h" #include "rttbGenericDoseIterator.h" #include "rttbDVHCalculator.h" #include "rttbGenericMaskedDoseIterator.h" #include "rttbBoostMask.h" #include "rttbBoostMaskAccessor.h" #include "rttbInvalidParameterException.h" - namespace rttb { namespace testing { /*! @brief BoostMaskRedesignTest. 1) test constructors 2) test getRelevantVoxelVector 3) test getMaskAt */ int BoostMaskTest(int argc, char* argv[]) { PREPARE_DEFAULT_TEST_REPORTING; typedef core::Structure::Pointer StructTypePointer; // generate test dose. geometric info: patient position (-25, -2, 35), center of the 1st.voxel boost::shared_ptr<DummyDoseAccessor> spTestDoseAccessor = boost::make_shared<DummyDoseAccessor>(); boost::shared_ptr<core::GeometricInfo> geometricPtr = boost::make_shared<core::GeometricInfo> (spTestDoseAccessor->getGeometricInfo()); DummyStructure myStructGenerator(spTestDoseAccessor->getGeometricInfo()); //generate test structure. contours are (-20,0.5,38.75); (-12.5,0.5,38.75); (-12.5,10.5,38.75); (-20,10.5,38.75); //(-20, 0.5, 41.25); (-12.5, 0.5, 41.25); (-12.5, 10.5, 41.25); (-20, 10.5, 41.25); core::Structure myTestStruct = myStructGenerator.CreateRectangularStructureCentered(2,3); StructTypePointer spMyStruct = boost::make_shared<core::Structure>(myTestStruct); //generate test structure 2. contours are (-20,0.5,38.75); (-12.5,0.5,38.75); (-12.5,10.5,38.75); (-20,10.5,38.75); //(-20, 0.5, 40); (-12.5, 0.5, 40); (-12.5, 10.5, 40); (-20, 10.5, 40); core::Structure myTestStruct2 = myStructGenerator.CreateRectangularStructureCenteredContourPlaneThicknessNotEqualDosePlaneThickness(2); StructTypePointer spMyStruct2 = boost::make_shared<core::Structure>(myTestStruct2); //generate test structure. contours are //(-20,0.5,38.75); (-12.5,0.5,38.75); (-12.5,10.5,38.75); (-20,10.5,38.75); //(-20, 0.5, 41.25); (-12.5, 0.5, 41.25); (-12.5, 10.5, 41.25); (-20, 10.5, 41.25); //(-20, 0.5, 48.75); (-12.5, 0.5, 48.75); (-12.5, 10.5, 48.75); (-20, 10.5, 48.75); //(-20, 0.5, 51.25); (-12.5, 0.5, 51.25); (-12.5, 10.5, 51.25); (-20, 10.5, 51.25); //to test calcVoxelizationThickness bug core::Structure myTestStruct3 = myStructGenerator.CreateRectangularStructureCentered(2, 3, 6, 7); StructTypePointer spMyStruct3 = boost::make_shared<core::Structure>(myTestStruct3); //1) test BoostMask & BoostMaskAccessor constructor CHECK_NO_THROW(rttb::masks::boost::BoostMask(geometricPtr, spMyStruct)); rttb::masks::boost::BoostMask boostMask = rttb::masks::boost::BoostMask( geometricPtr, spMyStruct); CHECK_NO_THROW(rttb::masks::boost::BoostMaskAccessor(spMyStruct, spTestDoseAccessor->getGeometricInfo(), true)); rttb::masks::boost::BoostMaskAccessor boostMaskAccessor(spMyStruct, spTestDoseAccessor->getGeometricInfo(), true); //2) test getRelevantVoxelVector CHECK_NO_THROW(boostMask.getRelevantVoxelVector()); CHECK_NO_THROW(boostMaskAccessor.getRelevantVoxelVector()); //3) test getMaskAt const VoxelGridIndex3D inMask1(2, 1, 2); //corner between two contours slice -> volumeFraction = 0.25 const VoxelGridIndex3D inMask2(3, 4, 2); //inside between two contours slice ->volumeFraction = 1 const VoxelGridIndex3D inMask3(4, 5, 2); //side between two contours slice -> volumeFraction = 0.5 const VoxelGridIndex3D inMask4(2, 1, 1); //corner on the first contour slice -> volumeFraction = 0.25/2 = 0.125 const VoxelGridIndex3D inMask5(2, 1, 3); //corner on the last contour slice -> volumeFraction = 0.25/2 = 0.125 const VoxelGridIndex3D inMask6(3, 4, 1); //inside on the first contour slice ->volumeFraction = 1 /2 = 0.5 const VoxelGridIndex3D outMask1(7, 5, 4); const VoxelGridIndex3D outMask2(2, 1, 0); const VoxelGridIndex3D outMask3(2, 1, 4); VoxelGridID testId; double errorConstantBoostMask = 1e-7; core::MaskVoxel tmpMV1(0), tmpMV2(0); CHECK(boostMaskAccessor.getMaskAt(inMask1, tmpMV1)); geometricPtr->convert(inMask1, testId); CHECK(boostMaskAccessor.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); CHECK_CLOSE(0.25, tmpMV1.getRelevantVolumeFraction(), errorConstantBoostMask); CHECK_EQUAL(testId, tmpMV1.getVoxelGridID()); CHECK(boostMaskAccessor.getMaskAt(inMask2, tmpMV1)); CHECK(geometricPtr->convert(inMask2, testId)); CHECK(boostMaskAccessor.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); CHECK_EQUAL(1, tmpMV1.getRelevantVolumeFraction()); CHECK_EQUAL(testId, tmpMV1.getVoxelGridID()); CHECK(boostMaskAccessor.getMaskAt(inMask3, tmpMV1)); CHECK(geometricPtr->convert(inMask3, testId)); CHECK(boostMaskAccessor.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); CHECK_CLOSE(0.5, tmpMV1.getRelevantVolumeFraction(), errorConstantBoostMask); CHECK_EQUAL(testId, tmpMV1.getVoxelGridID()); CHECK(boostMaskAccessor.getMaskAt(inMask4, tmpMV1)); CHECK(geometricPtr->convert(inMask4, testId)); CHECK(boostMaskAccessor.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); CHECK_CLOSE(0.125, tmpMV1.getRelevantVolumeFraction(), errorConstantBoostMask); CHECK_EQUAL(testId, tmpMV1.getVoxelGridID()); CHECK(boostMaskAccessor.getMaskAt(inMask5, tmpMV1)); CHECK(geometricPtr->convert(inMask5, testId)); CHECK(boostMaskAccessor.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); CHECK_CLOSE(0.125, tmpMV1.getRelevantVolumeFraction(), errorConstantBoostMask); CHECK_EQUAL(testId, tmpMV1.getVoxelGridID()); CHECK(boostMaskAccessor.getMaskAt(inMask6, tmpMV1)); CHECK(geometricPtr->convert(inMask6, testId)); CHECK(boostMaskAccessor.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); CHECK_CLOSE(0.5, tmpMV1.getRelevantVolumeFraction(), errorConstantBoostMask); CHECK_EQUAL(testId, tmpMV1.getVoxelGridID()); CHECK(!boostMaskAccessor.getMaskAt(outMask1, tmpMV1)); CHECK(geometricPtr->convert(outMask1, testId)); CHECK(!boostMaskAccessor.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); CHECK_EQUAL(0, tmpMV1.getRelevantVolumeFraction()); CHECK(!boostMaskAccessor.getMaskAt(outMask2, tmpMV1)); CHECK(geometricPtr->convert(outMask2, testId)); CHECK(!boostMaskAccessor.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); CHECK_EQUAL(0, tmpMV1.getRelevantVolumeFraction()); CHECK(!boostMaskAccessor.getMaskAt(outMask3, tmpMV1)); CHECK(geometricPtr->convert(outMask3, testId)); CHECK(!boostMaskAccessor.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); CHECK_EQUAL(0, tmpMV1.getRelevantVolumeFraction()); rttb::masks::boost::BoostMask boostMask2 = rttb::masks::boost::BoostMask( geometricPtr, spMyStruct2); CHECK_NO_THROW(boostMask2.getRelevantVoxelVector()); rttb::masks::boost::BoostMaskAccessor boostMaskAccessor2(spMyStruct2, spTestDoseAccessor->getGeometricInfo(), true); CHECK_NO_THROW(boostMaskAccessor2.getRelevantVoxelVector()); CHECK(boostMaskAccessor2.getMaskAt(inMask1, tmpMV1)); geometricPtr->convert(inMask1, testId); CHECK(boostMaskAccessor2.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); //corner, the first contour weight 0.25, the second contour weights 0.5 -> volumeFraction = 0.25*0.25 + 1.25*0.5 = 0.1875 CHECK_CLOSE(0.1875, tmpMV1.getRelevantVolumeFraction(), errorConstantBoostMask); CHECK_EQUAL(testId, tmpMV1.getVoxelGridID()); CHECK(boostMaskAccessor2.getMaskAt(inMask2, tmpMV1)); CHECK(geometricPtr->convert(inMask2, testId)); CHECK(boostMaskAccessor2.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); //inside, the first contour weight 0.25, the second contour weights 0.5 -> ->volumeFraction = 1*0.25 + 1*0.5 = 0.75 CHECK_EQUAL(0.75, tmpMV1.getRelevantVolumeFraction()); CHECK_EQUAL(testId, tmpMV1.getVoxelGridID()); CHECK(boostMaskAccessor2.getMaskAt(inMask3, tmpMV1)); CHECK(geometricPtr->convert(inMask3, testId)); CHECK(boostMaskAccessor2.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); //side the first contour weight 0.25, the second contour weights 0.5 -> ->volumeFraction = 0.5*0.25 + 0.5*0.5 = 0.75 CHECK_CLOSE(0.375, tmpMV1.getRelevantVolumeFraction(), errorConstantBoostMask); CHECK_EQUAL(testId, tmpMV1.getVoxelGridID()); CHECK(boostMaskAccessor2.getMaskAt(inMask4, tmpMV1)); CHECK(geometricPtr->convert(inMask4, testId)); CHECK(boostMaskAccessor2.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); //corner on the first contour slice, weight 0.25 -> volumeFraction = 0.25*0.25 = 0.0625 CHECK_CLOSE(0.0625, tmpMV1.getRelevantVolumeFraction(), errorConstantBoostMask); CHECK_EQUAL(testId, tmpMV1.getVoxelGridID()); CHECK(boostMaskAccessor2.getMaskAt(inMask6, tmpMV1)); CHECK(geometricPtr->convert(inMask6, testId)); CHECK(boostMaskAccessor2.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); //inside on the first contour slice, weight 0.25 ->volumeFraction = 1 * 0.25 = 0.25 CHECK_CLOSE(0.25, tmpMV1.getRelevantVolumeFraction(), errorConstantBoostMask); CHECK_EQUAL(testId, tmpMV1.getVoxelGridID()); CHECK(!boostMaskAccessor2.getMaskAt(outMask1, tmpMV1)); CHECK(geometricPtr->convert(outMask1, testId)); CHECK(!boostMaskAccessor2.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); CHECK_EQUAL(0, tmpMV1.getRelevantVolumeFraction()); //CHECK_EQUAL(testId,tmpMV1.getVoxelGridID()); -> return value will not be valid outside the mask CHECK(!boostMaskAccessor2.getMaskAt(outMask2, tmpMV1)); CHECK(geometricPtr->convert(outMask2, testId)); CHECK(!boostMaskAccessor2.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); CHECK_EQUAL(0, tmpMV1.getRelevantVolumeFraction()); //CHECK_EQUAL(testId,tmpMV1.getVoxelGridID()); -> return value will not be valid outside the mask CHECK(!boostMaskAccessor2.getMaskAt(outMask3, tmpMV1)); CHECK(geometricPtr->convert(outMask3, testId)); CHECK(!boostMaskAccessor2.getMaskAt(testId, tmpMV2)); CHECK_EQUAL(tmpMV1, tmpMV2); CHECK_EQUAL(0, tmpMV1.getRelevantVolumeFraction()); //CHECK_EQUAL(testId,tmpMV1.getVoxelGridID()); -> return value will not be valid outside the mask //3) test calcVoxelizationThickness bug rttb::masks::boost::BoostMask boostMask3 = rttb::masks::boost::BoostMask( geometricPtr, spMyStruct3); CHECK_NO_THROW(boostMask3.getRelevantVoxelVector()); rttb::masks::boost::BoostMaskAccessor boostMaskAccessor3(spMyStruct3, spTestDoseAccessor->getGeometricInfo(), true); CHECK_NO_THROW(boostMaskAccessor3.getRelevantVoxelVector()); RETURN_AND_REPORT_TEST_SUCCESS; } }//testing }//rttb diff --git a/testing/masks/boost/rttbBoostMaskTests.cpp b/testing/masks/boost/rttbBoostMaskTests.cpp index 4dfa247..887d994 100644 --- a/testing/masks/boost/rttbBoostMaskTests.cpp +++ b/testing/masks/boost/rttbBoostMaskTests.cpp @@ -1,63 +1,56 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ -/*! -// @file -// @version $Revision$ (last changed revision) -// @date $Date$ (last change date) -// @author $Author$ (last changed by) -*/ // this file defines the rttbAlgorithmsTests for the test driver // and all it expects is that you have a function called RegisterTests #if defined(_MSC_VER) #pragma warning ( disable : 4786 ) #endif - #include "litMultiTestsMain.h" namespace rttb { namespace testing { void registerTests() { LIT_REGISTER_TEST(BoostMaskTest); } } } int main(int argc, char* argv[]) { int result = 0; rttb::testing::registerTests(); try { result = lit::multiTestsMain(argc, argv); } catch (const std::exception& /*e*/) { result = -1; } catch (...) { result = -1; } return result; }