diff --git a/code/masks/boost/rttbBoostMaskRedesign.cpp b/code/masks/boost/rttbBoostMaskRedesign.cpp index 58b4cdc..fd71e53 100644 --- a/code/masks/boost/rttbBoostMaskRedesign.cpp +++ b/code/masks/boost/rttbBoostMaskRedesign.cpp @@ -1,303 +1,511 @@ #include #include #include +#include #include #include #include #include #include #include "rttbBoostMaskRedesign.h" #include "rttbNullPointerException.h" #include "rttbInvalidParameterException.h" namespace rttb { namespace masks { namespace boostRedesign { - BoostMask::BoostMask(BoostMask::GeometricInfoPointer aDoseGeoInfo, BoostMask::StructPointer aStructure, bool strict) - :_geometricInfo(aDoseGeoInfo), _structure(aStructure), _strict(strict), _voxelInStructure(::boost::make_shared()) + BoostMask::BoostMask(BoostMask::GeometricInfoPointer aDoseGeoInfo, + BoostMask::StructPointer aStructure, bool strict) + : _geometricInfo(aDoseGeoInfo), _structure(aStructure), _strict(strict), + _voxelInStructure(::boost::make_shared()) { _isUpToDate = false; - if (!_geometricInfo){ + + if (!_geometricInfo) + { throw rttb::core::NullPointerException("Error: Geometric info is NULL!"); } - else if (!_structure){ + else if (!_structure) + { throw rttb::core::NullPointerException("Error: Structure is NULL!"); } } BoostMask::MaskVoxelListPointer BoostMask::getRelevantVoxelVector() { - if (!_isUpToDate){ + if (!_isUpToDate) + { calcMask(); } + return _voxelInStructure; } void BoostMask::calcMask() { preprocessing(); + voxelization(); + + if (calcVoxelizationThickness(_voxelizationThickness)) + { + + } + _isUpToDate = true; } void BoostMask::preprocessing() { rttb::PolygonSequenceType polygonSequence = _structure->getStructureVector(); //Convert world coordinate polygons to the polygons with geometry coordinate rttb::PolygonSequenceType geometryCoordinatePolygonVector; rttb::PolygonSequenceType::iterator it; - rttb::DoubleVoxelGridIndex3D globalMaxGridIndex(0.0, 0.0, 0); - rttb::DoubleVoxelGridIndex3D globalMinGridIndex(_geometricInfo->getNumColumns(), _geometricInfo->getNumRows(), 0); - for (it = polygonSequence.begin(); it != polygonSequence.end(); ++it){ + rttb::DoubleVoxelGridIndex3D globalMaxGridIndex(std::numeric_limits::lowest(), + std::numeric_limits::lowest(), std::numeric_limits::lowest()); + rttb::DoubleVoxelGridIndex3D globalMinGridIndex(_geometricInfo->getNumColumns(), + _geometricInfo->getNumRows(), 0); + + for (it = polygonSequence.begin(); it != polygonSequence.end(); ++it) + { PolygonType rttbPolygon = *it; PolygonType geometryCoordinatePolygon; //1. convert polygon to geometry coordinate polygons //2. calculate global min/max //3. check if polygon is planar - if (!preprocessingPolygon(rttbPolygon, geometryCoordinatePolygon, globalMinGridIndex, globalMaxGridIndex, errorConstant)) + if (!preprocessingPolygon(rttbPolygon, geometryCoordinatePolygon, globalMinGridIndex, + globalMaxGridIndex, errorConstant)) { throw rttb::core::Exception("TiltedMaskPlaneException"); } + geometryCoordinatePolygonVector.push_back(geometryCoordinatePolygon); } - _globalBoundingBox.push_back(globalMinGridIndex); - _globalBoundingBox.push_back(globalMaxGridIndex); + rttb::VoxelGridIndex3D minIndex = VoxelGridIndex3D(GridIndexType(globalMinGridIndex(0) + 0.5), + GridIndexType(globalMinGridIndex(1) + 0.5), GridIndexType(globalMinGridIndex(2) + 0.5)); + rttb::VoxelGridIndex3D maxIndex = VoxelGridIndex3D(GridIndexType(globalMaxGridIndex(0) + 0.5), + GridIndexType(globalMaxGridIndex(1) + 0.5), GridIndexType(globalMaxGridIndex(2) + 0.5)); + std::cout << "global min: " << minIndex.toString() << ", globa max: " << maxIndex.toString() << + std::endl; + _globalBoundingBox.push_back(minIndex); + _globalBoundingBox.push_back(maxIndex); //convert rttb polygon sequence to a map of z index and a vector of boost ring 2d (without holes) BoostRingMap ringMap = convertRTTBPolygonSequenceToBoostRingMap(geometryCoordinatePolygonVector); //check donut and convert to a map of z index and a vector of boost polygon 2d (with or without holes) _geometryCoordinateBoostPolygonMap.clear(); BoostRingMap::iterator itMap; - for (itMap = ringMap.begin(); itMap != ringMap.end(); ++itMap){ + + for (itMap = ringMap.begin(); itMap != ringMap.end(); ++itMap) + { BoostPolygonVector polygonVector = checkDonutAndConvert((*itMap).second); - _geometryCoordinateBoostPolygonMap.insert(std::pair((*itMap).first, polygonVector)); + _geometryCoordinateBoostPolygonMap.insert(std::pair((*itMap).first, + polygonVector)); + } + } + + void BoostMask::voxelization() + { + BoostPolygonMap::iterator it; + + if (_globalBoundingBox.size() < 2) + { + throw rttb::core::InvalidParameterException("Bounding box calculation failed! "); + } + + rttb::VoxelGridIndex3D minIndex = _globalBoundingBox.at(0); + rttb::VoxelGridIndex3D maxIndex = _globalBoundingBox.at(1); + int globalBoundingBoxSize0 = maxIndex[0] - minIndex[0] + 1; + int globalBoundingBoxSize1 = maxIndex[1] - minIndex[1] + 1; + + for (it = _geometryCoordinateBoostPolygonMap.begin(); + it != _geometryCoordinateBoostPolygonMap.end(); ++it) + { + BoostArray2D maskArray(boost::extents[globalBoundingBoxSize0][globalBoundingBoxSize1]); + + BoostPolygonVector boostPolygonVec = (*it).second; + + for (unsigned int x = 0; x < globalBoundingBoxSize0; ++x) + { + for (unsigned int y = 0; y < globalBoundingBoxSize1; ++y) + { + rttb::VoxelGridIndex3D currentIndex; + currentIndex[0] = x + minIndex[0]; + currentIndex[1] = y + minIndex[1]; + currentIndex[2] = 0; + + //Get intersection polygons of the dose voxel and the structure + BoostPolygonDeque polygons = getIntersections(currentIndex, boostPolygonVec); + + //Calc areas of all intersection polygons + double volumeFraction = calcArea(polygons); + + if (volumeFraction > 1 && (volumeFraction - 1) <= errorConstant) + { + volumeFraction = 1; + } + else if (volumeFraction < 0 || (volumeFraction - 1) > errorConstant) + { + throw rttb::core::InvalidParameterException("Mask calculation failed! The volume fraction should >= 0 and <= 1!"); + } + + maskArray[x][y] = volumeFraction; + std::cout << "(" << x << "," << y << "): " << volumeFraction << std::endl; + } + } + + //insert into voxelization map + _voxelizationMap.insert(std::pair((*it).first, maskArray)); } + } - bool BoostMask::preprocessingPolygon(const rttb::PolygonType& aRTTBPolygon, rttb::PolygonType& geometryCoordinatePolygon, rttb::DoubleVoxelGridIndex3D& minimum, rttb::DoubleVoxelGridIndex3D& maximum, double aErrorConstant) + bool BoostMask::preprocessingPolygon(const rttb::PolygonType& aRTTBPolygon, + rttb::PolygonType& geometryCoordinatePolygon, rttb::DoubleVoxelGridIndex3D& minimum, + rttb::DoubleVoxelGridIndex3D& maximum, double aErrorConstant) const { - + double minZ = _geometricInfo->getNumSlices(); double maxZ = 0.0; - for (unsigned int i = 0; i < aRTTBPolygon.size(); i++){ + + for (unsigned int i = 0; i < aRTTBPolygon.size(); i++) + { rttb::WorldCoordinate3D worldCoordinatePoint = aRTTBPolygon.at(i); //convert to geometry coordinate polygon rttb::DoubleVoxelGridIndex3D geometryCoordinatePoint; _geometricInfo->worldCoordinateToGeometryCoordinate(worldCoordinatePoint, geometryCoordinatePoint); geometryCoordinatePolygon.push_back(geometryCoordinatePoint); //calculate the current global min/max //min and max for x - if (geometryCoordinatePoint(0) < minimum(0)){ + if (geometryCoordinatePoint(0) < minimum(0)) + { minimum(0) = geometryCoordinatePoint(0); } - if (geometryCoordinatePoint(0) > maximum(0)){ + + if (geometryCoordinatePoint(0) > maximum(0)) + { maximum(0) = geometryCoordinatePoint(0); } + //min and max for y - if (geometryCoordinatePoint(1) < minimum(1)){ + if (geometryCoordinatePoint(1) < minimum(1)) + { minimum(1) = geometryCoordinatePoint(1); } - if (geometryCoordinatePoint(1) > maximum(1)){ + + if (geometryCoordinatePoint(1) > maximum(1)) + { maximum(1) = geometryCoordinatePoint(1); } + //min and max for z - if (geometryCoordinatePoint(2) < minimum(2)){ + if (geometryCoordinatePoint(2) < minimum(2)) + { minimum(2) = geometryCoordinatePoint(2); } - if (geometryCoordinatePoint(2) > maximum(2)){ + + if (geometryCoordinatePoint(2) > maximum(2)) + { maximum(2) = geometryCoordinatePoint(2); } //check planar - if (geometryCoordinatePoint(2) < minZ){ + if (geometryCoordinatePoint(2) < minZ) + { minZ = geometryCoordinatePoint(2); } - if (geometryCoordinatePoint(2) > maxZ){ + + if (geometryCoordinatePoint(2) > maxZ) + { maxZ = geometryCoordinatePoint(2); } } return (abs(maxZ - minZ) <= aErrorConstant); } - BoostMask::BoostRing2D BoostMask::convertRTTBPolygonToBoostRing(const rttb::PolygonType& aRTTBPolygon) + BoostMask::BoostRing2D BoostMask::convertRTTBPolygonToBoostRing(const rttb::PolygonType& + aRTTBPolygon) const { BoostMask::BoostRing2D polygon2D; BoostPoint2D firstPoint; - for (unsigned int i = 0; i < aRTTBPolygon.size(); i++){ + + for (unsigned int i = 0; i < aRTTBPolygon.size(); i++) + { rttb::WorldCoordinate3D rttbPoint = aRTTBPolygon.at(i); BoostPoint2D boostPoint(rttbPoint[0], rttbPoint[1]); - if (i == 0){ + + if (i == 0) + { firstPoint = boostPoint; } + ::boost::geometry::append(polygon2D, boostPoint); } + ::boost::geometry::append(polygon2D, firstPoint); return polygon2D; } - BoostMask::BoostRingMap BoostMask::convertRTTBPolygonSequenceToBoostRingMap(const rttb::PolygonSequenceType& aRTTBPolygonVector) + BoostMask::BoostRingMap BoostMask::convertRTTBPolygonSequenceToBoostRingMap( + const rttb::PolygonSequenceType& aRTTBPolygonVector) const { rttb::PolygonSequenceType::const_iterator it; BoostMask::BoostRingMap aRingMap; - for (it = aRTTBPolygonVector.begin(); it != aRTTBPolygonVector.end(); ++it){ + + for (it = aRTTBPolygonVector.begin(); it != aRTTBPolygonVector.end(); ++it) + { rttb::PolygonType rttbPolygon = *it; double zIndex = rttbPolygon.at(0)[2];//get the first z index of the polygon + if (!aRingMap.empty()) { BoostMask::BoostRingMap::const_iterator findIt = findNearestKey(aRingMap, zIndex, errorConstant); //if the z index is found (same slice), add the polygon to vector - if (findIt != aRingMap.end()){ + if (findIt != aRingMap.end()) + { BoostRingVector ringVector = (*findIt).second; ringVector.push_back(convertRTTBPolygonToBoostRing(rttbPolygon)); - } + } } //if it is the first z index in the map, insert vector with the polygon BoostRingVector ringVector; ringVector.push_back(convertRTTBPolygonToBoostRing(rttbPolygon)); aRingMap.insert(std::pair(zIndex, ringVector)); } + return aRingMap; } - BoostMask::BoostRingMap::const_iterator BoostMask::findNearestKey(const BoostMask::BoostRingMap& aBoostRingMap, double aIndex, double aErrorConstant) + BoostMask::BoostRingMap::const_iterator BoostMask::findNearestKey(const BoostMask::BoostRingMap& + aBoostRingMap, double aIndex, double aErrorConstant) const { BoostMask::BoostRingMap::const_iterator find = aBoostRingMap.find(aIndex); + //if find a key equivalent to aIndex, found if (find != aBoostRingMap.end()) { return find; } else { BoostMask::BoostRingMap::const_iterator lowerBound = aBoostRingMap.lower_bound(aIndex); + //if the lower bound very close to aIndex, found if (abs((*lowerBound).first - aIndex) <= aErrorConstant) { return lowerBound; } else { //if the lower bound is the beginning, not found if (lowerBound == aBoostRingMap.begin()) { return aBoostRingMap.end(); } else { BoostMask::BoostRingMap::const_iterator lowerBound1 = --lowerBound;//the key before the lower bound + //if the key before the lower bound very close to a Index, found if (abs((*lowerBound1).first - aIndex) <= aErrorConstant) { return lowerBound1; } //else, not found else { return aBoostRingMap.end(); } } } - + } } - BoostMask::BoostPolygonVector BoostMask::checkDonutAndConvert(const BoostMask::BoostRingVector& aRingVector) + BoostMask::BoostPolygonVector BoostMask::checkDonutAndConvert(const BoostMask::BoostRingVector& + aRingVector) const { //check donut BoostMask::BoostRingVector::const_iterator it1; BoostMask::BoostRingVector::const_iterator it2; BoostMask::BoostPolygonVector boostPolygonVector; std::vector donutIndexVector;//store the outer and inner ring index BoostMask::BoostPolygonVector donutVector;//store new generated donut polygon //Get donut index and donut polygon unsigned int index1 = 0; - for (it1 = aRingVector.begin(); it1 != aRingVector.end(); it1++, index1++){ + + for (it1 = aRingVector.begin(); it1 != aRingVector.end(); it1++, index1++) + { bool it1IsDonut = false; + //check if the ring is already determined as a donut - for (unsigned int i = 0; i < donutIndexVector.size(); i++){ - if (donutIndexVector.at(i) == index1){ + for (unsigned int i = 0; i < donutIndexVector.size(); i++) + { + if (donutIndexVector.at(i) == index1) + { it1IsDonut = true; break; } } + //if not jet, check now - if (!it1IsDonut){ + if (!it1IsDonut) + { bool it2IsDonut = false; unsigned int index2 = 0; - for (it2 = aRingVector.begin(); it2 != aRingVector.end(); it2++, index2++){ - if (it2 != it1){ + + for (it2 = aRingVector.begin(); it2 != aRingVector.end(); it2++, index2++) + { + if (it2 != it1) + { BoostMask::BoostPolygon2D polygon2D; - if (::boost::geometry::within(*it1, *it2)){ + + if (::boost::geometry::within(*it1, *it2)) + { ::boost::geometry::append(polygon2D, *it2);//append an outer ring to the polygon ::boost::geometry::interior_rings(polygon2D).resize(1);//create an interior ring ::boost::geometry::append(polygon2D, *it1, 0);//append a ring to the interior ring it2IsDonut = true; } //if donut - else if (::boost::geometry::within(*it2, *it1)){ + else if (::boost::geometry::within(*it2, *it1)) + { ::boost::geometry::append(polygon2D, *it1);//append an outer ring to the polygon ::boost::geometry::interior_rings(polygon2D).resize(1);//create an interior ring ::boost::geometry::append(polygon2D, *it2, 0);//append a ring to the interior ring it2IsDonut = true; } - if (it2IsDonut){ + + if (it2IsDonut) + { donutIndexVector.push_back(index1); donutIndexVector.push_back(index2); donutVector.push_back(polygon2D);//store donut polygon break;//Only store the first donut! } } } } } //Store no donut polygon to boostPolygonVector index1 = 0; - for (it1 = aRingVector.begin(); it1 != aRingVector.end(); it1++, index1++){ + + for (it1 = aRingVector.begin(); it1 != aRingVector.end(); it1++, index1++) + { bool it1IsDonut = false; + //check if the ring is the outer or inner of a donut - for (unsigned int i = 0; i < donutIndexVector.size(); i++){ - if (donutIndexVector.at(i) == index1){ + for (unsigned int i = 0; i < donutIndexVector.size(); i++) + { + if (donutIndexVector.at(i) == index1) + { it1IsDonut = true; break; } } - if (!it1IsDonut){ + + if (!it1IsDonut) + { BoostMask::BoostPolygon2D polygon2D; ::boost::geometry::append(polygon2D, *it1); boostPolygonVector.push_back(polygon2D);//insert the ring, which is not a part of donut } } //Append donut polygon to boostPolygonVector BoostMask::BoostPolygonVector::iterator itDonut; - for (itDonut = donutVector.begin(); itDonut != donutVector.end(); itDonut++){ + + for (itDonut = donutVector.begin(); itDonut != donutVector.end(); itDonut++) + { boostPolygonVector.push_back(*itDonut);//append donuts } return boostPolygonVector; } + BoostMask::BoostRing2D BoostMask::get2DContour(const rttb::VoxelGridIndex3D& aVoxelGrid3D) const + { + BoostMask::BoostRing2D polygon; + + + BoostPoint2D point1(aVoxelGrid3D[0] - 0.5, aVoxelGrid3D[1] - 0.5); + ::boost::geometry::append(polygon, point1); + + BoostPoint2D point2(aVoxelGrid3D[0] + 0.5, aVoxelGrid3D[1] - 0.5); + ::boost::geometry::append(polygon, point2); + + BoostPoint2D point3(aVoxelGrid3D[0] + 0.5, aVoxelGrid3D[1] + 0.5); + ::boost::geometry::append(polygon, point3); + + BoostPoint2D point4(aVoxelGrid3D[0] - 0.5, aVoxelGrid3D[1] + 0.5); + ::boost::geometry::append(polygon, point4); + + ::boost::geometry::append(polygon, point1); + + return polygon; + + } + + /*Get intersection polygons of the contour and a voxel polygon*/ + BoostMask::BoostPolygonDeque BoostMask::getIntersections(const rttb::VoxelGridIndex3D& + aVoxelIndex3D, const BoostPolygonVector& intersectionSlicePolygons) const + { + BoostMask::BoostPolygonDeque polygonDeque; + + BoostRing2D voxelPolygon = get2DContour(aVoxelIndex3D); + ::boost::geometry::correct(voxelPolygon); + + BoostPolygonVector::const_iterator it; + + for (it = intersectionSlicePolygons.begin(); it != intersectionSlicePolygons.end(); ++it) + { + BoostPolygon2D contour = *it; + ::boost::geometry::correct(contour); + BoostPolygonDeque intersection; + ::boost::geometry::intersection(voxelPolygon, contour, intersection); + + polygonDeque.insert(polygonDeque.end(), intersection.begin(), intersection.end()); + } + + return polygonDeque; + } + + /*Calculate the intersection area*/ + double BoostMask::calcArea(const BoostPolygonDeque& aPolygonDeque) const + { + double area = 0; + + BoostPolygonDeque::const_iterator it; + + for (it = aPolygonDeque.begin(); it != aPolygonDeque.end(); ++it) + { + area += ::boost::geometry::area(*it); + } + + return area; + } + } } } \ No newline at end of file diff --git a/code/masks/boost/rttbBoostMaskRedesign.h b/code/masks/boost/rttbBoostMaskRedesign.h index 99655ad..07004b4 100644 --- a/code/masks/boost/rttbBoostMaskRedesign.h +++ b/code/masks/boost/rttbBoostMaskRedesign.h @@ -1,153 +1,210 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ /*! // @file // @version $Revision: 1127 $ (last changed revision) // @date $Date: 2015-10-01 13:33:33 +0200 (Do, 01 Okt 2015) $ (last change date) // @author $Author: hentsch $ (last changed by) */ #ifndef __BOOST_MASK_H #define __BOOST_MASK_H #include "rttbBaseType.h" #include "rttbStructure.h" #include "rttbGeometricInfo.h" #include "rttbMaskVoxel.h" #include "rttbMaskAccessorInterface.h" #include #include #include #include #include +#include namespace rttb { namespace masks { namespace boostRedesign { /*! @class BoostMask - * @brief Implementation of voxelization using boost::geometry. + * @brief Implementation of voxelization using boost::geometry. * @attention If "strict" is set to true, an exception will be thrown when the given structure has self intersection. * (A structure without self interseciton means all contours of the structure have no self intersection, and - * the polygons on the same slice have no intersection between each other, unless the case of a donut. A donut is accepted.) - * If "strict" is set to false, debug information will be displayed when the given structure has self intersection. Self intersections will be ignored - * and the mask will be calculated, however, it may cause errors in the mask results. + * the polygons on the same slice have no intersection between each other, unless the case of a donut. A donut is accepted.) + * If "strict" is set to false, debug information will be displayed when the given structure has self intersection. Self intersections will be ignored + * and the mask will be calculated, however, it may cause errors in the mask results. */ class BoostMask { public: typedef ::boost::shared_ptr GeometricInfoPointer; typedef core::Structure::StructTypePointer StructPointer; typedef core::MaskAccessorInterface::MaskVoxelList MaskVoxelList; typedef core::MaskAccessorInterface::MaskVoxelListPointer MaskVoxelListPointer; /*! @brief Constructor * @exception rttb::core::NullPointerException thrown if aDoseGeoInfo or aStructure is NULL * @param strict indicates whether to allow self intersection in the structure. If it is set to true, an exception will be thrown when the given structure has self intersection. * @exception InvalidParameterException thrown if strict is true and the structure has self intersections */ BoostMask(GeometricInfoPointer aDoseGeoInfo, StructPointer aStructure, bool strict = true); /*! @brief Generate mask and return the voxels in the mask * @exception rttb::core::InvalidParameterException thrown if the structure has self intersections */ MaskVoxelListPointer getRelevantVoxelVector(); private: typedef ::boost::geometry::model::d2::point_xy BoostPoint2D; - typedef ::boost::geometry::model::polygon< ::boost::geometry::model::d2::point_xy > BoostPolygon2D; - typedef ::boost::geometry::model::ring< ::boost::geometry::model::d2::point_xy > BoostRing2D; + typedef ::boost::geometry::model::polygon< ::boost::geometry::model::d2::point_xy > + BoostPolygon2D; + typedef ::boost::geometry::model::ring< ::boost::geometry::model::d2::point_xy > + BoostRing2D; typedef std::deque BoostPolygonDeque; typedef std::vector BoostRingVector;//polygon without holes typedef std::vector BoostPolygonVector;//polygon with or without holes typedef std::vector VoxelIndexVector; - typedef std::map BoostPolygonMap;//map of the z index with the vector of boost 2d polygon - typedef std::map BoostRingMap;//map of the z index with the vector of boost 2d ring + typedef std::map + BoostPolygonMap;//map of the z index with the vector of boost 2d polygon + typedef std::map + BoostRingMap;//map of the z index with the vector of boost 2d ring + typedef boost::multi_array BoostArray2D; + typedef std::map BoostArrayMap; + typedef boost::array BoostArray1D; GeometricInfoPointer _geometricInfo; StructPointer _structure; /*! @brief The map of z index and a vector of all boost polygons with the same z index. This will be used to calculate the mask. - * Key: the double z grid index + * Key: the double z grid index * Value: the vector of all boost 2d polygons with the same z grid index (donut polygon is accepted). */ BoostPolygonMap _geometryCoordinateBoostPolygonMap; - /*! @brief The min and max index of the global bounding box. + /*! @brief The min and max index of the global bounding box. * The first index has the minimum for x/y/z of the global bounding box. * The second index has the maximum for x/y/z of the global bounding index. */ - std::vector _globalBoundingBox; + VoxelIndexVector _globalBoundingBox; + + /*! @brief The voxelization map + * key: the double z grid index + * value: the 2d mask, array[i][j] = the mask value of the position (i,j) in the global bounding box, + * i: 0 - (_globalBoundingBoxSize0-1), j: 0 - (_globalBoundingBoxSize1-1) + */ + BoostArrayMap _voxelizationMap; + + //The thickness of the voxelization plane (the contour plane) + double _voxelizationThickness; bool _strict; //vector of the MaskVoxel inside the structure MaskVoxelListPointer _voxelInStructure; /*! @brief If the mask is up to date */ bool _isUpToDate; /*! @brief Voxelization and generate mask */ void calcMask(); /*! @brief The preprocessing step, wich consists of the following logic and Sub setps: * For all contours in a struct: * 1) Transfer the contour polygons into boost::geometry structures - * 1a) Convert the contur points from world coordinates into geometry coordinates. + * 1a) Convert the contur points from world coordinates into geometry coordinates. * 1b) get min and max for x/y/z of a contour * 2) Tilt check: if difference of z_min and z_max is larger then a tolerance value -> there is a tilt. Throw rttb::TiltedMaskPlaneException. * 3) Get struct-bounding-box: get x_min_struct, y_min_struct, x_max_struct, y_max_struct to define the bounding box that containes all contours of a struct in x-y-dimensions. */ void preprocessing(); + /*! @brief The voxelization step, wich computes the voxelization planes (in x/y) for all contours of an struct. + + *For each contour (that is in the z-Range of the reference geometry) of the struct: + *1) Allocate result array (voxelization plane) based on the bounding box (see Preprocessing Step 3) + *2) Generate voxelization plane for the contour (based on the x-y-raster of the reference geometry). + *3) Add result Array (key is the z-Value of the contour) + */ + void voxelization(); + /*! @brief Convert the rttb polygon with world corrdinate to the rttb polygon with double geometry coordinate, calculate the current min/max * and check if the polygon is planar * @param minimum the current global minimum * @param maximum the current global maximum * @return Return true if the polygon is planar, which means that the minminal and maximal z-coordinate of the polygon is not larger than a error constant */ - bool preprocessingPolygon(const rttb::PolygonType& aRTTBPolygon, rttb::PolygonType& geometryCoordinatePolygon, rttb::DoubleVoxelGridIndex3D& minimum, rttb::DoubleVoxelGridIndex3D& maximum, double aErrorConstant); + bool preprocessingPolygon(const rttb::PolygonType& aRTTBPolygon, + rttb::PolygonType& geometryCoordinatePolygon, rttb::DoubleVoxelGridIndex3D& minimum, + rttb::DoubleVoxelGridIndex3D& maximum, double aErrorConstant) const; /*! @brief Convert a rttb 3d polygon to a 2d boost ring*/ - BoostRing2D convertRTTBPolygonToBoostRing(const rttb::PolygonType& aRTTBPolygon); + BoostRing2D convertRTTBPolygonToBoostRing(const rttb::PolygonType& aRTTBPolygon) const; /*! @brief Convert a rttb 3d polygon to a map of z index with a vector of boost 2d ring, because of tilt check use the first z index of the polygon as the map key*/ - BoostRingMap convertRTTBPolygonSequenceToBoostRingMap(const rttb::PolygonSequenceType& aRTTBPolygonVector); + BoostRingMap convertRTTBPolygonSequenceToBoostRingMap(const rttb::PolygonSequenceType& + aRTTBPolygonVector) const; /*! @brief Find the key with error constant to aIndex * @pre aBoostRingMap should not be empty * @return Return aBoostRingMap.end() if the key is not found */ - BoostMask::BoostRingMap::const_iterator findNearestKey(const BoostMask::BoostRingMap& aBoostRingMap, double aIndex, double aErrorConstant); - + BoostMask::BoostRingMap::const_iterator findNearestKey(const BoostMask::BoostRingMap& aBoostRingMap, + double aIndex, double aErrorConstant) const; + /*! @brief If 2 rings in the vector build a donut, convert the 2 rings to a donut polygon, other rings unchanged*/ - BoostPolygonVector checkDonutAndConvert(const BoostRingVector& aRingVector); + BoostPolygonVector checkDonutAndConvert(const BoostRingVector& aRingVector) const; + + /*! @brief Get the voxel 2d contour polygon in geometry coordinate*/ + BoostRing2D get2DContour(const rttb::VoxelGridIndex3D& aVoxelGrid3D) const; + + /*! @brief Get intersection polygons of the contour and a voxel polygon + * @param aVoxelIndex3D The 3d grid index of the voxel + * @param intersectionSlicePolygons The polygons of the slice intersecting the voxel + * @return Return all intersetion polygons of the structure and the voxel + */ + BoostPolygonDeque getIntersections(const rttb::VoxelGridIndex3D& aVoxelIndex3D, + const BoostPolygonVector& intersectionSlicePolygons) const; + + /*! @brief Calculate the area of all polygons + * @param aPolygonDeque The deque of polygons + * @return Return the area of all polygons + */ + double calcArea(const BoostPolygonDeque& aPolygonDeque) const; + + /*! @brief Calculate the voxelization thickness. + Return false, if the voxelization plane is not homogeneous + */ + bool calcVoxelizationThickness(double aThickness); + + /*! @brief For each dose grid index z, calculate the weight vector for each structure contour + */ + void calcWeightVector(const rttb::VoxelGridIndex3D& aVoxelIndex3D, BoostArray1D& weightArray) const; }; } } } #endif \ No newline at end of file