diff --git a/code/masks/boost/rttbBoostMaskRedesign.cpp b/code/masks/boost/rttbBoostMaskRedesign.cpp index 3d7d840..bd54072 100644 --- a/code/masks/boost/rttbBoostMaskRedesign.cpp +++ b/code/masks/boost/rttbBoostMaskRedesign.cpp @@ -1,516 +1,522 @@ #include #include #include #include #include #include #include #include #include "rttbBoostMaskRedesign.h" #include "rttbNullPointerException.h" #include "rttbInvalidParameterException.h" namespace rttb { namespace masks { namespace boostRedesign { BoostMask::BoostMask(BoostMask::GeometricInfoPointer aDoseGeoInfo, BoostMask::StructPointer aStructure, bool strict) : _geometricInfo(aDoseGeoInfo), _structure(aStructure), _strict(strict), _voxelInStructure(::boost::make_shared()) { _isUpToDate = false; if (!_geometricInfo) { throw rttb::core::NullPointerException("Error: Geometric info is NULL!"); } else if (!_structure) { throw rttb::core::NullPointerException("Error: Structure is NULL!"); } } BoostMask::MaskVoxelListPointer BoostMask::getRelevantVoxelVector() { if (!_isUpToDate) { calcMask(); } return _voxelInStructure; } void BoostMask::calcMask() { preprocessing(); voxelization(); _isUpToDate = true; } void BoostMask::preprocessing() { rttb::PolygonSequenceType polygonSequence = _structure->getStructureVector(); //Convert world coordinate polygons to the polygons with geometry coordinate rttb::PolygonSequenceType geometryCoordinatePolygonVector; rttb::PolygonSequenceType::iterator it; for (it = polygonSequence.begin(); it != polygonSequence.end(); ++it) { PolygonType rttbPolygon = *it; PolygonType geometryCoordinatePolygon = worldCoordinateToGeometryCoordinatePolygon(rttbPolygon); geometryCoordinatePolygonVector.push_back(geometryCoordinatePolygon); } //Get global bounding box - rttb::DoubleVoxelGridIndex3D globalMaxGridIndex(0.0, 0.0, 0); + rttb::DoubleVoxelGridIndex3D globalMaxGridIndex(-1.0, -1.0, -1.0); rttb::DoubleVoxelGridIndex3D globalMinGridIndex(_geometricInfo->getNumColumns(), _geometricInfo->getNumRows(), _geometricInfo->getNumSlices()); for (it = geometryCoordinatePolygonVector.begin(); it != geometryCoordinatePolygonVector.end(); ++it) { PolygonType geometryCoordinatePolygon = *it; rttb::DoubleVoxelGridIndex3D maxGridIndex; rttb::DoubleVoxelGridIndex3D minGridIndex; //get min/max for x/y/z of the contour calcMinMax(geometryCoordinatePolygon, minGridIndex, maxGridIndex); PolygonType::iterator coutIt; std::cout << "Polygon: "; for (coutIt = geometryCoordinatePolygon.begin(); coutIt != geometryCoordinatePolygon.end(); ++coutIt) { std::cout << (*coutIt).toString() << "; "; } std::cout << std::endl; std::cout << "min: " << minGridIndex.toString() << std::endl; std::cout << "max: " << maxGridIndex.toString() << std::endl; //check tilt, if more than the error constant throw exception if (checkTilt(minGridIndex, maxGridIndex, errorConstant)) { throw rttb::core::Exception("TiltedMaskPlaneException"); } //get global min/max for x/y/z of all contours //min and max for x if (minGridIndex(0) < globalMinGridIndex(0)) { globalMinGridIndex(0) = minGridIndex(0); } if (maxGridIndex(0) > globalMaxGridIndex(0)) { globalMaxGridIndex(0) = maxGridIndex(0); } //min and max for y if (minGridIndex(1) < globalMinGridIndex(1)) { globalMinGridIndex(1) = minGridIndex(1); } if (maxGridIndex(1) > globalMaxGridIndex(1)) { globalMaxGridIndex(1) = maxGridIndex(1); } //min and max for z if (minGridIndex(2) < globalMinGridIndex(2)) { globalMinGridIndex(2) = minGridIndex(2); } if (maxGridIndex(2) > globalMaxGridIndex(2)) { globalMaxGridIndex(2) = maxGridIndex(2); } } rttb::VoxelGridIndex3D minIndex = VoxelGridIndex3D(GridIndexType(globalMinGridIndex(0) + 0.5), GridIndexType(globalMinGridIndex(1) + 0.5), GridIndexType(globalMinGridIndex(2) + 0.5)); rttb::VoxelGridIndex3D maxIndex = VoxelGridIndex3D(GridIndexType(globalMaxGridIndex(0) + 0.5), GridIndexType(globalMaxGridIndex(1) + 0.5), GridIndexType(globalMaxGridIndex(2) + 0.5)); std::cout << "global min: " << minIndex.toString() << ", globa max: " << maxIndex.toString() << std::endl; _globalBoundingBox.push_back(minIndex); _globalBoundingBox.push_back(maxIndex); //convert rttb polygon sequence to a map of z index and a vector of boost ring 2d (without holes) BoostRingMap ringMap = convertRTTBPolygonSequenceToBoostRingMap(geometryCoordinatePolygonVector); //check donut and convert to a map of z index and a vector of boost polygon 2d (with or without holes) _geometryCoordinateBoostPolygonMap.clear(); BoostRingMap::iterator itMap; for (itMap = ringMap.begin(); itMap != ringMap.end(); ++itMap) { BoostPolygonVector polygonVector = checkDonutAndConvert((*itMap).second); _geometryCoordinateBoostPolygonMap.insert(std::pair((*itMap).first, polygonVector)); } } void BoostMask::voxelization() { BoostPolygonMap::iterator it; + + if (_globalBoundingBox.size() < 2) + { + throw rttb::core::InvalidParameterException("Bounding box calculation failed! "); + } + rttb::VoxelGridIndex3D minIndex = _globalBoundingBox.at(0); rttb::VoxelGridIndex3D maxIndex = _globalBoundingBox.at(1); int globalBoundingBoxSize0 = maxIndex[0] - minIndex[0] + 1; int globalBoundingBoxSize1 = maxIndex[1] - minIndex[1] + 1; for (it = _geometryCoordinateBoostPolygonMap.begin(); it != _geometryCoordinateBoostPolygonMap.end(); ++it) { BoostArray2D maskArray(boost::extents[globalBoundingBoxSize0][globalBoundingBoxSize1]); BoostPolygonVector boostPolygonVec = (*it).second; for (unsigned int x = 0; x < globalBoundingBoxSize0; ++x) { - for (unsigned y = 0; y < globalBoundingBoxSize1; ++y) + for (unsigned int y = 0; y < globalBoundingBoxSize1; ++y) { rttb::VoxelGridIndex3D currentIndex; currentIndex[0] = x + minIndex[0]; currentIndex[1] = y + minIndex[1]; currentIndex[2] = 0; //Get intersection polygons of the dose voxel and the structure BoostPolygonDeque polygons = getIntersections(currentIndex, boostPolygonVec); //Calc areas of all intersection polygons double volumeFraction = calcArea(polygons); if (volumeFraction > 1 && (volumeFraction - 1) <= errorConstant) { volumeFraction = 1; } maskArray[x][y] = volumeFraction; std::cout << "(" << x << "," << y << "): " << volumeFraction << std::endl; } } //insert into voxelization map _voxelizationMap.insert(std::pair((*it).first, maskArray)); } } rttb::PolygonType BoostMask::worldCoordinateToGeometryCoordinatePolygon( - const rttb::PolygonType& aRTTBPolygon) + const rttb::PolygonType& aRTTBPolygon) const { rttb::PolygonType geometryCoordinatePolygon; for (unsigned int i = 0; i < aRTTBPolygon.size(); i++) { rttb::WorldCoordinate3D worldCoordinatePoint = aRTTBPolygon.at(i); rttb::DoubleVoxelGridIndex3D geometryCoordinatePoint; _geometricInfo->worldCoordinateToGeometryCoordinate(worldCoordinatePoint, geometryCoordinatePoint); geometryCoordinatePolygon.push_back(geometryCoordinatePoint); } return geometryCoordinatePolygon; } bool BoostMask::checkTilt(const rttb::DoubleVoxelGridIndex3D& minimum, - const rttb::DoubleVoxelGridIndex3D& maximum, double aErrorConstant) + const rttb::DoubleVoxelGridIndex3D& maximum, double aErrorConstant) const { return (abs(maximum(2) - minimum(2)) > aErrorConstant); } void BoostMask::calcMinMax(const rttb::PolygonType& aRTTBPolygon, - rttb::DoubleVoxelGridIndex3D& minimum, rttb::DoubleVoxelGridIndex3D& maximum) + rttb::DoubleVoxelGridIndex3D& minimum, rttb::DoubleVoxelGridIndex3D& maximum) const { - maximum(0) = 0.0; - maximum(1) = 0.0; - maximum(2) = 0.0; + maximum(0) = -1.0; + maximum(1) = -1.0; + maximum(2) = -1.0; minimum(0) = _geometricInfo->getNumColumns(); minimum(1) = _geometricInfo->getNumRows(); minimum(2) = _geometricInfo->getNumSlices(); //get min and max for x/y/z of a contour PolygonType::const_iterator polygonIt; for (polygonIt = aRTTBPolygon.begin(); polygonIt < aRTTBPolygon.end(); ++polygonIt) { rttb::DoubleVoxelGridIndex3D geometryCoordinatePoint = *polygonIt; //min and max for x if (geometryCoordinatePoint(0) < minimum(0)) { minimum(0) = geometryCoordinatePoint(0); } if (geometryCoordinatePoint(0) > maximum(0)) { maximum(0) = geometryCoordinatePoint(0); } //min and max for y if (geometryCoordinatePoint(1) < minimum(1)) { minimum(1) = geometryCoordinatePoint(1); } if (geometryCoordinatePoint(1) > maximum(1)) { maximum(1) = geometryCoordinatePoint(1); } //min and max for z if (geometryCoordinatePoint(2) < minimum(2)) { minimum(2) = geometryCoordinatePoint(2); } if (geometryCoordinatePoint(2) > maximum(2)) { maximum(2) = geometryCoordinatePoint(2); } } } BoostMask::BoostRing2D BoostMask::convertRTTBPolygonToBoostRing(const rttb::PolygonType& - aRTTBPolygon) + aRTTBPolygon) const { BoostMask::BoostRing2D polygon2D; BoostPoint2D firstPoint; for (unsigned int i = 0; i < aRTTBPolygon.size(); i++) { rttb::WorldCoordinate3D rttbPoint = aRTTBPolygon.at(i); BoostPoint2D boostPoint(rttbPoint[0], rttbPoint[1]); if (i == 0) { firstPoint = boostPoint; } ::boost::geometry::append(polygon2D, boostPoint); } ::boost::geometry::append(polygon2D, firstPoint); return polygon2D; } BoostMask::BoostRingMap BoostMask::convertRTTBPolygonSequenceToBoostRingMap( - const rttb::PolygonSequenceType& aRTTBPolygonVector) + const rttb::PolygonSequenceType& aRTTBPolygonVector) const { rttb::PolygonSequenceType::const_iterator it; BoostMask::BoostRingMap aRingMap; for (it = aRTTBPolygonVector.begin(); it != aRTTBPolygonVector.end(); ++it) { rttb::PolygonType rttbPolygon = *it; double zIndex = rttbPolygon.at(0)[2];//get the first z index of the polygon BoostMask::BoostRingMap::iterator findIt = aRingMap.find(zIndex); //if the z index is found (same slice), add the polygon to vector if (findIt != aRingMap.end()) { BoostRingVector ringVector = (*findIt).second; ringVector.push_back(convertRTTBPolygonToBoostRing(rttbPolygon)); } //if it is the first z index in the map, insert vector with the polygon else { BoostRingVector ringVector; ringVector.push_back(convertRTTBPolygonToBoostRing(rttbPolygon)); aRingMap.insert(std::pair(zIndex, ringVector)); } } return aRingMap; } BoostMask::BoostPolygonVector BoostMask::checkDonutAndConvert(const BoostMask::BoostRingVector& - aRingVector) + aRingVector) const { //check donut BoostMask::BoostRingVector::const_iterator it1; BoostMask::BoostRingVector::const_iterator it2; BoostMask::BoostPolygonVector boostPolygonVector; std::vector donutIndexVector;//store the outer and inner ring index BoostMask::BoostPolygonVector donutVector;//store new generated donut polygon //Get donut index and donut polygon unsigned int index1 = 0; for (it1 = aRingVector.begin(); it1 != aRingVector.end(); it1++, index1++) { bool it1IsDonut = false; //check if the ring is already determined as a donut for (unsigned int i = 0; i < donutIndexVector.size(); i++) { if (donutIndexVector.at(i) == index1) { it1IsDonut = true; break; } } //if not jet, check now if (!it1IsDonut) { bool it2IsDonut = false; unsigned int index2 = 0; for (it2 = aRingVector.begin(); it2 != aRingVector.end(); it2++, index2++) { if (it2 != it1) { BoostMask::BoostPolygon2D polygon2D; if (::boost::geometry::within(*it1, *it2)) { ::boost::geometry::append(polygon2D, *it2);//append an outer ring to the polygon ::boost::geometry::interior_rings(polygon2D).resize(1);//create an interior ring ::boost::geometry::append(polygon2D, *it1, 0);//append a ring to the interior ring it2IsDonut = true; } //if donut else if (::boost::geometry::within(*it2, *it1)) { ::boost::geometry::append(polygon2D, *it1);//append an outer ring to the polygon ::boost::geometry::interior_rings(polygon2D).resize(1);//create an interior ring ::boost::geometry::append(polygon2D, *it2, 0);//append a ring to the interior ring it2IsDonut = true; } if (it2IsDonut) { donutIndexVector.push_back(index1); donutIndexVector.push_back(index2); donutVector.push_back(polygon2D);//store donut polygon break;//Only store the first donut! } } } } } //Store no donut polygon to boostPolygonVector index1 = 0; for (it1 = aRingVector.begin(); it1 != aRingVector.end(); it1++, index1++) { bool it1IsDonut = false; //check if the ring is the outer or inner of a donut for (unsigned int i = 0; i < donutIndexVector.size(); i++) { if (donutIndexVector.at(i) == index1) { it1IsDonut = true; break; } } if (!it1IsDonut) { BoostMask::BoostPolygon2D polygon2D; ::boost::geometry::append(polygon2D, *it1); boostPolygonVector.push_back(polygon2D);//insert the ring, which is not a part of donut } } //Append donut polygon to boostPolygonVector BoostMask::BoostPolygonVector::iterator itDonut; for (itDonut = donutVector.begin(); itDonut != donutVector.end(); itDonut++) { boostPolygonVector.push_back(*itDonut);//append donuts } return boostPolygonVector; } - BoostMask::BoostRing2D BoostMask::get2DContour(const rttb::VoxelGridIndex3D& aVoxelGrid3D) + BoostMask::BoostRing2D BoostMask::get2DContour(const rttb::VoxelGridIndex3D& aVoxelGrid3D) const { BoostMask::BoostRing2D polygon; BoostPoint2D point1(aVoxelGrid3D[0] - 0.5, aVoxelGrid3D[1] - 0.5); ::boost::geometry::append(polygon, point1); BoostPoint2D point2(aVoxelGrid3D[0] + 0.5, aVoxelGrid3D[1] - 0.5); ::boost::geometry::append(polygon, point2); BoostPoint2D point3(aVoxelGrid3D[0] + 0.5, aVoxelGrid3D[1] + 0.5); ::boost::geometry::append(polygon, point3); BoostPoint2D point4(aVoxelGrid3D[0] - 0.5, aVoxelGrid3D[1] + 0.5); ::boost::geometry::append(polygon, point4); ::boost::geometry::append(polygon, point1); return polygon; } /*Get intersection polygons of the contour and a voxel polygon*/ BoostMask::BoostPolygonDeque BoostMask::getIntersections(const rttb::VoxelGridIndex3D& - aVoxelIndex3D, const BoostPolygonVector& intersectionSlicePolygons) + aVoxelIndex3D, const BoostPolygonVector& intersectionSlicePolygons) const { BoostMask::BoostPolygonDeque polygonDeque; BoostRing2D voxelPolygon = get2DContour(aVoxelIndex3D); ::boost::geometry::correct(voxelPolygon); BoostPolygonVector::const_iterator it; for (it = intersectionSlicePolygons.begin(); it != intersectionSlicePolygons.end(); ++it) { BoostPolygon2D contour = *it; ::boost::geometry::correct(contour); BoostPolygonDeque intersection; ::boost::geometry::intersection(voxelPolygon, contour, intersection); polygonDeque.insert(polygonDeque.end(), intersection.begin(), intersection.end()); } return polygonDeque; } /*Calculate the intersection area*/ - double BoostMask::calcArea(const BoostPolygonDeque& aPolygonDeque) + double BoostMask::calcArea(const BoostPolygonDeque& aPolygonDeque) const { double area = 0; BoostPolygonDeque::const_iterator it; for (it = aPolygonDeque.begin(); it != aPolygonDeque.end(); ++it) { area += ::boost::geometry::area(*it); } return area; } } } } \ No newline at end of file diff --git a/code/masks/boost/rttbBoostMaskRedesign.h b/code/masks/boost/rttbBoostMaskRedesign.h index b09fbf2..a628a37 100644 --- a/code/masks/boost/rttbBoostMaskRedesign.h +++ b/code/masks/boost/rttbBoostMaskRedesign.h @@ -1,198 +1,199 @@ // ----------------------------------------------------------------------- // RTToolbox - DKFZ radiotherapy quantitative evaluation library // // Copyright (c) German Cancer Research Center (DKFZ), // Software development for Integrated Diagnostics and Therapy (SIDT). // ALL RIGHTS RESERVED. // See rttbCopyright.txt or // http://www.dkfz.de/en/sidt/projects/rttb/copyright.html // // This software is distributed WITHOUT ANY WARRANTY; without even // the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR // PURPOSE. See the above copyright notices for more information. // //------------------------------------------------------------------------ /*! // @file // @version $Revision: 1127 $ (last changed revision) // @date $Date: 2015-10-01 13:33:33 +0200 (Do, 01 Okt 2015) $ (last change date) // @author $Author: hentsch $ (last changed by) */ #ifndef __BOOST_MASK_H #define __BOOST_MASK_H #include "rttbBaseType.h" #include "rttbStructure.h" #include "rttbGeometricInfo.h" #include "rttbMaskVoxel.h" #include "rttbMaskAccessorInterface.h" #include #include #include #include #include #include namespace rttb { namespace masks { namespace boostRedesign { /*! @class BoostMask * @brief Implementation of voxelization using boost::geometry. * @attention If "strict" is set to true, an exception will be thrown when the given structure has self intersection. * (A structure without self interseciton means all contours of the structure have no self intersection, and * the polygons on the same slice have no intersection between each other, unless the case of a donut. A donut is accepted.) * If "strict" is set to false, debug information will be displayed when the given structure has self intersection. Self intersections will be ignored * and the mask will be calculated, however, it may cause errors in the mask results. */ class BoostMask { public: typedef ::boost::shared_ptr GeometricInfoPointer; typedef core::Structure::StructTypePointer StructPointer; typedef core::MaskAccessorInterface::MaskVoxelList MaskVoxelList; typedef core::MaskAccessorInterface::MaskVoxelListPointer MaskVoxelListPointer; /*! @brief Constructor * @exception rttb::core::NullPointerException thrown if aDoseGeoInfo or aStructure is NULL * @param strict indicates whether to allow self intersection in the structure. If it is set to true, an exception will be thrown when the given structure has self intersection. * @exception InvalidParameterException thrown if strict is true and the structure has self intersections */ BoostMask(GeometricInfoPointer aDoseGeoInfo, StructPointer aStructure, bool strict = true); /*! @brief Generate mask and return the voxels in the mask * @exception rttb::core::InvalidParameterException thrown if the structure has self intersections */ MaskVoxelListPointer getRelevantVoxelVector(); private: typedef ::boost::geometry::model::d2::point_xy BoostPoint2D; typedef ::boost::geometry::model::polygon< ::boost::geometry::model::d2::point_xy > BoostPolygon2D; typedef ::boost::geometry::model::ring< ::boost::geometry::model::d2::point_xy > BoostRing2D; typedef std::deque BoostPolygonDeque; typedef std::vector BoostRingVector;//polygon without holes typedef std::vector BoostPolygonVector;//polygon with or without holes typedef std::vector VoxelIndexVector; typedef std::map BoostPolygonMap;//map of the z index with the vector of boost 2d polygon typedef std::map BoostRingMap;//map of the z index with the vector of boost 2d ring typedef boost::multi_array BoostArray2D; typedef std::map BoostArrayMap; GeometricInfoPointer _geometricInfo; StructPointer _structure; /*! @brief The map of z index and a vector of all boost polygons with the same z index. This will be used to calculate the mask. * Key: the double z grid index * Value: the vector of all boost 2d polygons with the same z grid index (donut polygon is accepted). */ BoostPolygonMap _geometryCoordinateBoostPolygonMap; /*! @brief The min and max index of the global bounding box. * The first index has the minimum for x/y/z of the global bounding box. * The second index has the maximum for x/y/z of the global bounding index. */ VoxelIndexVector _globalBoundingBox; /*! @brief The voxelization map * key: the double z grid index * value: the 2d mask, array[i][j] = the mask value of the position (i,j) in the global bounding box, * i: 0 - (_globalBoundingBoxSize0-1), j: 0 - (_globalBoundingBoxSize1-1) */ BoostArrayMap _voxelizationMap; bool _strict; //vector of the MaskVoxel inside the structure MaskVoxelListPointer _voxelInStructure; /*! @brief If the mask is up to date */ bool _isUpToDate; /*! @brief Voxelization and generate mask */ void calcMask(); /*! @brief The preprocessing step, wich consists of the following logic and Sub setps: *For all contours in a struct: *1) Transfer the contour polygons into boost::geometry structures *1a) Convert the contur points from world coordinates into geometry coordinates. *1b) get min and max for x/y/z of a contour *2) Tilt check: if difference of z_min and z_max is larger then a tolerance value -> there is a tilt. Throw rttb::TiltedMaskPlaneException. *3) Get struct-bounding-box: get x_min_struct, y_min_struct, x_max_struct, y_max_struct to define the bounding box that containes all contours of a struct in x-y-dimensions. */ void preprocessing(); /*! @brief The voxelization step, wich computes the voxelization planes (in x/y) for all contours of an struct. *For each contour (that is in the z-Range of the reference geometry) of the struct: - *1) Allocate result array (voxelization plane) based on the bounding box (see Proprocessing Step 3) + *1) Allocate result array (voxelization plane) based on the bounding box (see Preprocessing Step 3) *2) Generate voxelization plane for the contour (based on the x-y-raster of the reference geometry). - *3) Add result Array (key is the z-Value of the contoure) + *3) Add result Array (key is the z-Value of the contour) */ void voxelization(); /*! @brief Convert the rttb polygon with world corrdinate to the rttb polygon with double geometry coordinate */ - rttb::PolygonType worldCoordinateToGeometryCoordinatePolygon(const rttb::PolygonType& aRTTBPolygon); + rttb::PolygonType worldCoordinateToGeometryCoordinatePolygon(const rttb::PolygonType& aRTTBPolygon) + const; /*! @brief Check if the polygon with the minimum and maximum is tilted more than a error constant @return Return true if tilted > aErrorConstant */ bool checkTilt(const rttb::DoubleVoxelGridIndex3D& minimum, - const rttb::DoubleVoxelGridIndex3D& maximum, double aErrorConstant); + const rttb::DoubleVoxelGridIndex3D& maximum, double aErrorConstant) const; /*! @brief Calculate minimum and maximum for x/y/z of the polygon */ void calcMinMax(const rttb::PolygonType& aRTTBPolygon, rttb::DoubleVoxelGridIndex3D& minimum, - rttb::DoubleVoxelGridIndex3D& maximum); + rttb::DoubleVoxelGridIndex3D& maximum) const; /*! @brief If 2 rttb polygons in the vector build a donut, convert the 2 rttb polygons to a donut boost polygon, other rttb polygons unchanged convert to boost ring*/ /*! @brief Convert a rttb 3d polygon to a 2d boost ring*/ - BoostRing2D convertRTTBPolygonToBoostRing(const rttb::PolygonType& aRTTBPolygon); + BoostRing2D convertRTTBPolygonToBoostRing(const rttb::PolygonType& aRTTBPolygon) const; /*! @brief Convert a rttb 3d polygon to a map of z index with a vector of boost 2d ring, because of tilt check use the first z index of the polygon as the map key*/ BoostRingMap convertRTTBPolygonSequenceToBoostRingMap(const rttb::PolygonSequenceType& - aRTTBPolygonVector); + aRTTBPolygonVector) const; /*! @brief If 2 rings in the vector build a donut, convert the 2 rings to a donut polygon, other rings unchanged*/ - BoostPolygonVector checkDonutAndConvert(const BoostRingVector& aRingVector); + BoostPolygonVector checkDonutAndConvert(const BoostRingVector& aRingVector) const; /*! @brief Get the voxel 2d contour polygon in geometry coordinate*/ - BoostRing2D get2DContour(const rttb::VoxelGridIndex3D& aVoxelGrid3D); + BoostRing2D get2DContour(const rttb::VoxelGridIndex3D& aVoxelGrid3D) const; /*! @brief Get intersection polygons of the contour and a voxel polygon * @param aVoxelIndex3D The 3d grid index of the voxel * @param intersectionSlicePolygons The polygons of the slice intersecting the voxel * @return Return all intersetion polygons of the structure and the voxel */ BoostPolygonDeque getIntersections(const rttb::VoxelGridIndex3D& aVoxelIndex3D, - const BoostPolygonVector& intersectionSlicePolygons); + const BoostPolygonVector& intersectionSlicePolygons) const; /*! @brief Calculate the area of all polygons * @param aPolygonDeque The deque of polygons * @return Return the area of all polygons */ - double calcArea(const BoostPolygonDeque& aPolygonDeque); + double calcArea(const BoostPolygonDeque& aPolygonDeque) const; }; } } } #endif \ No newline at end of file